International Tor Rectifier

Major Ratings and Characteristics

Characteristics	10BQ015	Units
$\mathrm{I}_{\text {F（AV })}$Rectangular waveform $\mathrm{V}_{\text {RRM }}$ $\mathrm{I}_{\text {FSM }} @$ tp $=5 \mu \mathrm{~s}$ sine $\mathrm{V}_{\text {F }} @ 1.0 \mathrm{Apk}, \mathrm{T}_{J}=75^{\circ} \mathrm{C}$ T_{J}	140	A

Description／Features

The 10BQ015 surface－mount Schottky rectifier has been de－ signed for applications requiring very low forward drop and small foot prints on PC boards．Typical applications are in disk drives，switching power supplies，converters，free－wheeling diodes，battery charging and reverse battery protection．
－Small footprint，surface mountable
－Very low forward voltage drop
－High frequency operation
－Guard ring for enhanced ruggedness and long－term reliability

SMB	
CASESTYLE	CASE OUTLINE

To Order

Voltage Ratings

Part number	
V_{R} Max．DC Reverse Voltage（V）	10BQ015
$\mathrm{V}_{\text {RWm }}$ Max．Working Peak Reverse Voltage (V)	15

Absolute Maximum Ratings

	Parameters	10BQ	Units	Conditions
$\mathrm{I}_{\text {F（AV）}}$	Max．Average Forward Current See Fig． 5	1.0	A	50% duty cycle＠ $\mathrm{T}_{\mathrm{C}}=78^{\circ} \mathrm{C}$ ，rectangular waveform
IFSM	Max．Peak One Cycle Non－Repetitive Surge Current — see Fig． 7	$\frac{140}{40}$	A	$5 \mu \mathrm{~s}$ Sine or $3 \mu \mathrm{~s}$ Rect．pulse Following any rated load condition and with rated $V_{\text {RRM }}$ applied．
$\mathrm{E}_{\text {AS }}$	Non－Repetitive Avalanche Energy	5.0	mJ	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{AS}}=0.2 \mathrm{~A}, \mathrm{~L}=4.2 \mathrm{mH}$
$\mathrm{I}_{\text {AR }}$	Repetitive Avalanche Current	0.2	A	Current decaying linearly to zero in $1 \mu \mathrm{sec}$ Frequency limited by T_{J} max． $\mathrm{V}_{\mathrm{A}}=1.5 \mathrm{X} \mathrm{V}_{\mathrm{R}}$ typical

Electrical Specifications

Parameters		10BQ	Units		Conditions
V_{FM}	Max．Forward Voltage Drop See Fig． 1 （1）	0.34	V	＠1．0A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$
		0.40	V	＠2．0A	
		0.30	V	＠1．0A	$\mathrm{T}_{\mathrm{J}}=75^{\circ} \mathrm{C}$
		0.38	V	＠2．0A	
IRM	Max．Reverse Leakage Current（1）	0.50	mA	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=$ rated V_{R}
	See Fig． 2	12	mA	$\mathrm{T}_{J}=100^{\circ} \mathrm{C}$	
$\mathrm{C}_{\text {T }}$	Max．Junction Capacitance	390	pF	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{VCC}$ ，（test signal range 100 KHz to 1 MHz ） $25^{\circ} \mathrm{C}$	
Ls	Typical Series Inductance	2.0	nH	Measured lead to lead 5mm from package body	
dv／dt	Max．Voltage Rate of Change （Rated V_{R} ）	6，000	V／$/ \mathrm{s}$		

Thermal－Mechanical Specifications

Parameters	10 BQ	Units	Conditions	
T_{J}	Max．Junction Temperature Range	-55 to 100	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {STG }}$ Max．Storage Temperature Range	-55 to 100	${ }^{\circ} \mathrm{C}$		
$\mathrm{R}_{\text {thJA }}$Max．Thermal Resistance，Junction to Ambient	140	${ }^{\circ} \mathrm{C} / \mathrm{W}$	DC operation－See Fig．4	
RthJL Max．Thermal Resistance，Junction to Lead（2） wt Approximate Weight Case Style	$0 .{ }^{\circ} \mathrm{C} / \mathrm{W}$	DC operation		

（1）Pulse Width $<300 \mu \mathrm{~s}$ ，Duty Cycle $<2 \%$
（2）Mounted 1 inch square PCB，thermal probe connected to lead 2 mm from package
Index
目次

Next Data Sheet
次のデータシート

ITR
10BQ015

Fig． 1 Max．Forward Voltage Drop Characteristics

Fig． 2 Typical Values of Reverse Current Vs．Reverse Voltage

Fig． 3 Typical Junction CapacitanceVs．Reverse Voltage

Fig． 4 Max．Thermal Impedance $Z_{\text {thJL }}$ Characteristics

Fig． 5 Max．Allowable Case Temperature Vs． Average Forward Current

Fig． 7 Max．Non－Repetitive Surge Current

Fig． 6 Forward Power Loss Characteristics

Fig． 8 Unclamped Inductive Test Circuit
Refer to the Appendix Section for the following：
Appendix D：Tape and Reel Information－See page 338.

