
74AC11651 OCTAL BUS TRANSCEIVER AND REGISTER WITH 3-STATE OUTPUTS

SCAS135 - MARCH 1990 - REVISED APRIL 1993

description

These devices consist of bus transceiver circuits, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the data bus or from the internal storage registers. Output-enable (OEAB and OEBA) inputs are provided to control the transceiver functions. The select-control (SAB and SBA) inputs are provided to select whether real-time or stored data is transferred. A low input level selects real-time data, and a high input level selects stored data. Figure 1 illustrates the four fundamental bus-management functions that can be performed with the 74AC11651.

Data on the A or B bus, or both, can be stored in the internal D flip-flops by low-to-high transitions at the appropriate clock (CLKAB or CLKBA) inputs regardless of the select- or enable-control pins. When SAB and SBA are in the real-time transfer mode, it is also possible to store data without using the internal D-type flip-flops by simultaneously enabling OEAB and OEBA. In this configuration, each output reinforces its input. Thus, when all the other data sources to the two sets of bus lines are at high impedance, each set will remain at its last state.

The 74AC11651 is characterized for operation from -40°C to 85°C.

EPIC is a trademark of Texas Instruments Incorporated

SCAS135 - MARCH 1990 - REVISED APRIL 1993

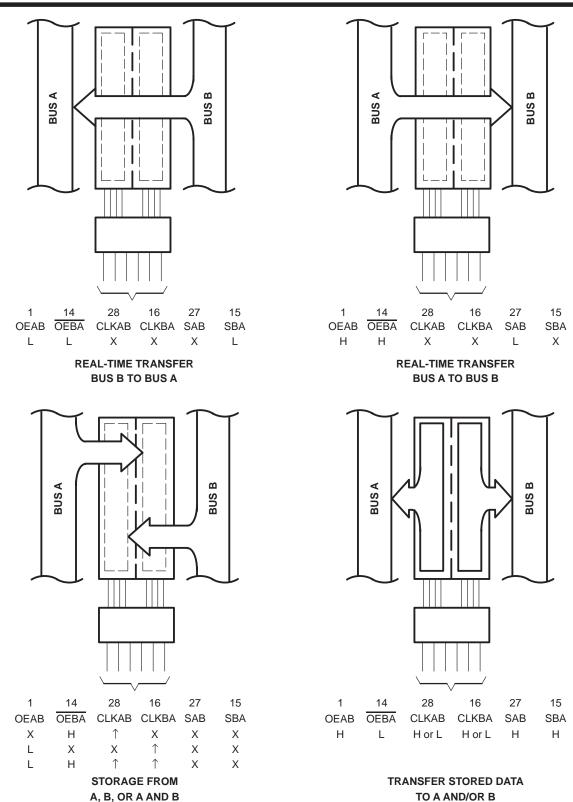
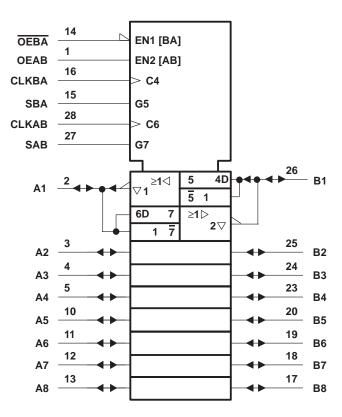


Figure 1. Bus-Management Functions

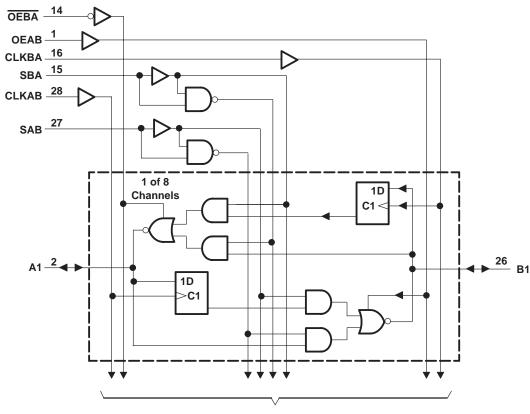

SCAS135 - MARCH 1990 - REVISED APRIL 1993

FUNCTION TABLE

	INPUTS DATA I/O				OPERATION OR FUNCTION			
OEAB	OEBA	CLKAB	CLKBA	SAB	SBA	A1 THRU A8	B1 THRU B8	OPERATION OR FUNCTION
L	Н	H or L	H or L	Х	Х	Input	Input	Isolation
L	Н	\uparrow	\uparrow	X	X	Input	Input	Store A and B data
X	Н	\uparrow	H or L	X	X	Input	Unspecified [†]	Store A, hold B
Н	Н	\uparrow	\uparrow	X‡	X	Input	Output	Store A in both registers
L	X	H or L	\uparrow	X	X	Unspecified [†]	Input	Hold A, store B
L	L	\uparrow	\uparrow	X	X‡	Output	Input	Store B in both registers
L	L	Χ	Χ	X	L	Output	Input	Real-time B data to A bus
L	L	Χ	H or L	X	Н	Output	Output	Stored B data to A bus
Н	Н	Χ	Χ	L	X	Input	Output	Real-time A data to B bus
Н	Н	H or L	Χ	Н	X	Input	Output	Stored \overline{A} data to B bus
Н	L	H or L	H or L	Н	Н	Output	Output	Stored A data to B bus and stored B data to A bus

[†] The data output functions may be enabled or disabled by various signals at the OEAB or OEBA inputs. Data input functions are always enabled, i.e., data at the bus pins will be stored on every low-to-high transition on the clock inputs.

logic symbol§


§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

[‡] When select control is low, clocks can occur simultaneously so long as allowances are made for propagation delays from A to B (B to A) plus setup and hold times. When select control is high, clocks must be staggered in order to load both registers.

SCAS135 - MARCH 1990 - REVISED APRIL 1993

logic diagram (positive logic)

To 7 Other Channels

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 7 V
Input voltage range, V _I (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Output voltage range, V _O (see Note 1)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	±50 mA
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	±50 mA
Continuous current through V _{CC} or GND pins	±200 mA
Storage temperature range	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	Supply voltage		3	5	5.5	V
		V _{CC} = 3 V	2.1			
V_{IH}	High-level input voltage	$V_{CC} = 4.5 V$	3.15			V
		$V_{CC} = 5.5 \text{ V}$	3.85			
		V _{CC} = 3 V			0.9	
	Low-level input voltage			1.35	V	
		V _{CC} = 5.5 V			1.65	
٧ _I	Input voltage		0		VCC	V
٧o	Output voltage		0		Vcc	V
		VCC = 3 V			-4	
lOH	High-level output current	V _{CC} = 4.5 V			-24	mA
V _{IH} V _{IL} V _I V _O		V _{CC} = 5.5 V			-24	
		V _{CC} = 3 V			12	
I _{OL}	Low-level output current	V _{CC} = 4.5 V			24	mA
		V _{CC} = 5.5 V			24	
Δt/Δν	Input transition rise or fall rate		0		10	ns/V
TA	Operating free-air temperature		-40		85	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DA	RAMETER	TEST CONDITIONS	V	T,	4 = 25°C	;	MIN MAX	UNIT	
PA	RAMETER	TEST CONDITIONS	VCC	MIN	TYP	MAX	MIN	MAX	UNII
			3 V	2.9			2.9		
		I _{OH} = -50 μA	4.5 V	4.4			4.4		
$V_{OH} = -50 \mu\text{A}$ $V_{OH} = -50 \mu\text{A}$ $V_{OH} = -4 \text{mA}$ $V_{OH} = -24 \text{mA}$	5.4								
Vон		I _{OH} = -4 mA	3 V	2.58			2.48		V
· OII			4.5 V	3.94			3.8		
		IOH = -24 mA	5.5 V	4.94			4.8		
		$I_{OH} = -75 \text{ mA}^{\dagger}$	5.5 V				3.85		
			3 V			0.1		0.1	
		I _{OL} = 50 μA	4.5 V			0.1		0.1	
			5.5 V			0.1		0.1	
VOL		I _{OL} = 12 mA	3 V			0.36		0.44	V
		lo 24 mA	4.5 V			0.36		0.44	
		IOL = 24 IIIA	5.5 V			0.36		0.44	
		$I_{OL} = 75 \text{ mA}^{\dagger}$	5.5 V					1.65	
Ιį	Control inputs	$V_I = V_{CC}$ or GND	5.5 V			±0.1		±1	μΑ
loz‡	A or B ports	$V_O = V_{CC}$ or GND	5.5 V			±0.5		±5	μΑ
ICC		$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V			8		80	μΑ
Ci	Control inputs	$V_I = V_{CC}$ or GND	5 V		4.5				pF
C _{io}	A or B ports	$V_O = V_{CC}$ or GND	5 V		10				pF

[†] Not more than one output should be tested at a time, and the duration of the test should not exceed 10 ms.

[‡] For I/O ports, the parameter IOz includes the input leakage current.

74AC11651 OCTAL BUS TRANSCEIVER AND REGISTER **WITH 3-STATE OUTPUTS**

SCAS135 - MARCH 1990 - REVISED APRIL 1993

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

		T _A = 25°C		MIN	MAX	UNIT
		MIN	MAX	IVIIIV	WAA	UNIT
fclock	Clock frequency	0	45	0	45	MHz
t _W	Pulse duration, CLK high or low	10		10		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	6.5		6.5		ns
t _h	Hold time, A or B after CLKAB↑ or CLKBA↑	0		0		ns

timing requirements over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

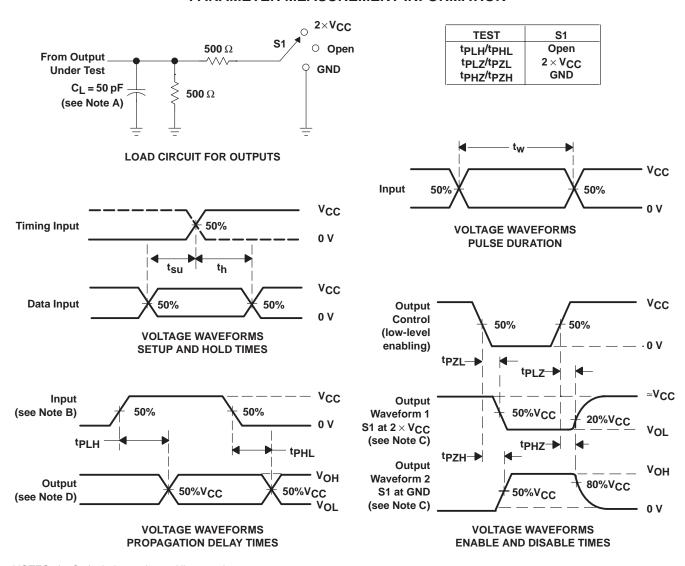
		T _A = 2	25°C	MIN	MAX	UNIT
		MIN	MAX			ONIT
fclock	Clock frequency	0	90	0	90	MHz
t _W	Pulse duration, CLK high or low	5.5		5.5		ns
t _{su}	Setup time, A or B before CLKAB↑ or CLKBA↑	4.5		4.5		ns
th	Hold time, A or B after CLKAB↑ or CLKBA↑	0.5		0.5		ns

switching characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

DADAMETED	FROM	то	T _A = 25°C			MIN	MAX	UNIT
PARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV	IVIAA	UNIT
f _{max}			45			45		MHz
t _{PLH}	A or B	B or A	3.2	7.7	12.1	3.2	14	
t _{PHL}		BOIA	4.3	9.5	14.6	4.3	16.1	ns
^t PLH	CLKBA or CLKAB	A or B	4.6	9.8	15	4.6	17.2	ns
^t PHL		AOIB	5.4	11.5	17.5	5.4	19.2	115
^t PLH	SBA or SAB [†] (A or B high)	A or B	3.8	8.6	13.3	3.8	15.3	ns
^t PHL		AUIB	4.8	10.2	15.5	4.8	17.1	115
^t PLH	SBA or SABT	A or B	3.4	8.1	12.7	3.4	14.6	ns
^t PHL	(A or B low)		5	10.3	15.5	5	17.1	7 115
^t PZH	OEBA	А	4.6	9.8	14.9	4.6	16.9	ns
^t PZL	OEDA	A	5.3	12.1	18.9	5.3	21.3	115
^t PHZ	OEBA	A	4.4	6.6	8.8	4.4	9.2	no
t _{PLZ}	OEDA	A	3.8	5.8	7.8	3.8	8.1	ns
^t PZH	OFAR	В	4.9	10.2	15.5	4.9	17.6	
tPZL	OEAB	Б	5.5	12.2	18.8	5.5	21.2	ns
^t PHZ	OEAB	В	4.4	6.7	8.9	4.4	9.3	ne
^t PLZ	UEAD		3.5	5.7	7.8	3.5	8	ns

[†] These parameters are measured with the internal output state of the storage register opposite to that of the bus input.

74AC11651 **OCTAL BUS TRANSCEIVER AND REGISTER** WITH 3-STATE OUTPUTS SCAS135 - MARCH 1990 - REVISED APRIL 1993


switching characteristics over recommended operating free-air temperature range, V_{CC} = 5 V \pm 0.5 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	Т,	Վ = 25° C	;	MIN	MAX	UNIT
FARAMETER	(INPUT)	(OUTPUT)	MIN	TYP	MAX	IVIIIV		ONIT
f _{max}			90			90		MHz
^t PLH	A or B	B or A	2.6	5.3	8	2.6	9.1	ns
^t PHL		DOIA	3.5	6.5	9.4	3.5	10.5	113
^t PLH	CLKBA or CLKAB	A or B	3.8	6.8	10	3.8	11.4	ns
^t PHL		AOIB	4.7	8.1	11.5	4.7	12.8	115
t _{PLH}	SBA or SAB [†] (A or B high)	A or B	3.2	6	8.8	3.2	10.1	ns
^t PHL		AOIB	3.9	7	10.1	3.9	11.2	115
t _{PLH}	SBA or SABT	A or B	2.9	5.7	8.5	2.9	9.5	ns
^t PHL	(A or B low)	AUID	4.1	7.2	10.3	4.1	11.4	115
^t PZH	OEBA	A	3.9	6.9	9.8	3.9	11.1	ns
^t PZL	OLBA	۸	4.2	7.6	11	4.2	12.5	115
^t PHZ	OEBA	A	4.1	5.9	7.6	4.1	8	ns
tPLZ	OLBA	۸	3.5	5.2	6.8	3.5	7.1	115
^t PZH	OEAB	В	4.2	5.9	10.4	4.2	11.8	20
t _{PZL}	OLAD	٥	4.5	8	11.4	4.5	12.9	ns
^t PHZ	OEAB	В	4.2	6	7.8	4.2	8.2	nc
tPLZ	OLAD	٥	3.3	5.1	6.9	3.3	7.2	ns

operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER			TEST CO	TYP	UNIT	
C _{pd}	Dower dissination conscitance per transcriver	Outputs enabled	C 50 pE	f = 1 MHz	64	pF
	Power dissipation capacitance per transceiver	Outputs disabled	$C_L = 50 \text{ pF},$	f = 1 MHz	14	þΓ

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq 3 \ ns$, $t_f \leq 3 \ ns$. For testing pulse duration: $t_f = t_f = 1 \ to \ 3 \ ns$. Pulse polarity can be either high-to-low-to-high or low-to-high-to-low.
 - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated