

10BQ015

SCHOTTKY RECTIFIER

1 Amp

Major Ratings and Characteristics

Characteristics	10BQ015	Units
I _{F(AV)} Rectangular waveform	1.0	Α
V _{RRM}	15	V
I _{FSM} @ tp = 5µs sine	140	Α
V _F @ 1.0Apk, T _J = 75°C	0.30	V
TJ	-55 to 100	°C

Description / Features

The 10BQ015 surface-mount Schottky rectifier has been designed for applications requiring very low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging and reverse battery protection.

- Small footprint, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long-term reliability

Voltage Ratings

Part number		10BQ015		
V _R	Max. DC Reverse Voltage (V)	15		
V _{RWM}	Max. Working Peak Reverse Voltage (V)	25		

Absolute Maximum Ratings

	Parameters	10BQ	Units	Conditions		
I _{F(AV)}	Max. Average Forward Current	1.0	Α	50% duty cycle @ T _C = 78°C, rectangular waveform		
	See Fig. 5					
I _{FSM}	Max. Peak One Cycle Non - Repetitive	140	Α	5μs Sine or 3μs Rect. pulse Following any rated load co		
	Surge Current — see Fig. 7	40		10ms Sine 0r 6ms Rect. pulse	and with rated $V_{\mbox{\scriptsize RRM}}$ applied.	
E _{AS}	Non - Repetitive Avalanche Energy	5.0	mJ	T _J = 25°C, I _{AS} = 0.2A, L = 4.2mH		
I _{AR}	Repetitive Avalanche Current	0.2	Α	Current decaying linearly to zero in 1µsec		
				Frequency limited by T _J max. V _A = 1.5 X V _R typical		

Electrical Specifications

Para	meters	10BQ	Units		Conditions
V _{FM}	Max. Forward Voltage Drop	0.34	V	@ 1.0A	T _{.1} = 25°C
	See Fig. 1 ①	0.40	V	@ 2.0A	17-20 0
		0.30	V	@ 1.0A	
		0.38	V	@ 2.0A	T _J = 75°C
I _{RM}	Max. Reverse Leakage Current ①	0.50	mA	$T_J = 25^{\circ}C$	V_R = rated V_R
	See Fig. 2	12	mA	$T_J = 100$ °C	TK 1000 TK
C _T	Max. Junction Capacitance	390	pF	V _R = 5V _{DC} , (test signal range 100KHz to 1MHz) 25°C	
Ls	Typical Series Inductance	2.0	nΗ	Measured lead to lead 5mm from package body	
dv/dt	Max. Voltage Rate of Change	6,000	V/µs		
	(Rated V _R)				

Thermal-Mechanical Specifications

	Parameters	10BQ	Units	Conditions
TJ	Max.Junction Temperature Range	-55 to 100	°C	
T _{STG}	Max. Storage Temperature Range	-55 to 100	°C	
R _{thJA}	Max. Thermal Resistance, Junction	140	°C/W	DC operation — See Fig. 4
	to Ambient			
R _{thJL}	Max. Thermal Resistance, Junction	36	°C/W	DC operation
	to Lead ②			
wt	Approximate Weight	0.10	g	
	Case Style	SMB		Similar to DO-214AA

 $^{\ \, \}mathbb O$ Pulse Width < 300 μs , Duty Cycle < 2%

② Mounted 1 inch square PCB, thermal probe connected to lead 2mm from package

Characteristics

Fig. 2 Typical Values of Reverse Current Vs. Reverse Voltage

Fig. 3 Typical Junction CapacitanceVs. Reverse Voltage

Fig. 4 Max. Thermal Impedance Z_{thJL} Characteristics

10BQ015 **I♀I♀R**

Average Forward Current - I_{F(AV)} (Fig. 5 Max. Allowable Case Temperature Vs. Average Forward Current

Fig. 6 Forward Power Loss Characteristics

Fig.7 Max. Non-Repetitive Surge Current

Fig. 8 Unclamped Inductive Test Circuit

Refer to the Appendix Section for the following:

Appendix D: Tape and Reel Information — See page 338.