

Connection Diagram

	\checkmark	
	48	$-\mathrm{CP}_{1}$
$\mathrm{O}_{0}-$	47	- 0
$0_{1}-$	46	${ }^{1}$
GND-	45	GNL
$\mathrm{O}_{2}-5$	44	${ }_{2}$
O_{3}	43	3
$v_{C C}-7$	42	v_{cc}
$0_{4}-8$	41	${ }^{-1}$
0_{5}	40	${ }_{5}$
GND - 10	39	GNL
$\mathrm{O}_{6}-11$	38	${ }_{6}$
$0_{7}-12$	37	$\left.\right\|_{7}$
$\mathrm{O}_{9}-13$	36	8
$\mathrm{O}_{9}-14$	35	-9
GND - 15	34	ONL
$0,0-16$	33	- ${ }_{10}$
$0_{11}-17$	32	${ }_{11}$
$v_{C C}-18$	31	- V_{∞}
$0_{12}-19$	30	${ }_{1}{ }_{12}$
$00_{13}-20$	29	1_{13}
GND - 21	28	- Gnc
$0_{14}-22$	27	- 1_{14}
$0_{15}-23$	26	-1_{15}
$\overline{0 E}_{2}-24$	25	$-\mathrm{CP}_{2}$

Functional Description

The 74VCX162374 consists of sixteen edge-triggered flipflops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each clock has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-

Truth Tables

Inputs			Outputs
CP_{1}	$\overline{\mathrm{OE}}_{1}$	$\mathrm{I}_{0}-\mathrm{I}_{\mathbf{7}}$	$\mathrm{O}_{0}-\mathrm{O}_{7}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

Inputs			Outputs
$\mathrm{CP}_{\mathbf{2}}$	$\overline{\mathrm{OE}}_{\mathbf{2}}$	$\mathrm{I}_{\mathbf{8}}-\mathrm{I}_{\mathbf{1 5}}$	$\mathrm{O}_{\mathbf{8}}-\mathrm{O}_{\mathbf{1 5}}$
\sim	L	H	H
\sim	L	L	L
L	L	X	O_{0}
X	H	X	Z

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial (HIGH or LOW, inputs may not float)
$Z=$ High Impedance
$\mathrm{O}_{0}=$ Previous O_{0} before HIGH-to-LOW of CP
flop will store the state of their individual I inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock $\left(\mathrm{CP}_{n}\right)$ transition. With the Output Enable $\left(\overline{\mathrm{OE}}_{n}\right)$ LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{OE}}_{\mathrm{n}}$ is HIGH, the outputs go to the high impedance state. Operations of the $\overline{\mathrm{OE}}_{n}$ input does not affect the state of the flip-flops.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings（Note 2）		Recommended Operating	
Supply Voltage（ V_{CC} ）	-0.5 V to +4.6 V	Conditions（Note 4）	
DC Input Voltage（ V_{1} ）	-0.5 V to +4.6 V	Power Supply	
Output Voltage（ V_{0} ）		Operating	1.65 V to 3.6 V
Outputs 3－STATED	-0.5 V to +4.6 V	Data Retention Only	1.2 V to 3.6 V
Outputs Active（Note 3）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Input Voltage	-0.3 V to +3.6 V
DC Input Diode Current（ I_{IK} ）		Output Voltage（ V_{0} ）	
$\mathrm{V}_{1}<0 \mathrm{~V}$	－50 mA	Output in Active States	OV to V_{CC}
DC Output Diode Current（lok）		Output in＂OFF＂State	0.0 V to 3.6 V
$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	－50 mA	Output Current in $\mathrm{I}_{\mathrm{OH}} / \mathrm{IOL}$	
$\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{cc}}$	＋50 mA	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	$\pm 12 \mathrm{~mA}$
DC Output Source／Sink Current		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	$\pm 8 \mathrm{~mA}$
（ $\mathrm{loh}^{\text {／}} \mathrm{OL}$ ）	$\pm 50 \mathrm{~mA}$	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 2．3V	$\pm 3 \mathrm{~mA}$
DC V $\mathrm{CC}^{\text {or GND Current per }}$		Free Air Operating Temperature（ T_{A} ）	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Pin（1／CC or GND）	$\pm 100 \mathrm{~mA}$	Minimum Input Edge Rate（ $\Delta \mathrm{t} / \Delta \mathrm{V}$ ）	
Storage Temperature Range（ $\mathrm{T}_{\text {STG }}$ ）	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$ to $2.0 \mathrm{~V}, \mathrm{~V}_{\text {CC }}=3.0 \mathrm{~V}$	$10 \mathrm{~ns} / \mathrm{V}$
		Note 2：The Absolute Maximum Ratings are those the safety of the device cannot be guaranteed．The operated at these limits．The parametric values defi Characteristics tables are not guaranteed at the Abs ings．The＂Recommended Operating Conditions＂table tions for actual device operation．	alues beyond which evice should not be ed in the Electrica lute Maximum Rat－ will define the condi－
		Note 3：I_{0} Absolute Maximum Rating must be observe	

DC Electrical Characteristics（2．7V $<\mathrm{V}_{\mathrm{CC}} \leq \mathbf{3 . 6 V}$ ）

Symbol	Parameter	Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{cc}} \\ (\mathrm{~V}) \end{gathered}$	Min	Max	Units
$\overline{\mathrm{V}_{1 \mathrm{H}}}$	HIGH Level Input Voltage		2．7－3．6	2.0		V
V_{IL}	LOW Level Input Voltage		2．7－3．6		0.8	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	2．7－3．6	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.7	2.2		V
		$\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$	3.0	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	3.0	2.2		V
$\overline{\mathrm{V}} \mathrm{OL}$	LOW Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	2．7－3．6		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	2.7		0.4	V
		$\mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$	3.0		0.55	V
		$\mathrm{l}_{\mathrm{OL}}=12 \mathrm{~mA}$	3.0		0.8	V
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	2.7 －3．6		± 5.0	$\mu \mathrm{A}$
loz	3－STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	2．7－3．6		± 10	$\mu \mathrm{A}$
IofF	Power－OFF Leakage Current	$0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
$\mathrm{ICC}^{\text {col }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	2．7－3．6		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$（Note 5）	2．7－3．6		± 20	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{cc}}$	Increase in $\mathrm{I}_{\text {CC }}$ per Input	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$	2．7－3．6		750	$\mu \mathrm{A}$

[^0]| Symbol | Parameter | Conditions | $\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$ | Min | Max | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{V}_{\mathrm{IH}}}$ | HIGH Level Input Voltage | | 2.3-2.7 | 1.6 | | V |
| V_{IL} | LOW Level Input Voltage | | 2.3-2.7 | | 0.7 | V |
| V_{OH} | HIGH Level Output Voltage | $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$ | 2.3-2.7 | $\mathrm{V}_{\mathrm{CC}}-0.2$ | | V |
| | | $\mathrm{IOH}^{\mathrm{O}}=-4 \mathrm{~mA}$ | 2.3 | 2.0 | | V |
| | | $\mathrm{l}_{\mathrm{OH}}=-6 \mathrm{~mA}$ | 2.3 | 1.8 | | V |
| | | $\mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$ | 2.3 | 1.7 | | V |
| $\overline{\mathrm{V} \text { OL }}$ | LOW Level Output Voltage | $\mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$ | 2.3-2.7 | | 0.2 | V |
| | | $\mathrm{O}^{\mathrm{LL}=6 \mathrm{~mA}}$ | 2.3 | | 0.4 | V |
| | | $\mathrm{OLL}=8 \mathrm{~mA}$ | 2.3 | | 0.6 | V |
| I | Input Leakage Current | $0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$ | 2.3-2.7 | | ± 5.0 | $\mu \mathrm{A}$ |
| I_{Oz} | 3-STATE Output Leakage | $\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$ | 2.3-2.7 | | ± 10 | $\mu \mathrm{A}$ |
| TOFF | Power-OFF Leakage Current | $0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ | 0 | | 10 | $\mu \mathrm{A}$ |
| ${ }_{\text {l }} \mathrm{C}$ | Quiescent Supply Current | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND | 2.3-2.7 | | 20 | $\mu \mathrm{A}$ |
| | | $\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 6) | 2.3-2.7 | | ± 20 | $\mu \mathrm{A}$ |

Note 6: Outputs disabled or 3-STATE only
DC Electrical Characteristics (1.65V $\leq \mathrm{V}_{\mathrm{Cc}}<\mathbf{2 . 3 V}$)

Symbol	Parameter	Conditions	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}} \\ & \text { (V) } \end{aligned}$	Min	Max	Units
V_{IH}	HIGH Level Input Voltage		1.65-2.3	$0.65 \times \mathrm{V}_{\text {CC }}$		V
V_{IL}	LOW Level Input Voltage		1.65-2.3		$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
V_{OH}	HIGH Level Output Voltage	$\mathrm{I}_{\text {OH }}=-100 \mu \mathrm{~A}$	1.65-2.3	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA}$	1.65	1.25		V
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$\mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$	1.65-2.3		0.2	V
		$\mathrm{l}_{\mathrm{OL}}=3 \mathrm{~mA}$	1.65		0.3	V
I	Input Leakage Current	$0 \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$	1.65-2.3		± 5.0	$\mu \mathrm{A}$
loz	3-STATE Output Leakage	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	1.65-2.3		± 10	$\mu \mathrm{A}$
IOFF	Power-OFF Leakage Current	$0 \leq\left(\mathrm{V}_{1}, \mathrm{~V}_{0}\right) \leq 3.6 \mathrm{~V}$	0		10	$\mu \mathrm{A}$
$\mathrm{ICC}^{\text {c }}$	Quiescent Supply Current	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}$ or GND	1.65-2.3		20	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}} \leq\left(\mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}}\right) \leq 3.6 \mathrm{~V}$ (Note 7)	1.65-2.3		± 20	$\mu \mathrm{A}$

Note 7: Outputs disabled or 3-STATE only.

AC Electrical Characteristics (Note 8)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$						Units
		$\mathrm{V}_{\text {cc }}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		$\mathrm{V}_{\text {CC }}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$		
		Min	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	250		200		100		MHz
$\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$	Prop Delay CP to O_{n}	0.8	3.4	1.0	4.8	1.5	9.6	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Output Enable Time	0.8	3.9	1.0	5.4	1.5	9.8	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Output Disable Time	0.8	4.0	1.0	4.4	1.5	7.9	ns
t_{s}	Setup Time	1.5		1.5		2.5		ns
t_{H}	Hold Time	1.0		1.0		1.0		ns
t_{W}	Pulse Width	1.5		1.5		4.0		ns
$\mathrm{t}_{\mathrm{OSHL}}$ $\mathrm{t}_{\mathrm{OSLH}}$	Output to Output Skew (Note 9)		0.5		0.5		0.75	ns

Note 8: For $\mathrm{C}_{\mathrm{L}}=50_{\mathrm{p}} \mathrm{F}$, add approximately 300 ps to the AC maximum specification.
Note 9: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (tOSHL) or LOW-to-HIGH (tOSLH).

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	$\begin{aligned} & V_{c c} \\ & \text { (V) } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
				Typical	
$\mathrm{V}_{\text {OLP }}$	Quiet Output Dynamic Peak $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\text {IH }}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	1.8	0.15	
			2.5	0.25	v
			3.3	0.35	
$\mathrm{V}_{\text {OLV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OL }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {IL }}=0 \mathrm{~V}$	1.8	-0.15	
			2.5	-0.25	v
			3.3	-0.35	
$\mathrm{V}_{\text {OHV }}$	Quiet Output Dynamic Valley $\mathrm{V}_{\text {OH }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}, \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$	1.8	1.55	
			2.5	2.05	v
			3.3	2.65	

Capacitance

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	Units
			Typical	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or $3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\text {CC }}=1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V	7	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{l}}=0 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC},} \mathrm{f}=10 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=1.8 \mathrm{~V}, 2.5 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$	20	pF

AC Loading and Waveforms

TEST	SWITCH
$t_{\text {PLH }}, t_{\text {PHL }}$	Open
$t_{\text {PZL }}, t_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$\mathrm{t}_{\mathrm{PZH}}, \mathrm{t}_{\mathrm{PHZ}}$	GND

FIGURE 1. AC Test Circuit
 Non-Inverting Functions Disable Times for Low Voltage Logic

FIGURE 4. 3-STATE Output Low Enable and Disable Times for Low Voltage Logic

FIGURE 5. Propagation Delay, Pulse Width and $t_{\text {REC }}$ Waveforms

FIGURE 6. Setup Time, Hold Time and
Recovery Time for Low Voltage Logic

Symbol	$\mathrm{V}_{\mathbf{C C}}$		
	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
V_{mi}	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{mo}}$	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{X}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{Y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

Physical Dimensions inches (millimeters) unless otherwise noted

DIMENSIONS ARE IN MILLIMETERS

NOTES

A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION AB, REF NOTE 6, DATE 7/93
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982.

MTD48RevB1

DETAIL A
48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Body Width Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com

[^0]: Note 5：Outputs disabled or 3－STATE only．

