

Logic Diagram

Absolute Maximum Ratings(Note 2)
Above which the useful life may be impaired.

Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature ($\left.\mathrm{T}_{\mathrm{J}}\right)$	$+150^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {EE }}$ Pin Potential to Ground Pin	-7.0 V to +0.5 V
Input Voltage (DC)	$\mathrm{V}_{\text {EE }}$ to +0.5 V
Output Current (DC Output HIGH)	-50 mA
ESD (Note 3)	$\geq 2000 \mathrm{~V}$

DC Electrical Characteristics (Note 4)

$\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}, \mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Units	Con	
V_{OH}	Output HIGH Voltage	-1025	-955	-870	mV	$V_{I N}=V_{I H(\operatorname{Max})}$ or V_{IL} (Min)	Loading with 50Ω to -2.0 V
V_{OL}	Output LOW Voltage	-1830	-1705	-1620			
$\mathrm{V}_{\mathrm{OHC}}$	Output HIGH Voltage	-1035			mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Min) }}$	Loading with
$\mathrm{V}_{\text {OLC }}$	Output LOW Voltage			-1610		or $\mathrm{V}_{\text {IL }}$ (Max)	50Ω to -2.0V
V_{IH}	Input HIGH Voltage	-1165		-870	mV	Guaranteed HIGH Signal for All Inputs	
V_{IL}	Input LOW Voltage	-1830		-1475	mV	Guaranteed LOW Signal for All Inputs	
$\mathrm{I}_{\text {IL }}$	Input LOW Current	0.50			$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL (Min) }}$	
IIH	Input HIGH Current MR $\bar{D}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$			$\begin{aligned} & 240 \\ & 240 \\ & 240 \end{aligned}$	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH} \text { (Max) }}$	
l_{EE}	Power Supply Current	$\begin{aligned} & -89 \\ & -93 \end{aligned}$		$\begin{aligned} & -44 \\ & -44 \end{aligned}$	mA	$\begin{aligned} & \text { Inputs Open } \\ & \mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-4.8 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V} \end{aligned}$	

DIP AC Electrical Characteristics

$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V}$ to $-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$

Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	$\begin{aligned} & \hline \text { Propagation Delay } \\ & D_{n} \text { to Output } \\ & \text { (Transparent Mode) } \end{aligned}$	0.50	1.40	0.50	1.40	0.50	1.50	ns	Figures 1, 2
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$ to Output	0.75	1.85	0.75	1.85	0.75	2.05	ns	
$t_{\text {PLH }}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay MR to Output	0.90	2.10	0.90	2.10	0.90	2.10	ns	Figures 1, 3
${ }^{\mathrm{t}_{\text {TLH }}}$ $\mathrm{t}_{\mathrm{THL}}$	$\begin{array}{\|l\|} \hline \text { Transition Time } \\ 20 \% \text { to } 80 \%, 80 \% \text { to } 20 \% \end{array}$	0.35	1.30	0.35	1.30	0.35	1.30	ns	Figures 1, 2
t_{s}	$\begin{array}{\|l} \hline \text { Setup Time } \\ D_{0}-D_{5} \\ \text { MR (Release Time) } \\ \hline \end{array}$	$\begin{aligned} & 1.00 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.60 \end{aligned}$		$\begin{aligned} & 1.00 \\ & 1.60 \end{aligned}$		ns	Figures 3, 4
${ }_{\text {th }}$	Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.40		0.40		0.40		ns	Figure 4
$\mathrm{t}_{\text {PW }}(\mathrm{L})$	Pulse Width LOW $\bar{E}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$	2.00		2.00		2.00		ns	Figure 2
${ }_{\text {tpw }}(\mathrm{H})$	Pulse Width HIGH, MR	2.00		2.00		2.00		ns	Figure 3

PLCC AC Electrical Characteristics$\mathrm{V}_{\mathrm{EE}}=-4.2 \mathrm{~V} \text { to }-5.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND}$									
Symbol	Parameter	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{C}}=+85^{\circ} \mathrm{C}$		Units	Conditions
		Min	Max	Min	Max	Min	Max		
$\begin{aligned} & \overline{t_{\text {PLH }}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay D_{n} to Output (Transparent Mode)	0.50	1.20	0.50	1.20	0.50	1.30	ns	Figures 1, 2
$\begin{aligned} & \overline{t_{\text {PLH }}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay $\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$ to Output	0.75	1.65	0.75	1.65	0.75	1.85	ns	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay MR to Output	0.90	1.90	0.90	1.90	0.90	1.90	ns	Figures 1, 3
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{TLH}} \\ & \mathrm{t}_{\mathrm{THL}} \end{aligned}$	Transition Time 20% to $80 \%, 80 \%$ to 20%	0.35	1.10	0.35	1.10	0.35	1.10	ns	Figures 1, 2
t_{s}	Setup Time $D_{0}-D_{5}$ MR (Release Time)	$\begin{aligned} & 0.90 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.50 \end{aligned}$		$\begin{aligned} & 0.90 \\ & 1.50 \end{aligned}$		ns	Figures 3, 4
${ }_{\text {th }}$	Hold Time, $\mathrm{D}_{0}-\mathrm{D}_{5}$	0.30		0.30		0.30		ns	Figure 4
$\mathrm{t}_{\text {PW }}(\mathrm{L})$	Pulse Width LOW $\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$	2.00		2.00		2.00		ns	Figure 2
$\mathrm{t}_{\text {PW }}(\mathrm{H})$	Pulse Width HIGH, MR	2.00		2.00		2.00		ns	Figure 3

Test Circuit

Note:

- $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CCA}}=+2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-2.5 \mathrm{~V}$
- $L 1$ and $L 2=$ equal length 50Ω impedance lines
- $\mathrm{R}_{\mathrm{T}}=50 \Omega$ terminator internal to scope
- Decoupling $0.1 \mu \mathrm{~F}$ from GND to V_{CC} and V_{EE}
- All unused outputs are loaded with 50Ω to GND
- $\mathrm{C}_{\mathrm{L}}=$ Fixture and stray capacitance $\leq 3 \mathrm{pF}$

FIGURE 1. AC Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

28-Lead Plastic Lead Chip Carrier (PLCC), JEDEC MO-047, 0.450 Square Package Number V28A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
