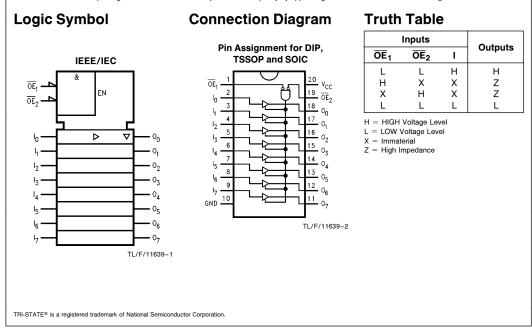
National Semiconductor

74VHC541 Octal Buffer/Line Driver with TRI-STATE® Outputs

General Description

The VHC541 is an advanced high-speed CMOS device fabricated with silicon gate CMOS technology. It achieves the high-speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The VHC541 is an octal buffer/line driver designed to be employed as memory and address drivers, clock drivers and bus oriented transmitter/receivers.


This device is similar in function to the VHC244 while providing flow-through architecture (inputs on opposite side from outputs). This pinout arrangement makes this device especially useful as an output port for microprocessors, allowing ease of layout and greater PC board density. An input protection circuit insures that 0V to 7V can be applied to the input pins without regard to the supply voltage. This device can be used to interface 5V to 3V systems and two supply systems such as battery backup. This circuit prevents device destruction due to mismatched supply and input voltages.

Features

- Low power dissipation:
- $I_{CC} = 4 \ \mu A$ (max) at $T_A = 25^{\circ}C$
- \blacksquare High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- All inputs are equipped with a power down protection function
- \blacksquare Balanced propagation delays: t_{PLH} \cong t_{PHL}
- Low noise: V_{OLP} = 0.9V (typ)
- Pin and function compatible with 74HC541

Commercial	Package Number	Package Description
74VHC541M	M20B	20-Lead Molded JEDEC SOIC
74VHC541SJ	M20D	20-Lead Molded EIAJ SOIC
74VHC541MTC	MTC20	20-Lead Molded JEDEC Type 1 TSSOP
74VHC541N	N20A	20-Lead Molded DIP

Note: Surface mount packages are also available on Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

© 1995 National Semiconductor Corporation TL/F/11639

RRD-B30M125/Printed in U. S. A.

74VHC541 Octal Buffer/Line Driver with TRI-STATE Outputs

November 1995

Absolute Maximum Ratings (Note 1)

Supply Voltage (V _{CC}) DC Input Voltage (V _{IN})	-0.5V to +7.0V -0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to V _{CC} + 0.5V
Input Diode Current (I _{IK})	—20 mA
Output Diode Current (I _{OK})	±20 mA
DC Output Current (I _{OUT})	±25 mA
DC V_{CC} /GND Current (I _{CC})	\pm 75 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Lead Temperature (T _L) (Soldering, 10 seconds)	260°C

Note 1: Absolute Maximum Ratings are values beyond which the device may be damaged or have its useful life impaired. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. National does not recommend operation outside databook specifications.

Recommended Operating Conditions

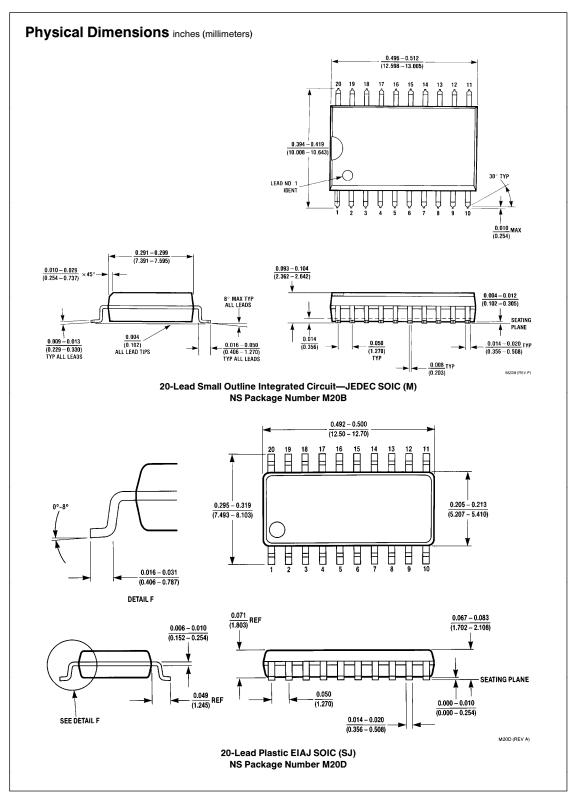
0°C	Supply Voltage (V _{CC})	2.0V to +5.5V
	Input Voltage (V _{IN})	0V to +5.5V
	Output Voltage (V _{OUT})	0V to V _{CC}
	Operating Temperature (T _{OPR})	-40°C to +85°C
	Input Rise and Fall Time (t _r , t _f) $V_{CC}=3.3V\pm0.3V$ $V_{CC}=5.0V\pm0.5V$	0 ~ 100 ns/V 0 ~ 20 ns/V

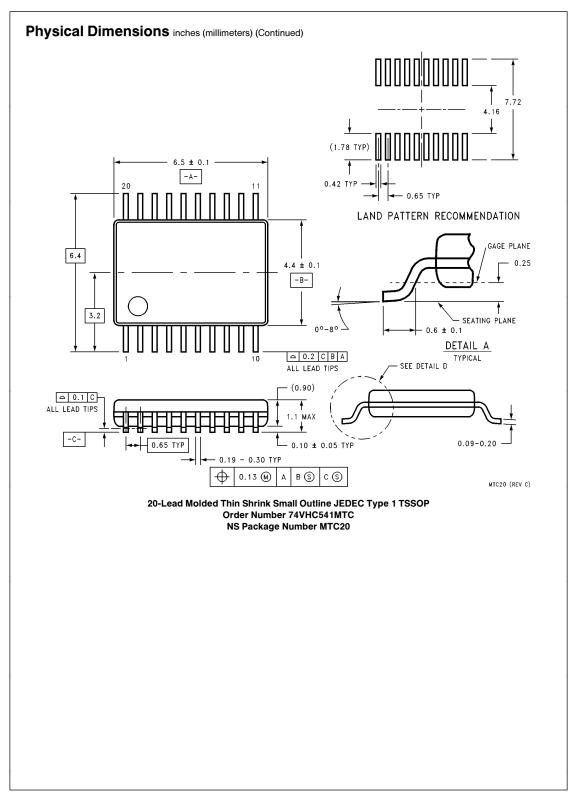
DC Characteristics for 'VHC Family Devices

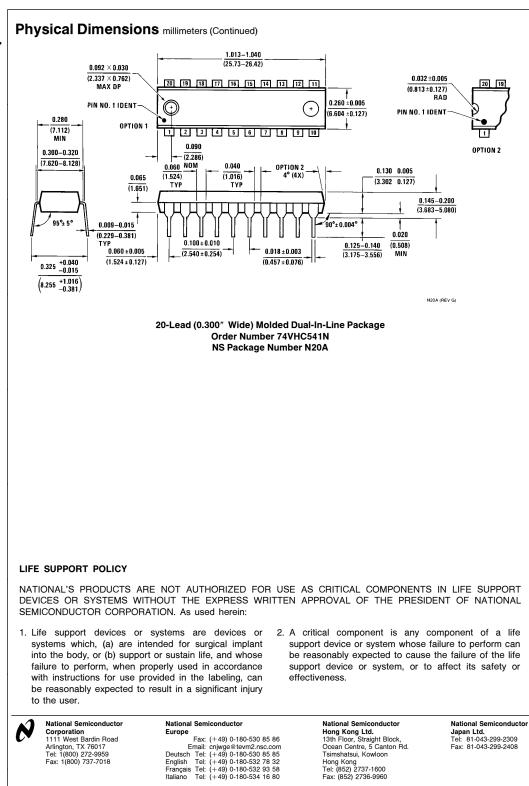
			74VHC							
Symbol	Parameter	V _{CC} (V)	$T_A = 25^{\circ}C$		T _A = −40°C to +85°C		Units	Conditions		
			Min	Тур	Max	Min	Max			
V _{IH}	High Level Input Voltage	2.0 3.0-5.5	1.50 0.7 V _{CC}			1.50 0.7 V _{CC}		V		
V _{IL}	Low Level Input Voltage	2.0 3.0-5.5			0.50 0.3 V _{CC}		0.50 0.3 V _{CC}	V		
V _{OH}	High Level Output Voltage	2.0 3.0 4.5	1.9 2.9 4.4	2.0 3.0 4.5		1.9 2.9 4.4		V	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OH} = -50 \ \mu A$
		3.0 4.5	2.58 3.94			2.48 3.80		V		$I_{OH} = -4 \text{ mA}$ $I_{OH} = -8 \text{ mA}$
V _{OL}	Low Level Output Voltage	2.0 3.0 4.5		0.0 0.0 0.0	0.1 0.1 0.1		0.1 0.1 0.1	v	$V_{IN} = V_{IH}$ or V_{IL}	$I_{OL} = 50 \ \mu A$
		3.0 4.5			0.36 0.36		0.44 0.44	V		$I_{OL} = 4 \text{ mA}$ $I_{OL} = 8 \text{ mA}$
I _{OZ}	TRI-STATE Output Off-State Current	5.5			±0.25		±2.5	μA		
I _{IN}	Input Leakage Current	0-5.5			±0.1		±1.0	μΑ	$V_{IN} = 5.5V \text{ or GND}$	
Icc	Quiescent Supply Current	5.5			4.0		40.0	μΑ	$V_{IN} = V_{CC} \text{ or } GND$	

		V _{CC} (V)	74VHC T _A = 25°C			Conditions
Symbol	Parameter				Units	
			Тур	Limits		
V _{OLP} **	Quiet Output Maximum Dynamic V _{OL}	5.0	0.9	1.2	V	$C_L = 50 pF$
V _{OLV} **	Quiet Output Minimum Dynamic V _{OL}	5.0	-0.8	-1.0	V	C _L = 50 pF
V _{IHD} **	Minimum High Level Dynamic Input Voltage	5.0		3.5	V	C _L = 50 pF
V _{ILD} **	Maximum High Level Dynamic Input Voltage	5.0		1.5	V	$C_L = 50 pF$

**Parameter guaranteed by design.


	Parameter	V _{CC} (V)	74VHC		$74VHC$ $T_{A} = -40^{\circ}C$ $to +85^{\circ}C$					
Symbol			$T_A = 25^{\circ}C$				Units	Conditions		
			Min	Тур	Max	Min	Max			
t _{PLH} ,	Propagation Delay Time	3.3 ±0.3		5.0	7.0	1.0	8.5	ns		$C_L = 15 pF$
t _{PHL}				7.5	10.5	1.0	12.0			$C_L = 50 pF$
		5.0 ±0.5		3.5	5.0	1.0	6.0	- ns		C _L = 15 pF
				5.0	7.0	1.0	8.0			C _L = 50 pF
t _{PZL} ,	TRI-STATE Output Enable Time	3.3 ±0.3		6.8	10.5	1.0	12.5	ns	$R_L = 1 k\Omega$	C _L = 15 pF
t _{PZH}				9.3	14.0	1.0	16.0			$C_L = 50 pF$
		5.0 ±0.5		4.7	7.2	1.0	8.5	ns		C _L = 15 pF
				6.2	9.2	1.0	10.5			$C_L = 50 pF$
t _{PLZ} ,	TRI-STATE Output Disable Time	3.3 ± 0.3		11.2	15.4	1.0	17.5		$R_L = 1 \ k\Omega$	C _L = 50 pF
t _{PHZ}		5.0 ±0.5		6.0	8.8	1.0	10.0	ns		C _L = 50 pF
t _{OSLH} ,	Output to Output Skew	3.3 ±0.3			1.5		1.5	ns	(Note 1)	$C_L = 50 pF$
tOSHL		5.0 ±0.5			1.0		1.0	115		C _L = 50 pF
C _{IN}	Input Capacitance			4	10		10	pF	V _{CC} = Ope	n
COUT	Output Capacitance			6				pF	$V_{CC} = 5.0V$	
C _{PD}	Power Dissipation Capacitance			18				pF	(Note 2)	


Note 1: Parameter guaranteed by design. $t_{OSLH} = |t_{PLHmax} - t_{PLHmin}|; t_{OSHL} = |t_{PHLmax} - t_{PHLmin}|.$


Note 2: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC} (OPR.) = C_{PD} * V_{CC} * f_{IN} + $I_{CC}/8$ (per bit).

Ordering Ir	nformation				
Temperatu 74VHC	re Range Family —— = Commercial		<u>74VHC</u> <u>541</u>	ial Variations ''X'' = Tape and	Reel
Device Typ	e			" " = Rail/Tub	e
SJ = MTC =	ode Small Outline JEDEC Small Outline EIAJ S Thin Shrink Small O Molded Plastic DIP	OIC	Р Туре 1		TL/F/11639-3

-

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications