

74ALS112A
 Dual J-K negative edge-triggered flip-flop

DESCRIPTION

The 74ALS112A, dual negative edge-triggered JK-type flip-flop features individual J, K, clock (CPn), set (SD), and reset (RD) inputs, true (Qn) and complementary (Qn) outputs.

The SD and RD inputs, when Low, set or reset the outputs as shown in the function table regardless of the level at the other inputs.

A High level on the clock ($\overline{\mathrm{CP}}$) input enables the J and K inputs and data will be accepted. The logic levels at the J and K inputs may be allowed to change while the CPn is High and the flip-flop will perform according to the function table as long as minimum setup and hold times are observed. Output changes are initiated by the High-to-Low transition of the CPn.

TYPE	TYPICAL $\mathrm{f}_{\text {MAX }}$	TYPICAL SUPPLY CURRENT (TOTAL)
$74 \mathrm{ALS112A}$	50 MHz	3.0 mA

PIN CONFIGURATION

ORDERING INFORMATION

DESCRIPTION	ORDER CODE	DRAWING NUMBER
	$\begin{gathered} \text { COMMERCIAL RANGE } \\ V_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%, \\ \mathrm{~T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{gathered}$	
16-pin plastic DIP	74ALS112AN	SOT38-4
16-pin plastic SO	74ALS112AD	SOT109-1

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION	74ALS (U.L.) HIGH/LOW	LOAD VALUE HIGH/LOW
$\overline{\mathrm{CP} 0, ~ \overline{C P} 1 ~}$	Clock Pulse input (active falling edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} / 0.1 \mathrm{~mA}$
$\mathrm{~J} 0, \mathrm{~J} 1$	J inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 0.2 \mathrm{~mA}$
K0, K1	K inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 0.2 \mathrm{~mA}$
SD0, $\overline{\text { SD1 }}$	Set inputs (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 0.2 \mathrm{~mA}$
RD0, $\overline{R D} 1$	Reset inputs (active-Low)	$1.0 / 2.0$	$20 \mu \mathrm{~A} / 0.2 \mathrm{~mA}$
Q0, Q1, $\overline{\text { Q } 0, ~} \overline{\text { Q1 }}$	Data outputs	$20 / 80$	$0.4 \mathrm{~mA} / 8 \mathrm{~mA}$

NOTE: One (1.0) ALS unit load is defined as: $20 \mu \mathrm{~A}$ in the High state and 0.1 mA in the Low state.

LOGIC SYMBOL

IEC/IEEE SYMBOL

LOGIC DIAGRAM

FUNCTION TABLE

INPUTS					OUTPUTS		OPERATING MODE
$\bar{S} \mathbf{D}$	RD	$\overline{C P}$	J	K	Q	\bar{Q}	
L	H	X	X	X	H	L	Asynchronous Set
H	L	X	X	X	L	H	Asynchronous Reset
L	L	X	X	X	H^{*}	H^{*}	Undetermined*
H	H	\downarrow	h	h	\bar{q}	q	Toggle
H	H	\downarrow	h	I	H	L	Load "1" (Set)
H	H	\downarrow	I	h	L	H	Load "0" (Reset)
H	H	\downarrow	I	1	q	$\overline{\mathrm{q}}$	Hold "no change"
H	H	H	X	X	q	$\overline{\mathrm{q}}$	Hold "no change"

[^0]$\mathrm{h}=$ High state must be present one setup time prior to High-to-Low clock transition
$\mathrm{L}=$ Low voltage level
I = Low state must be present one setup time prior to High-to-Low clock transition
$\mathrm{q}=$ Lower case indicate the state of the referenced output prior to the High-to-Low clock transition
$X=$ Don't care
$\downarrow=$ High-to-Low clock transition

* = Both outputs will be High while both $\bar{S} D$ and $\bar{R} D$ are Low, but the output states are unpredictable if $\bar{S} D$ and $\bar{R} D$ go High simultaneously Asynchronous inputs: Low input to $\bar{S} D$ sets Q to High level, Low input to $\overline{R D}$ sets Q to Low level. Set and reset are independent of clock.

Simultaneous Low on both $\overline{S D}$ and $\overline{R D}$ makes both Q and \bar{Q} High.

ABSOLUTE MAXIMUM RATINGS

(Operation beyond the limit set forth in this table may impair the useful life of the device. Unless otherwise noted these limits are over the operating free-air temperature range.)

SYMBOL	PARAMETER	RATING	UNIT
V_{CC}	Supply voltage	-0.5 to +7.0	V
$\mathrm{~V}_{\text {IN }}$	Input voltage	-0.5 to +7.0	V
$\mathrm{I}_{\text {IN }}$	Input current	-30 to +5	mA
$\mathrm{~V}_{\text {OUT }}$	Voltage applied to output in High output state	-0.5 to V_{CC}	V
$\mathrm{I}_{\text {OUT }}$	Current applied to output in Low output state	16	mA
$\mathrm{~T}_{\text {amb }}$	Operating free-air temperature range	0 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature range	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	LIMITS			UNIT
		MIN	NOM	MAX	
V_{CC}	Supply voltage	4.5	5.0	5.5	V
V_{IH}	High-level input voltage	2.0			V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8	V
1 lk	Input clamp current			-18	mA
$\mathrm{IOH}^{\text {a }}$	High-level output current			-0.4	mA
l OL	Low-level output current			8	mA
$\mathrm{T}_{\text {amb }}$	Operating free-air temperature range	0		+70	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

(Over recommended operating free-air temperature range unless otherwise noted.)

SYMBOL	PARAMETER		TEST CONDITIONS ${ }^{1}$		LIMITS			UNIT		
			MIN	TYP ${ }^{2}$	MAX					
V_{OH}	High-level output voltage				$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}= \pm 10 \%, \\ & \mathrm{~V}_{\mathrm{IL}}=\mathrm{MAX}, \mathrm{~V}_{\mathrm{IH}}=\mathrm{MIN} \end{aligned}$	$\mathrm{IOH}^{\prime}=-0.4 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}-2$			V
VoL	Low-level output voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{V}_{\text {IL }}=\mathrm{MAX}$,	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.25	0.40	V		
			$\mathrm{V}_{\mathrm{IH}}=\mathrm{MIN}$	$\mathrm{l} \mathrm{OL}=8 \mathrm{~mA}$		0.35	0.50	V		
V_{IK}	Input clamp voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MIN}, \mathrm{I}_{\mathrm{I}}=\mathrm{I}_{\mathrm{IK}}$			-0.73	-1.5	V		
1	Input current at maximum input voltage		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{1}=7.0 \mathrm{~V}$				0.1	mA		
IIH	High-level input current		$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$				20	$\mu \mathrm{A}$		
IIL	Low-level input current	$\overline{\mathrm{CP}}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{MAX}, \mathrm{V}_{\mathrm{I}}=0.4 \mathrm{~V}$				-0.1	mA		
		$\begin{gathered} \overline{\mathrm{S} D n, ~ \mathrm{RDn}}, \\ \mathrm{Jn}, \mathrm{Kn} \end{gathered}$					-0.2	mA		
10	Output current ${ }^{3}$		$\mathrm{V}_{C C}=\mathrm{MAX}, \mathrm{V}_{\mathrm{O}}=2.25 \mathrm{~V}$		-30		-112	mA		
ICC	Supply current (total)		$V_{C C}=M A X$			2.5	4.5	mA		

NOTES:

1. For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.
2. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
3. The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, Ios.

AC ELECTRICAL CHARACTERISTICS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS		UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	Waveform 1	35		MHz
$\begin{aligned} & \text { tPLH } \\ & \mathrm{t}_{\mathrm{PHLL}} \\ & \hline \end{aligned}$	Propagation delay CPn to Qn or Qn	Waveform 1	$\begin{aligned} & \hline 2.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 10.0 \\ & 10.5 \end{aligned}$	ns
$\overline{t_{P L H}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation delay SDn or RD to Qn or Qn	Waveform 2, 3	$\begin{aligned} & 1.5 \\ & 3.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.5 \\ & \hline \end{aligned}$	ns

AC SETUP REQUIREMENTS

SYMBOL	PARAMETER	TEST CONDITION	LIMITS		UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \pm 10 \% \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega \end{gathered}$		
			MIN	MAX	
$\begin{aligned} & \mathrm{t}_{\mathrm{su}} \text { (H) } \\ & \mathrm{t}_{\mathrm{su}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low Jn, Kn to CPn	Waveform 1	$\begin{aligned} & 8.0 \\ & 8.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Hold time, High or Low Jn , Kn to CPn	Waveform 1	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	CPn Pulse width high or Low	Waveform 1	$\begin{gathered} 11.0 \\ 8.0 \end{gathered}$		ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{L})$	SDn or RDn Pulse width Low	Waveform 2, 3	6.0		ns
$t_{\text {REC }}$	Recovery time, SDn or RDn to CPn	Waveform 2, 3	8.0		ns

AC WAVEFORMS

For all waveforms, $\mathrm{V}_{\mathrm{M}}=1.3 \mathrm{~V}$.
The sahded areas indicate when the input is permitted to change for predictable output performance.

Waveform 1. Propagation Delay for Data to Output, Data Setup Time and Hold Times, Clock Pulse Width, and Maximum Clock Frequency

Waveform 2. Propagation Delay for Set to Output, Set Pulse Width, and Recovery Time for Set to Clock

Waveform 3. Propagation Delay for Reset to Output, Reset Pulse Width, and Recovery Time for Reset to Clock

TEST CIRCUIT AND WAVEFORMS

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \text { A } \\ \text { max. } \end{gathered}$	A_{1} min.	A_{2} max.	b	b_{1}	b_{2}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	e_{1}	L	M_{E}	\mathbf{M}_{H}	w	$\underset{\max }{Z^{(1)}}$
mm	4.2	0.51	3.2	$\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$	$\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$	$\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$	2.54	7.62	$\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$	$\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$	$\begin{gathered} 10.0 \\ 8.3 \end{gathered}$	0.254	0.76
inches	0.17	0.020	0.13	$\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$	$\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$	$\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$	$\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$	$\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$	0.10	0.30	$\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$	0.01	0.030

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT38-4					$-92-11-17$	

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\underset{\max .}{A}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$\mathrm{D}^{(1)}$	$E^{(1)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$Z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{gathered} 10.0 \\ 9.8 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	$\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\left.\begin{array}{\|c\|} \hline 0.0098 \\ 0.0039 \end{array} \right\rvert\,$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{array}{\|l\|} \hline 0.0098 \\ 0.0075 \end{array}$	$\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$	

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ		
SOT109-1	076E07S	MS-012AC		\square	$\begin{aligned} & 91-08-13 \\ & 95-01-23 \end{aligned}$

DEFINITIONS			
Data Sheet Identification	Product Status	Definition	
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.	
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.	
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.	

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

[^0]: $\mathrm{H}=$ High voltage level

