## FEATURES

Quad Parametric Measurement Unit

## FV, FI, FN, MV, MI Functions

4 Programmable Current Ranges (Internal Rsense) $5 \mathrm{uA}, 20 \mathrm{uA}, 200 \mathrm{uA}$ and 2 mA
1 Programmable Current Range up to 64 mA (external R ${ }_{\text {sense }}$ )
22.5 V FV Range with Asymmetrical Operation

Integrated 16-Bit DACs Provide Programmable Levels Offset and Gain Correction on Chip
Low Capacitance Outputs Suited to Relay Less Systems
On-chip Comparators Per Channel
FI Voltage Clamps \& FV Current Clamps
Guard Drive Amplifier
System PMU connections
Programmable Temperature Shutdown Feature
SPI/Microwire/DSP \& LVDS Compatible Interfaces
Compact 80 lead TQFP Package with Exposed Pad (Top Or Bottom)

## APPLICATIONS

Automatic Test Equipment (ATE)
per pin Parametric Measurement Unit
Continuity \& Leakage Testing
Device Power Supply
Instrumentation
SMU (Source Measure Unit)
Precision Measurement

## PRODUCT OVERVIEW

The AD5522 is a high performance, highly integrated parametric measurement unit consisting of four independent channels. Each PPMU channel includes five, 16 -bit, voltage out DACs setting the programmable inputs levels for the force voltage input, clamp and comparator inputs (high and low). Five programmable force and measure current ranges are available ranging from $5 \mu \mathrm{~A}$ to 64 mA . Four of these ranges use on chip sense resistors, while a high current range up to 64 mA is available per channel using off chip sense resistors. Currents in excess of 64 mA require an external amplifier. Low capacitance DUT connections (FOH, EXT FOH) ensure the device is suited to relay less test systems.
The PMU functions are controlled via a simple three wire serial interface compatible with SPI/QSPI/Microwire and DSP interface standards. Interface clocks of 50 MHz allow fast updating of modes. LVDS (Low Voltage Differential Signaling) interface protocol at 100 MHz is also supported. Comparator outputs are provided per channel for device go no-go testing and characterization. Control registers provide easy way of changing force or measure conditions, DAC levels and selected current ranges. SDO (serial data out) allows the user to readback information for diagnostic purposes.


Figure 1. Functional Block Diagram

## Rev.PrL

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Fax: 781.461.3113 ©2006 Analog Devices, Inc. All rights reserved.

## AD5522

## TABLE OF CONTENTS

Features. .....  1
Revision History. .....  2
Specifications .....  4
Table 2. TIMING Characteristics .....  8
Absolute Maximum Ratings ..... 11
Thermal Resistance ..... 11
ESD Caution ..... 11
Pin Configuration and Function Descriptions ..... 12
TERMINOLOGY ..... 15
Functional Description ..... 16
Force Amplifier ..... 16
Comparators ..... 16
Clamps ..... 16
Current Range selection. ..... 17
High Current ranges ..... 17
Device under test ground (DUTGND) ..... 17
Guard amplifer ..... 18
Compensation Capacitors ..... 18
System Force Sense Switches ..... 19
Temperature Sensor. ..... 19
Measure Output (MEASOUT) ..... 19
DAC Levels. ..... 20
Offset DAC ..... 20
Offset and Gain registers ..... 20
Cached x2 registers ..... 20
$V_{\text {ReF }}$. ..... 21
Reference Selection ..... 21
Calibration ..... 22
System Level Calibration ..... 22

## REVISION HISTORY

[^0]Force Voltage, FV ..... 23
Force Current, FI ..... 24
SPI INTERFACE ..... 25
LVDS INTERFACE ..... 25
Serial Interface Write Mode ..... 25
$\overline{\text { RESET }}$ Function ..... 25
$\overline{\mathrm{BUSY}}$ and $\overline{\mathrm{LOAD}}$ Function ..... 25
Register Update Rates ..... 26
Register Selection ..... 27
Write System Control Register. ..... 28
Write PMU Register ..... 30
Write DAC Register ..... 32
Read Registers. ..... 34
Readback of System Control Register ..... 35
Readback of PMU Register ..... 36
Readback of Comparator Status Register ..... 36
Readback of Alarm Status Register ..... 37
Readback of DAC Register ..... 37
Power On Default ..... 38
Setting up the device on power on ..... 39
Changing Modes ..... 39
Required external components ..... 40
Typical Application for the AD5522 ..... 42
Outline Dimensions ..... 43
Ordering Guide ..... 44
Notes ..... 45


Figure 2. Detailed Block Diagram

## SPECIFICATIONS

Table 1. $A V_{\mathrm{DD}} \geq 10 \mathrm{~V}$, $\mathrm{AV} \mathrm{V}_{\mathrm{SS}} \leq-5 \mathrm{~V}, \mid \mathrm{AV}$ DD $-\mathrm{AV}_{\mathrm{SS}} \mid \geq 20 \mathrm{~V}$ and $\leq 33 \mathrm{~V}$, DV CC $=2.3 \mathrm{~V}$ to 5.25 V , $\mathrm{V}_{\mathrm{REF}}=5 \mathrm{~V}$, Gain (m), Offset (c) and DAC Offset registers at default values ( $\mathrm{T}_{\mathrm{J}}=+25$ to $+90^{\circ} \mathrm{C}$, max specs unless otherwise noted.)


| Parameter | Min | Typ ${ }^{1}$ | Max | Units | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| COMPARATOR <br> Comparator Span Offset Error Propagation delay ${ }^{2}$ | -10 | 1 | $\begin{gathered} 22.5 \\ 10 \\ \text { TBD } \end{gathered}$ | V <br> mV <br> $\mu \mathrm{s}$ |  |
| VOLTAGE CLAMPS <br> Clamp Span <br> Positive Clamp Accuracy <br> Negative Clamp Accuracy <br> Recovery Time ${ }^{2}$ <br> Activation Time ${ }^{2}$ | -150 | $\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$ | $\begin{gathered} 22.5 \\ 150 \\ \\ \text { TBD } \\ \text { TBD } \end{gathered}$ | V mV mV $\mu \mathrm{s}$ $\mu \mathrm{s}$ |  |
| CURRENT CLAMPS <br> Clamp Accuracy <br> Recovery Time ${ }^{2}$ <br> Activation Time ${ }^{2}$ | Prog'd Clamp value | $\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \hline \end{aligned}$ | $\begin{gathered} \text { Programmed } \\ \text { Clamp value } \\ +15 \\ \text { TBD } \\ \text { TBD } \end{gathered}$ | \% of FSC <br> range <br> $\mu \mathrm{s}$ <br> $\mu \mathrm{S}$ | Clamp current scales with selected range |
| FOH, EXTFOH, EXTMEASIL, EXTMEASIH, CFF <br> Pin Capacitance ${ }^{2}$ <br> Leakage Current <br> Leakage Current Tempco ${ }^{2}$ | -3 | $3$ $\pm 0.1$ | $\begin{gathered} \text { TBD } \\ 3 \end{gathered}$ | pF <br> nA <br> $n A /{ }^{\circ} \mathrm{C}$ | On or off switch leakage |
| MEASVH <br> Pin Capacitance ${ }^{2}$ <br> Leakage/Bias Current <br> Leakage Current Tempco² | -3 | $\begin{gathered} 3 \\ \pm 0.1 \end{gathered}$ | $\begin{gathered} \text { TBD } \\ 3 \end{gathered}$ | pF <br> nA <br> $n A /{ }^{\circ} \mathrm{C}$ |  |
| SYS_SENSE <br> Pin Capacitance ${ }^{2}$ SYS_SENSE Impedance Leakage Current Leakage Current Tempco ${ }^{2}$ | -3 | $\begin{array}{r} 3 \\ 1 \\ \pm 0.1 \end{array}$ | $\begin{gathered} \text { TBD } \\ 1.3 \\ 3 \end{gathered}$ | pF <br> $\mathrm{k} \Omega$ <br> nA <br> nA $/{ }^{\circ} \mathrm{C}$ | SYS_Sense Connected, Force Amplifier Inhibited |
| SYS_FORCE <br> Pin Capacitance ${ }^{2}$ SYS_FORCE Impedance Leakage Current Leakage Current Tempco² | -3 | $\begin{gathered} 3 \\ 60 \\ \pm 0.1 \end{gathered}$ | $\begin{gathered} \text { TBD } \\ 80 \\ 3 \end{gathered}$ | pF <br> $\Omega$ <br> nA <br> $n A /{ }^{\circ} \mathrm{C}$ | SYS_Force Connected, Force Amplifier Inhibited |
| COMBINED LEAKAGE at DUT <br> Leakage Current <br> Leakage Current Tempco² | -15 | $\pm 0.5$ | 15 | nA nA/ ${ }^{\circ} \mathrm{C}$ typ | Includes FOH, MEASVH, SYS_SENSE, SYS_FORCE, EXTMEASIL |
| DUTGND <br> Voltage Range Leakage Current | $\begin{gathered} -500 \\ -1 \end{gathered}$ |  | $\begin{gathered} 500 \\ 1 \end{gathered}$ | $\begin{aligned} & \mathrm{mV} \\ & \mu \mathrm{~A} \end{aligned}$ |  |
| MEASURE OUTPUT (MEASOUT) <br> Measure Output Voltage Span Measure Pin output Impedance Output leakage current Output Capacitance ${ }^{2}$ Short Circuit Current ${ }^{2}$ MEASOUT enable time MEASOUT disable time MEASOUT MI to MV switching time | $\begin{gathered} -3 \\ -10 \end{gathered}$ | $\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$ | $\begin{gathered} 22.5 \\ 100 \\ 3 \\ 15 \\ 10 \\ \text { TBD } \\ \text { TBD } \\ \text { TBD } \end{gathered}$ | V <br> $\Omega$ <br> nA <br> pF <br> mA <br> ns <br> ns <br> ns | With respect to AGND <br> Software Programmable output range <br> With SW12 off <br> Closing SW12 <br> Opening SW12 |
| GUARD OUTPUT <br> Guard Output Voltage Span <br> Guard Output Offset <br> Short Circuit Current ${ }^{2}$ <br> Load Capacitance ${ }^{2}$ <br> Guard Output Impedance Slew Rate ${ }^{2}$ | $\begin{aligned} & -10 \\ & -10 \end{aligned}$ | $\begin{gathered} 100 \\ 3 \end{gathered}$ | $\begin{gathered} 22.5 \\ 10 \\ 10 \\ 50 \end{gathered}$ | V <br> mV <br> mA <br> nF <br> $\Omega$ <br> $\mathrm{V} / \mu \mathrm{s}$ | $\mathrm{C}_{\text {LOAD }}=\mathrm{TBD} \mathrm{pf}$ |


| Parameter | Min | Typ ${ }^{1}$ | Max | Units | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| FORCE AMPLIFIER <br> Slew Rate ${ }^{2}$ <br> Gain Bandwidth ${ }^{2}$ <br> Max stable load Capacitance ${ }^{2}$ |  | $\begin{gathered} 0.4 \\ 1 \end{gathered}$ | 10,000 | V/us <br> MHz <br> pF | ```Ccomp=100pF, Cff=220pF, Cload=200pF Ccomp=100pF, Cff=220pF, Cload=200pF Ccomp = 100pF.Larger Load cap requires larger Ccomp``` |
| FV SETTLING TIME TO 0.05\% OF FSVR <br> 64mA Range ${ }^{2}$ <br> 2 mA range ${ }^{2}$ <br> $200 \mu$ A range ${ }^{2}$ <br> $20 \mu \mathrm{~A}$ range ${ }^{2}$ <br> $5 \mu \mathrm{~A}$ range ${ }^{2}$ <br> MI SETTLING TIME TO 0.05\% OF FSCR <br> 64mA Range ${ }^{2}$ <br> 2 mA range ${ }^{2}$ <br> $200 \mu$ A range ${ }^{2}$ <br> $20 \mu \mathrm{~A}$ range ${ }^{2}$ <br> $5 \mu \mathrm{~A}$ range $^{2}$ |  | $\begin{aligned} & \text { TBD } \\ & \\ & \text { TBD } \end{aligned}$ | 40 <br> 40 <br> 40 <br> 80 <br> 300 <br>  <br> TBD <br> TBD <br> TBD <br> TBD <br> TBD | $\mu \mathrm{s}$ <br> $\mu s$ | FS step <br> Ccomp $=100 \mathrm{pF}$, Cff $=220 \mathrm{pF}$, Cload=200pF <br> Ccomp $=100 \mathrm{pF}, \mathrm{Cff}=220 \mathrm{pF}$, Cload=200pF <br> Ccomp $=100 \mathrm{pF}, \mathrm{Cff}=220 \mathrm{pF}$, Cload=200pF <br> Ccomp $=100 \mathrm{pF}$, Cff $=220 \mathrm{pF}$, Cload=200pF <br> Ccomp $=100 \mathrm{pF}$, Cff $=220 \mathrm{pF}$, Cload=200pF <br> FS step <br> Ccomp $=100 \mathrm{pF}$, Cff $=220 \mathrm{pF}$, Cload=200pF <br> Ccomp=100pF, Cff=220pF, Cload=200pF |
| FI SETTLING TIME TO 0.05\% OF FSCR <br> 64mA Range ${ }^{2}$ <br> 2 mA range ${ }^{2}$ <br> $200 \mu \mathrm{~A}$ range ${ }^{2}$ <br> $20 \mu \mathrm{~A}$ range ${ }^{2}$ <br> $5 \mu \mathrm{~A}$ range ${ }^{2}$ <br> MV SETTLING TIME TO .05\% OF FSVR <br> $64 m A$ Range ${ }^{2}$ <br> 2 mA range ${ }^{2}$ <br> $200 \mu \mathrm{~A}$ range ${ }^{2}$ <br> $20 \mu \mathrm{~A}$ range ${ }^{2}$ <br> $5 \mu \mathrm{~A}$ range ${ }^{2}$ |  | 30 30 80 680 3000 TBD TBD TBD TBD TBD | $\begin{aligned} & \text { TBD } \\ & \\ & \hline \text { TBD } \\ & \text { TBD } \end{aligned}$ | $\mu \mathrm{s}$ <br> $\mu \mathrm{s}$ | FS step <br> Ccomp $=100 \mathrm{pF}$, Cload=200pF <br> FS step <br> Ccomp $=100 \mathrm{pF}$, Cload=200pF |
| DAC SPECIFICATIONS <br> Resolution <br> Voltage Output Span² <br> Differential Nonlinearity ${ }^{2}$ <br> COMPARATOR DAC DYNAMIC <br> SPECIFICATIONS <br> Output Voltage Settling Time ${ }^{2}$ <br> Slew Rate ${ }^{2}$ <br> Digital-to-Analog Glitch Energy ${ }^{2}$ <br> Glitch Impulse Peak Amplitude ${ }^{2}$ | -1 | $\begin{gathered} 5 \\ 20 \end{gathered}$ | 16 <br> 22.5 <br> 1 <br> 1.5 <br> 15 | Bits <br> V <br> LSB <br> $\mu \mathrm{s}$ <br> $\mathrm{V} / \mu \mathrm{s}$ <br> nV -s <br> mV | $V_{\text {REF }}=5 \mathrm{~V}$, within a range of -16.25 to 22.5 V Guaranteed monotonic by design over temperature. <br> 1 V change to $\pm 1 \mathrm{LSB}$. |
| REFERENCE INPUT <br> $V_{\text {ReF }}$ DC Input Impedance <br> $V_{\text {REF }}$ Input Current <br> $V_{\text {Ref }}$ Range | $\begin{gathered} 1 \\ -10 \\ 2 \end{gathered}$ |  | $\begin{gathered} 10 \\ 5 \end{gathered}$ | $M \Omega$ <br> $\mu \mathrm{A}$ <br> V | Typically $100 \mathrm{M} \Omega$. <br> Per input. Typically $\pm 30 \mathrm{nA}$. |
| DIE TEMPERATURE SENSOR <br> Accuracy <br> Output Voltage at $25^{\circ} \mathrm{C}$ <br> Output Scale Factor <br> Output Voltage Range | 0 | $\begin{gathered} \pm 7 \\ 1.5 \\ 5 \end{gathered}$ | 3 | $\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{~V} \\ & \mathrm{mV} /{ }^{\circ} \mathrm{C} \\ & \mathrm{~V} \end{aligned}$ |  |
| INTERACTION \& CROSSTALK <br> Crosstalk (VM) ${ }^{2}$ <br> Crosstalk (MI) ${ }^{2}$ <br> Crosstalk within a channel ${ }^{2}$ | $\begin{aligned} & -0.01 \\ & -0.01 \end{aligned}$ |  | $\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.5 \end{aligned}$ | \% FSR <br> \% FSR <br> mV | All channels in FIMV mode, measure the voltage for one channel in the highest current force range, once when all three other channels are at $\mathrm{FI}=0 \mathrm{~mA}$ and once when they are at 2 mA <br> All channels in FVMI mode, measure the current for one channel in the lowest current measure range, once when all three other channels are at $\mathrm{FV}=-10 \mathrm{~V}$ and once when they are at +10 V <br> All channels in FVMI mode, one channel at midscale, measure the current for one channel in the lowest current range, for a change in comparator or clamp DAC |

AD5522

| Parameter | Min | Typ ${ }^{1}$ | Max | Units | Test Conditions/Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Shorted DUT Crosstalk ${ }^{2}$ |  | TBD | TBD |  | levels for that PMU. <br> S/C applied to one PMU channel, measure effect on other channels. |
| SPI INTERFACE LOGIC <br> LOGIC INPUTS <br> $\mathrm{V}_{\mathbb{H}}$, Input High Voltage <br> VIL, Input Low Voltage <br> IINH, INL, Input Current <br> $\mathrm{C}_{\mathrm{IN}}$, Input Capacitance ${ }^{2}$ <br> CMOS LOGIC OUTPUTS <br> $V_{\text {он, }}$ Output High Voltage <br> Vol, Output Low Voltage <br> Tristate leakage current <br> Output Capacitance² <br> OPEN DRAIN LOGIC OUTPUTS <br> Vol, Output Low Voltage <br> Output Capacitance ${ }^{2}$ <br> LVDS INTERFACE LOGIC <br> LOGIC INPUTS - Reduced Range Link <br> Input Voltage Range <br> Input Differential Threshold <br> External Termination Resistance <br> Differential Input Voltage <br> LOGIC OUTPUTS - Reduced Range Link <br> Output Offset Voltage <br> Output Differential Voltage | 1.7/2.0 <br> -1 <br> DV $\mathrm{Cc}_{\mathrm{cc}}-0.4$ <br> -1 <br> 875 <br> -100 <br> 80 <br> 100 | $\begin{gathered} 100 \\ 1200 \\ 400 \end{gathered}$ | $\begin{gathered} 0.7 / 0.8 \\ 1 \\ 10 \\ \\ \\ 0.4 \\ 1 \\ 10 \\ \\ 0.4 \\ 10 \\ \\ \\ 1575 \\ 100 \\ 120 \end{gathered}$ | V <br> V <br> $\mu \mathrm{A}$ <br> pF <br> V <br> V <br> $\mu \mathrm{A}$ <br> pF <br> V <br> pF <br> mV <br> mV <br> $\Omega$ <br> mV <br> mV <br> mV | (2.3 to 2.7)/(2.7 to 5.25V) Jedec Compliant Input Levels (2.3 to 2.7)/(2.7 to 5.25V) Jedec Compliant Input Levels <br> SDO, CPOX $\mathrm{loL}=500 \mu \mathrm{~A}$ <br> $\overline{\text { BUSY }}$, TMPALM, CGALM $\mathrm{l}_{\mathrm{L}}=500 \mu \mathrm{~A}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\text {PULLUP }}=1 \mathrm{k} \Omega$ |
| NOISE PERFORMANCE <br> NSD of Measure Voltage In-Amp NSD of Measure Current In-Amp NSD of Force Amplifier |  | $\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$ |  | $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ <br> $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ <br> $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ | @ 1kHz, measured at MEASOUT <br> @ 1 kHz , measured at MEASOUT <br> @ 1 kHz , measured at FOH |
| POWER SUPPLIES <br> $A V_{D D}$ <br> AVss <br> DV ${ }_{\text {cc }}$ <br> Ald <br> Alss <br> Dlcc <br> Max Power Dissipation ${ }^{2}$ <br> Power Supply Sensitivity ${ }^{2}$ <br> $\Delta$ Forced Voltage/ $\Delta \mathrm{AV} V_{D D}$ <br> $\Delta$ Forced Voltage/ $\Delta \mathrm{AV}$ SS <br> $\Delta$ Measured Current/ $\Delta A V_{D D}$ <br> $\Delta$ Measured Current/ $\Delta \mathrm{AV}$ Ss <br> $\Delta$ Forced Current/ $\Delta A V_{D D}$ <br> $\Delta$ Forced Current/ $\Delta \mathrm{AV}$ ss <br> $\Delta$ Measured Voltage/ $\Delta A V_{D D}$ <br> $\Delta$ Measured Voltage/ $\Delta \mathrm{AV}$ ss <br> $\Delta$ Forced Voltage/ $\Delta \mathrm{DV}$ cc <br> $\Delta$ Measured Current/ $\Delta \mathrm{DV}$ cc <br> $\Delta$ Forced Voltage/ $\Delta \mathrm{DV}$ cc <br> $\Delta$ Measured Current/ $\Delta D_{\text {cc }}$ | $\begin{gathered} 10 \\ -5 \\ 2.3 \end{gathered}$ | $\begin{aligned} & -75 \\ & -75 \\ & -75 \\ & -75 \\ & -75 \\ & -75 \\ & -75 \\ & -75 \\ & -90 \\ & -90 \\ & -90 \\ & -90 \end{aligned}$ | $\begin{gathered} 28 \\ -23 \\ 5.25 \\ 25 \\ 25 \\ 3 \\ 7 \end{gathered}$ | V <br> V <br> V <br> mA <br> mA <br> mA <br> W <br> dB | $\left\|A V_{D D}-A V_{S S}\right\| \leq 33 V$ <br> Excluding Load Conditions Excluding Load Conditions <br> From DC to 1 kHz |

${ }^{1}$ Typical specifications are at $25^{\circ} \mathrm{C}$ and nominal supply, $\pm 15.25 \mathrm{~V}$, unless otherwise noted.
${ }^{2}$ Guaranteed by design and characterization, not production tested.

FV = Force Voltage, $\mathrm{FI}=$ Force Current, MV = Measure Voltage, $\mathrm{MI}=$ Measure Current FSR = Full Scale Range, FSCR = Full Scale Current Range, FS = Full Scale. Specifications subject to change without notice.

## TABLE 2. TIMING CHARACTERISTICS

$\mathrm{AV}_{\mathrm{DD}} \geq 10 \mathrm{~V}, \mathrm{AV}_{\mathrm{SS}} \leq-5 \mathrm{~V},\left|\mathrm{AV}_{\mathrm{DD}}-\mathrm{AV}_{\mathrm{SS}}\right| \geq 20 \mathrm{~V}$ and $\leq 33 \mathrm{~V}, \mathrm{DV}$ CC $=2.3 \mathrm{~V}$ to $5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{REF}}=5 \mathrm{~V}$
( $\mathrm{T}_{\mathrm{J}}=+25$ to $+90^{\circ} \mathrm{C}$, max specs unless otherwise noted.)

| SPI INTERFACE (Figure 5 and Figure 6) |  |  |  |
| :---: | :---: | :---: | :---: |
| Parameter ${ }^{1,2,3}$ | Limit at TMIN, TMAX | Unit | Description |
| $\mathrm{t}_{1}$ | 20 | ns min | SCLK Cycle Time. |
| $\mathrm{t}_{2}$ | 8 | $n \mathrm{nmin}$ | SCLK High Time. |
| $\mathrm{t}_{3}$ | 8 | ns min | SCLK Low Time. |
| $\mathrm{t}_{4}$ | 10 | $n \mathrm{nsmin}$ |  |
| $\mathrm{t}_{5}$ | 15 | ns min | Minimum $\overline{\text { SYNC }}$ High Time. |
| $\mathrm{t}_{6}$ | 5 | $n \mathrm{nmin}$ | 29th SCLK Falling Edge to $\overline{\text { SYNC }}$ Rising Edge. |
| $\mathrm{t}_{7}$ | 5 | ns min | Data Setup Time. |
| $\mathrm{t}_{8}$ | 4.5 | ns min | Data Hold Time. |
| $\mathrm{tg}^{3}$ | 30 | ns max | $\overline{\overline{S Y N C}}$ Rising Edge to $\overline{\overline{B U S Y}}$ Falling Edge. |
| $\mathrm{t}_{10}$ | 1.2 | $\mu \mathrm{s}$ max | $\overline{\text { BUSY Pulse Width Low }}$ |
| $\mathrm{t}_{11}$ | 20 | $n \mathrm{nmin}$ | 29th SLCK Falling EDGE to $\overline{\text { LOAD }}$ Falling Edge |
| $\mathrm{t}_{12}$ | 20 | ns min | $\overline{\text { LOAD }}$ pulse width low |
| $\mathrm{t}_{13}$ | 150 | ns min | $\overline{\text { BUSY }}$ rising edge to FOH Output Response time |
| $\mathrm{t}_{14}$ | 0 | $n \mathrm{~ns}$ min | $\overline{\text { BUSY }}$ rising edge to $\overline{\text { LOAD }}$ falling edge |
| $\mathrm{t}_{15}$ | 100 | ns max | $\overline{\text { LOAD }}$ rising edge to FOH Output Response time |
| $\mathrm{t}_{16}$ | 10 | ns min | $\overline{\text { RESET Pulse Width Low. }}$ |
| $\mathrm{t}_{17}$ | 300 | $\mu \mathrm{s}$ max | $\overline{\text { RESET }}$ Time Indicated by $\overline{\text { BUSY }}$ Low. |
| $\mathrm{t}_{18}$ | 100 | ns min | Minimum $\overline{\text { SYNC }}$ High Time in Readback Mode. |
| $\mathrm{t}_{19}{ }^{4}$ | 25 | ns max | SCLK Rising Edge to SDO Valid. |
|  | 595 | ns min | Single channel write time |
| LVDS INTERFACE (Figure 7) |  |  |  |
| Parameter ${ }^{1,2,3}$ | Limit at TMIN, TMAX | Unit | Description |
| $\mathrm{t}_{1}$ | 10 | ns min | SCLK Cycle Time. |
| $\mathrm{t}_{2}$ | 4 | ns min | SCLK Pulse Width High and Low Time. |
| $\mathrm{t}_{3}$ | 2 | ns min | $\overline{\text { SYNC }}$ to SCLK Setup Time. |
| $\mathrm{t}_{4}$ | 2 | $n \mathrm{nmin}$ | Data Setup Time. |
| $\mathrm{t}_{5}$ | 2 | ns min | Data Hold Time. |
| $\mathrm{t}_{6}$ | 2 | ns min | SCLK to $\overline{\text { SYNC }}$ Hold Time. |
| $\mathrm{t}_{7}$ | TBD | ns min | SCLK Rising Edge to SDO Valid. |
| $\mathrm{t}_{8}$ | TBD | ns min | $\overline{\text { SYNC }}$ high time |

${ }^{1}$ Guaranteed by design and characterization, not production tested.
${ }^{2}$ All input signals are specified with $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns}\left(10 \%\right.$ to $90 \%$ of $\left.\mathrm{V}_{c c}\right)$ and timed from a voltage level of 1.2 V .
${ }^{3}$ See Figure 5 and Figure 6
${ }^{4}$ This is measured with circuit the load circuit of Figure 4


Figure 3.. Load Circuit for $\overline{C G A L M}, \overline{T M P A L M}$


Figure 4. Load Circuit for SDO, $\overline{B U S Y}$ Timing Diagram


Figure 5. SPI Write Timing (Write word contains 29 bits)


Figure 6. SPI Read Timing (Readback word contains 24 bits and can be clocked out with a minimum of 24 clock edges)


Figure 7. LVDS Read and Write Timing, (Readback word contains 24 bits and can be clocked out with a minimum of 24 clock edges)

## ABSOLUTE MAXIMUM RATINGS

Table 3. AD5522 Absolute Maximum Ratings

| Parameter | Rating |
| :---: | :---: |
| Supply Voltage $\mathrm{AV}_{\text {DD }}$ to $\mathrm{AV}_{S S}$ | 34V |
| AV $\mathrm{DD}^{\text {to }}$ AGND | -0.3V to 34V |
| $\mathrm{AV}_{\text {ss }}$ to AGND | 0.3 V to -34V |
| $V_{\text {ref }}$ to AGND | -0.3 V, +7V |
| DUTGND, REFGND, AGND | $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$ to $\mathrm{AV}_{\text {SS }}-0.3 \mathrm{~V}$ |
| DV ${ }_{\text {cc }}$ to DGND | -0.3 V to 7V |
| Digital Inputs to DGND | -0.3 V to $\mathrm{DV}_{\mathrm{cc}}+0.3 \mathrm{~V}$ |
| Analog Inputs to AGND | $\mathrm{AV}_{\text {SS }}-0.3 \mathrm{~V}$ to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$ |
| Storage Temperature | $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |
| Operating Junction Temperature | +25 to $+90^{\circ} \mathrm{C}$ |
| Reflow Soldering <br> Peak Temperature <br> Time at Peak Temperature | $\begin{aligned} & 230^{\circ} \mathrm{C} \\ & 10 \mathrm{~s} \text { to } 40 \mathrm{~s} \end{aligned}$ |
| Junction Temperature | $150^{\circ} \mathrm{C}$ max |
| Stresses above those listed under may cause permanent damage to rating only and functional operation any other condition $s$ above those section of this specification is no maximum rating conditions for device reliability. | Absolute Maximum Ratings he device. This is a stress on of the device at these or indicated in the operational implied. Exposure to absolute tended periods may affect |

## THERMAL RESISTANCE ${ }^{3}$

Thermal resistance values are specified for the worst-case conditions, i.e., specified for device soldered in circuit board for surface mount packages.
Table 4. Thermal Resistance (JEDEC 4 layer (1S2P) board)

| Air Flow (LFPM) |  | $\mathbf{0}$ | $\mathbf{2 0 0}$ | $\mathbf{5 0 0}$ | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TQFP Exposed Pad Down | $\theta_{\mathrm{\jmath A}}$ | 22.3 | 17.2 | 15.1 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
|  | $\theta_{\mathrm{\jmath}}$ | 0.3 |  |  |  |
| TQFP Exposed Pad Up | $\theta_{\mathrm{\jmath A}}$ | TBD | TBD | TBD | ${ }^{\circ} \mathrm{C} / \mathrm{W} / \mathrm{W}$ |
|  | $\theta_{\mathrm{\jmath c}}$ | 4.8 |  |  | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

Table 5. Thermal Resistance (JEDEC 4 layer (1S2P) board with cooling plate ${ }^{4}$ at $45^{\circ} \mathrm{C}$, natural convection at $55^{\circ} \mathrm{C}$ ambient)

| Package Thermals | $\theta_{\mathrm{JA}}$ | $\theta_{\mathrm{JA}}$ | Unit |
| :--- | :---: | :---: | :--- |
| TQFP Exposed Pad Down | 5.4 | 4.8 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| TQFP Exposed Pad Up | 3.0 | 0.3 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

${ }^{3}$ Simulated Thermal information.
${ }^{4}$ Assumes perfect thermal contact between cooling plate and exposed paddle

## ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

## AD5522

## PIN CONFIGURATION AND FUNCTION DESCRIPTIONS



Table 6. Pin Function Descriptions

| Pin No. | Pin No. | Mnemonic | Description |
| :---: | :---: | :---: | :---: |
| Bottom | Top | Exposed Pad | The exposed pad is electrically connected to $\mathrm{AV}_{\text {ss }}$. <br> TQFP with exposed pad on BOTTOM: For enhanced thermal, electrical and board level performance, the exposed paddle on the bottom of the package should be soldered to a corresponding thermal land paddle on the PCB. |
| $\begin{aligned} & \hline 22,39,62, \\ & 67,79, \end{aligned}$ | $\begin{aligned} & \hline 2,14,19, \\ & 42,59, \end{aligned}$ | $\mathrm{AV}_{5 s}(0-4)$ | Negative analog supply voltage |
| $\begin{aligned} & 1,20,41,60, \\ & 74 \end{aligned}$ | $\begin{aligned} & \hline 7,21,40 \\ & 61,80 \end{aligned}$ | $\mathrm{AV} \mathrm{VD}_{\text {( }}(0-4)$ | Positive analog supply voltage |
| 33 | 48 | $\overline{\text { LOAD }}$ | Active low logic input used for synchronizing updates within one device or across a group of devices. If synchronization is not required, LOAD may be tied low and updates to DAC channels or PMU modes will happen as they are presented to the device. See the $\overline{B U S Y}$ and $\overline{\text { LOAD }}$ FUNCTIONS section for detailed information. |
| 34 | 47 | DV ${ }_{\text {cc }}$ | Digital supply voltage |
| $\begin{aligned} & 10,11,50, \\ & 51,69 \end{aligned}$ | $\begin{aligned} & 12,30,31, \\ & 70,71 \end{aligned}$ | AGND | Analog ground, reference points for force and measure circuitry |
| 30 | 51 | DGND | Digital ground reference point. |
| 23 | 58 | $\overline{\overline{B U S Y}}$ | Open Drain active low input/output indicating the status of interface. |
| 24 | 57 | SCLK | Clock input, active falling edge |
| 25 | 56 | CPOLO/ $\overline{\text { SCLK }}$ | Comparator output low in SPI mode and $\overline{\text { SCLK }}$ in LVDS interface mode |
| 26 | 55 | CPOH0/ $\overline{\text { SDI }}$ | Comparator output high in SPI mode and $\overline{\text { SDI }}$ in LVDS interface mode |
| 27 | 54 | SDI | Serial data input |
| 28 | 53 | $\overline{\text { SYNC }}$ | Frame sync, active low |
| 29 | 52 | CPOL1/ SYNC | Comparator output low in SPI mode and SYNC in LVDS interface mode |
| 31 | 50 | CPOH1/SDO | Comparator output high in SPI mode and $\overline{\text { SDO }}$ in LVDS interface mode |


| 32 | 49 | SDO | Serial data out, for readback and diagnostic purposes |
| :---: | :---: | :---: | :---: |
| 35 | 46 | CPOL2/CPO0 | Comparator output Low, comparator window in LVDS interface mode |
| 36 | 45 | CPOH2/CPO1 | Comparator output Low, comparator window in LVDS interface mode |
| 37 | 44 | CPOL3/CPO2 | Comparator output Low, comparator window in LVDS interface mode |
| 38 | 43 | CPOH3/CPO3 | Comparator output Low, comparator window in LVDS interface mode |
| $\begin{aligned} & 66,65,64, \\ & 63 \end{aligned}$ | $\begin{aligned} & 15,16,17, \\ & 18 \end{aligned}$ | MEASOUT(0-3) | Multiplexed DUT voltage/Current sense output/temperature sensor voltage per channel, referenced to AGND. |
| 68 | 13 | SYS_FORCE | External FORCE signal input, enables connection of system PMU. |
| 70 | 11 | SYS_SENSE | External SENSE signal output, enables connection of system PMU. |
| 71 | 10 | REFGND | Accurate analog reference input ground. |
| 72 | 9 | VREF | Reference Input for DAC channels, 5V for specified performance. |
| 75 | 6 | $\overline{\text { SPI/LVDS }}$ | Interface select pin. Logic low selects SPI interface compatible mode, logic high selects LVDS interface mode. In LVDS mode the $\mathrm{CPOH}(0-3)$ pins default to differential interface pins. |
| 76 | 5 | $\overline{\text { CGALM }}$ | $\overline{\overline{C G A L M}}$ is an open drain pin providing shared Alarm information for Guard amplifier and Clamp circuitry. <br> By default, this output pin is disabled. The System Control Register allows user to enable this function and to set the open drain output as a latched output, or to configure either the Guard or Clamp function or both flagging the alarm pin. <br> When this pin flags an alarm, the origins of the alarm may be determined by reading back the Alarm Status Register. Two flags per channel in this word (one latched, one unlatched) indicate which function caused the alarm and if the alarm is still present. |
| 77 | 4 | $\overline{\text { TMPALM }}$ | The function of this pin is to flag a Temperature Alarm. It is a latched active low open drain output indicating the junction temperature has exceeded either the programmed or default (130degC) temperature setting. <br> Two flags in the Alarm Status Register (one latched, one unlatched) indicate if the temperature has dropped below 130 degC or still above. User action is required to clear this latched alarm flag, by writing to the "CLEAR" bit in any of the PMU registers. |
| 78 | 3 | $\overline{\text { RESET }}$ | Active low, level sensitive input used to reset all internal nodes on the device to their power-on reset value. |
| 3,18, 43, 58 | $\begin{aligned} & \hline 78,63,38, \\ & 23 \end{aligned}$ | $\mathrm{Ccomp}^{\text {(0-3) }}$ | Compensation capacitor Input per channel. See section on compensation capacitors.. |
| 2, 19, 42, 59 | $\begin{aligned} & 79,62,39, \\ & 22 \end{aligned}$ | $\mathrm{C}_{\text {FF }}(0-3)$ | External capacitor optimizing the stability performance of the force amplifier (per channel).. See section on Compensation Capacitors |
| $\begin{aligned} & 80,21,40, \\ & 61 \end{aligned}$ | $\begin{aligned} & 1,60,41, \\ & 20 \end{aligned}$ | EXTFOH(0-3) | Per channel, Force output for high current range. Use external resistor here for current range up to 64 mA . |
| 6, 15, 46, 55 | $\begin{aligned} & 75,66,35, \\ & 26 \end{aligned}$ | $\mathrm{FOH}(0-3)$ | Per channel force output for all other ranges. |
| 4, 17, 44, 57 | $\begin{aligned} & 77,64,37, \\ & 24 \end{aligned}$ | EXTMEASIH(0-3) | Per channel sense input (high sense) for high current range. |
| 5,16, 45, 56 | $\begin{aligned} & 76,65,36, \\ & 25 \end{aligned}$ | EXTMEASIL(0-3) | Per channel sense input (Low sense) for high current range. |
| 9, 12, 49, 52 | $\begin{aligned} & 72,69,32, \\ & 29 \end{aligned}$ | MEASVH(0-3) | Per channel DUT voltage sense input (high sense) |
| 73 | 8 | DUTGND | DUT voltage sense input (low sense). By default, DUTGND is shared between all four PMU channels. If user requires a DUTGND input per channel, the GUARDIN (0-3)/DUTGND(0-3) pin may be configured to be a DUTGND input per each PMU channel. |
| 7,14,47,54 | $\begin{aligned} & 74,67,34, \\ & 27 \end{aligned}$ | GUARD (0-3) | Guard output drive. |
| 8, 13, 48, 53 | $\begin{aligned} & 73,68,33, \\ & 28 \end{aligned}$ | $\overline{\text { GUARDIN(0-3) }}$ /DUTGND(0-3) | This pin has dual functionality; it may be either a Guard input per channel or DUTGND per channel. <br> Its function is determined via the serial interface. The power on default is GUARDIN, where it functions as the input to the Guard Amplifier. Alternatively, it may be configured to be a DUTGND input per channel. If selected as DUTGND via the interface, it now provides a DUTGND per Channel function and the input to the Guard amplifier is internally connected to MEASVH. See section on Guard Amplifier |



Figure 9. Pin Configuration (Exposed Pad on Top of package)

## TERMINOLOGY

## Offset Error

Offset error is a measure of the difference between actual and ideal voltage expressed in mV .
Gain Error Gain error is the difference between full-scale error and zero-scale error. It is expressed in \%.

Gain Error $=$ Full-Scale Error - Zero-Scale Error

## Linearity Error

Relative accuracy, or endpoint linearity, is a measure of the maximum deviation from a straight line passing through the endpoints of the full-scale range. It is measured after adjusting for offset error and gain error and is expressed in \% FSR.

## CM Error

Common Mode Error is the error at the output of the amplifier due to the common mode input voltage. It is expressed in \% of FSR/V.

## Clamp Accuracy

Clamp accuracy is a measure of where the clamps begin to function fully and limit the clamped voltage or current.

## Leakage Current

Current measured at an output pin, when that function is off or high impedance.

## Pin Capacitance

Capacitance measured at a pin when that function is off or high impedance.

## Slew Rate

The rate of change of output voltage, expressed in $\mathrm{V} / \mu \mathrm{s}$.

## DAC SPECIFIC TERMS

## Differential Nonlinearity

Differential nonlinearity is the difference between the measured change and the ideal 1 LSB change between any two adjacent codes. A specified differential nonlinearity of $\pm 1$ LSB maximum ensures monotonicity.

## Output Voltage Settling Time

The amount of time it takes for the output of a DAC to settle to a specified level for a full-scale input change.

## Digital-to-Analog Glitch Energy

The amount of energy injected into the analog output at the major code transition. The area of the glitch in is specified in nV -s. It is measured by toggling the DAC register data between $0 \times 1$ FFF and $0 \times 2000$.

## Digital Crosstalk

The glitch impulse transferred to the output of one converter due to a change in the DAC register code of another converter is defined as the digital crosstalk and is specified in nV -s.
Digital Feedthrough
When the device is not selected, high frequency logic activity on the device's digital inputs can be capacitively coupled both across and through the device to show up as noise on the VOUT pins. It can also be coupled along the supply and ground lines. This noise is digital feedthrough.

## FUNCTIONAL DESCRIPTION

The AD5522 is a highly integrated quad per pin parametric measurement unit (PPMU) for use in semiconductor automatic test equipment. It contains programmable modes to force a pin voltage and measure the corresponding current (FVMI), force current measure voltage (FIMV), force current measure current (FIMI), force voltage measure voltage (FVMV) and force nothing measure voltage (FNMV) or measure current (FNMI). The PPMU can force or measure a voltage range of 22.5 V . It can force or measure currents ranging up to 64 mA per channel using the internal amplifier, while the addition of an external amplifier enables higher current ranges. On Chip are all the DAC levels required for each PMU channel.

## FORCE AMPLIFIER

The force amplifier drives the analog output FOH , which drives a programmed current or voltage to the DUT (device under test). Headroom and footroom requirements for this amplifier is 3 V on either end. An additional $\pm 1 \mathrm{~V}$ is dropped across the sense resistor when maximum current is flowing through it.

This amplifier is designed to drive DUT capacitances up to 10 nF , with a compensation value of 100 pF . Larger DUT capacitive load will require larger compensation capacitances.

Local feedback ensures the amplifiers are stable when disabled. A disabled channel reduces power consumption by $2.5 \mathrm{~mA} /$ channel.

## COMPARATORS

Per channel, the DUT measured value is monitored by two comparators configured as window comparators. Internal DAC levels set the CPL and CPH (low and high) threshold values. There are no restrictions on the voltage settings of the comparator high and lows. CPL going higher than CPH is not a useful operation; however, it will not cause any problems to the device. CPOL and CPOH are continuous time comparator outputs.

Table 7. Comparator Output Function

| TEST CONDITION | CPOL | CPOH |
| :--- | :---: | :---: |
| $V_{\text {DUT }}$ or $I_{\text {DUT }}>C P H$ |  | 0 |
| V $_{\text {DUT }}$ or $I_{\text {DUT }}<C P H$ |  | 1 |
| $V_{\text {DUT }}$ or $I_{\text {DUT }}>C P L$ | 1 |  |
| $V_{\text {DUT }}$ or $I_{\text {Dut }}<C P L$ | 0 |  |
| CPH $>V_{\text {DUT }}$ or $I_{\text {DUT }}>C P L$ | 1 | 1 |

When using SPI interface, full comparator functionality is available. When using the LVDS interface, the comparator function is limited to one output per comparator, due to the large pin count requirement of the LVDS interface. In this case,
comparator output available CPO (0-3) provides information on whether the measured voltage or current is inside or outside the set CPH and CPL window. Information of whether the measurement was high or low is available via the serial interfaces (Comparator Status Register).

Table 8. Comparator Output Function using LVDS interface

| TEST CONDITION | CPO Output |
| :---: | :---: |
| $\mathrm{CPL}<\mathrm{V}_{\text {DUt }}$ And $\mathrm{I}_{\text {DUt }}<\mathrm{CPH}$ | 1 |
| $\mathrm{CPL}>\mathrm{V}_{\text {DUT }}$ or $\mathrm{I}_{\text {DUt }}>\mathrm{CPH}$ | 0 |

## CLAMPS

Current and voltage clamps are included on chip per PMU channel. They protect the DUT in the event of an open or a short. Internal DAC levels set the CLL and CLH (low and high) levels and the clamps work to limit the force amplifier in the event of a voltage or current at the DUT exceeding the set levels. The clamps also function to protect the DUT when a transient voltage or current spike occurs when changing to a different operating mode or when programming the device to a different current range.

The voltage clamps are active while forcing current and the current clamps are active while forcing voltage. By default, the current clamps are off. Simply set them up via the status register through the serial interface.
If a clamp level has been hit, this will be flagged via the $\overline{\text { CGALM }}$ open drain output and the resulting alarm information may be read back via the SPI or LVDS interface. CLL should never be greater than CLH.

## CURRENT RANGE SELECTION

Integrated thin film resistors minimize external components and allow easy selection of current ranges from $5 \mu \mathrm{~A}(200 \mathrm{k} \Omega)$, $20 \mu \mathrm{~A}(50 \mathrm{k} \Omega), 200 \mu \mathrm{~A}(5 \mathrm{k} \Omega)$ and $2 \mathrm{~mA}(500 \Omega)$. Per channel, one current range up to 64 mA may be accommodated by connecting an external sense resistor. For current ranges in excess of 64 mA , it is recommended an external amplifier be used.

For the suggested current ranges, the maximum voltage drop across the sense resistors is $\pm 1 \mathrm{~V}$, however, to allow for correction of errors, there is some over range available in the current ranges. The full-scale voltage range that can be loaded to the DAC is $\pm 11.5 \mathrm{~V}$; the forced current may be calculated as follows:

$$
F I=\frac{V F I N}{R S E N S E \times \text { Gain }}
$$

Where:
FI = Forced Current
VFIN = Voltage of the FIN DAC, See Vout for DAC levels. RSENSE = Selected Sense Resistor
Gain of Current Measure Instrumentation amplifier, it may be set (via the serial interface) to 5 or 10 .

Using the $5 \mathrm{k} \Omega$ sense resistor and ISENSE gain of 10 , the maximum current range possible is $\pm 225 \mu \mathrm{~A}$. Similarly for the other current ranges, there is an over range of $12.5 \%$ to allow for correction.

Also, the forced current range will only be the quoted full scale range with an applied reference of 5 V or 2.5 V (with ISENSE AMP gain $=5$ ). The ISENSE amplifier is biased by the Offset DAC output voltage, in such as way as to center the Measure current output irrespective of the voltage span used.

When using the EXTFOHx outputs for current ranges up to 64 mA , there is no switch in series with the EXTFOHx line, ensuring minimum capacitance presented at the output of the force amplifier. This is also an important feature if using a Pin electronics driver to provide high current ranges.

## HIGH CURRENT RANGES

With the use of an external high current amplifier, one high current range in excess of 64 mA is possible. The high current amplifier simply buffers the force output and provides the drive for the required current.


Figure 10. Addition of high current amplifier for wider current range( $>64 \mathrm{~mA}$ )

## DEVICE UNDER TEST GROUND (DUTGND)

By default, there is one DUTGND input available for all four PMU channels. In some applications of a PMU, it is necessary that each channel operate from its own DUTGND level. There is a shared pin in the form of the $\overline{\operatorname{GUARDIN}(0-3)} / \mathrm{DUTGND}(0-$ 3) which may be shared as either the input to the GUARD amplifier (GUARDIN), or as a DUTGND per channel function. This should be configured through the serial interface on power on as per required operation. The default connection is SW13b and SW14b. When configured as DUTGND per channel, this multifunction pin is no longer connected to the input of the guard amplifier, it is instead connected to the low end of the instrumentation amplifier (SW14a), and the input of the Guard amplifier is not connected internally to MEASVH (SW13a).


Figure 11. Using the DUTGND per channel Feature

## GUARD AMPLIFER

A Guard amplifier allows the user to bootstrap the shield of the cable to the voltage applied to the DUT, ensuring minimal drops across the cable. This is particularly important for measurements requiring a high degree of accuracy and in leakage current testing.

If not required, all four Guard Amplifiers may be disabled via the serial interface (through the System Control Register), this decreases the power consumption by 400 uA per channel.
As described in the DUTGND section, the $\overline{\operatorname{GUARDIN}(0-3)}$ /DUTGND (0-3) is a shared pin. It can function either as a guard amplifier input per channel or as a DUTGND input per channel as required by the end application. Refer to Figure 11.

A Guard alarm event occurs when the guard output moves more than 100 mV away from the Guard input voltage for more than $200 \mu \mathrm{~s}$. In the event this happens, this will be flagged via the $\overline{\text { CGALM }}$ open drain output. As the guard and clamp alarm functions share the same alarm output $\overline{C G A L M}$, the alarm information (alarm trigger and alarm channel) is available via the serial interface (ALARM STATUS REGISTER).

Alternatively, the serial interfaces allow the user to setup the $\overline{\text { CGALM }}$ output to flag either the clamp status or the guard status. By default, this open drain alarm pin is an unlatched output, but may be set to a latched output via the serial interface, System Control Register.

## COMPENSATION CAPACITORS

Each channel requires an external compensation capacitor (Ссомр) to ensure stability into the maximum load capacitance while ensuring settling time is optimized. In addition, one $\mathrm{C}_{\mathrm{FF}}$ pin is provided to further optimize stability and settling time performance when in Force voltage mode. When changing from Force current to force voltage mode, the switch connecting CFF $_{\text {FF }}$ capacitor is automatically closed. While the force amplifier is designed to drive load capacitances up to 10 nF , using larger compensation capacitor values, it is possible to drive larger load at the expense of an increase in settling time. If a wide range of load capacitance must be driven, then an external multiplexer connected to the $\mathrm{C}_{\text {сомр }}$ pin will allow optimization of settling time versus stability. The series resistance of a switch placed on Ссомp, should typically be $<50 \Omega$.

Similarly, connecting the CFF $_{\text {FF }}$ node to a multiplexer externally, would cater for a wide range of CDUT in Force Voltage mode. The series resistance of the multiplexer used should be such that:

$$
\left(\frac{1}{2 \Pi R O N \times C D U T}\right)>100 \mathrm{kHz}
$$

Table 9. Suggested Compensation Capacitor Selection

| $\mathrm{C}_{\text {LOAD }}$ | $\mathrm{C}_{\text {COMP }}$ | $\mathrm{C}_{\mathrm{FF}}$ |
| :--- | :--- | :--- |
| $\leq 1 \mathrm{nF}$ | 100 pF | 220 pF |
| $\leq 10 \mathrm{nF}$ | 100 pF | 1 nF |
| $\leq 100 \mathrm{nF}$ | $\mathrm{C}_{\mathrm{LOAD}} / 100$ | $\mathrm{C}_{\mathrm{LOAD}} / 10$ |

## SYSTEM FORCE SENSE SWITCHES

Each channel has switches to allow connection of the force (FOHx) and sense (MEASVHx) lines to a central PMU for calibration purposes. There is one set of SYS_FORCE and SYS_SENSE pins per device.

## TEMPERATURE SENSOR

An on board temperature sensor monitors temperatures and in the event of the temperature exceeding a factory defined value, $\left(130^{\circ} \mathrm{C}\right)$ or a user programmable value, the device will protect itself by shutting down all channels and will flag an alarm through the latched open drain TMPALM $p$ in. Alarm status may be readback from the Alarm Status Register or the PMU registers where latched and unlatched bits tell if an alarm has occurred and whether the temperature has dropped below the set alarm temperature.

## MEASURE OUTPUT (MEASOUT)

The measured DUT voltage or current (voltage representation of DUT current) is available on MEASOUT (0-3) with respect to AGND. The default MEASOUT range is the forced voltage range for voltage measure and current measure (nominally $\pm 11.25 \mathrm{~V}$, depends on reference voltage and offset DAC) and includes some over range to allow for offset correction. The serial interface allows the user to select another MEASOUT range of $\mathrm{V}_{\text {REF }}$ to AGND, allowing for a smaller input range ADC to be used. Each PMU channel MEASOUT line may be made high impedance via the serial interface.

When using low supply voltages, ensure that there is sufficient headroom and footroom for the required force voltage range.
The Offset DAC also directly offsets the MEASURE output voltage level, but only when GAIN1 $=0$.

Table 10. MEASOUT Output Ranges

| MEASOUT Function |  |  | GAIN1 $=$ " 0 " $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$ | GAIN1 = "1" |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | MEASOUT Gain = 1 | MEASOUT Gain = 1/5 |
| MV |  |  | $\pm$ VDUT (up to 11.25 V ) | 4.5VREF |
| MI | GAIN0 = "0" | CURRENT MEAS GAIN = 10 | $\pm \mathrm{V}_{\text {RSENSE }} \mathrm{X} 10=$ up to $\pm 11.25 \mathrm{~V}$ | 0 to 4.5V |
|  | GAIN0 = "1" | CURRENT MEAS GAIN = 5 | $\pm V_{\text {RSENSE }} \mathrm{X} 5=$ up to $\pm 5.625$ | 0 to 2.25 V |

## DAC LEVELS

Each channel contains five dedicated DAC levels : one for the force amplifier, one each for the clamp high and low levels and one each for the comparator high and low levels.

The architecture of a single DAC channel consists of a 16-bit resistor-string DAC followed by an output buffer amplifier. This resistor-string architecture guarantees DAC monotonicity. The 16-bit binary digital code loaded to the DAC register determines at what node on the string the voltage is tapped off before being fed to the output amplifier.

The transfer function for DAC outputs is:
$V_{\text {OUT }}=4.5 V_{\text {REF }}\left(\frac{D A C C O D E}{2^{16}}\right)-3.5 V_{\text {REF }}\left(\frac{\text { OFFSETDAC CODE }}{2^{16}}\right)+$ DUTGND

Where the voltage range must be take into account the $+/-4 \mathrm{~V}$ headroom and footroom requirements for the amplifier and sense resistor and must be within the range -16.25 V to 22.5 V ( 22 V range +500 mV overrange to allow for correction).

## OFFSET DAC

The device is capable of forcing a $22.5 \mathrm{~V}\left(4.5 \times \mathrm{V}_{\mathrm{REF}}\right)$ voltage range. Included on chip is one 16 Bit offset DAC (one for all four channels) which allows for adjustment of the voltage range.

The useable range is -16.25 V to 22.5 V . Zero scale gives a fullscale range of 0 V to +22.5 V , mid scale gives $\pm 11.25 \mathrm{~V}$, while the most negative useful range is in a range of -16.25 V to 6.25 V . Full scale loaded to the Offset DAC does not give a useful output voltage range as the output amplifiers are limited by available footroom. The following table shows the effect of the Offset DAC on the other DACs in the device.

Table 11. OFFSET DAC Relationship with other DACs with $V_{\text {Ref }}=5 \mathrm{~V}$

| Offset DAC <br> Code | DAC Code | DAC Output Voltage Range |
| :--- | :--- | :--- |
| 0 | 0 | 0.00 V |
| 0 | 32768 | 11.25 V |
| 0 | 65535 | 22.50 V |
|  | 0 |  |
| 32768 | 32768 | -8.75 V |
| 32768 | 65535 | 13.75 V |
| 32768 | 0 |  |
|  | 32768 | -11.25 V |
| 42130 | 65535 | 11.25 V |
| 42130 |  |  |
| 42130 | 0 | -16.25 |
|  | 32768 | -5.00 |
| 60855 | 65535 | 6.25 |
| 60855 |  |  |
| 60855 | - | Footroom Limitations |
|  |  |  |
| 65535 |  |  |

Therefore, depending on headroom available, the input to the Force Amplifier may be unipolar positive, or bipolar, either symmetrical or asymmetrical about DUTGND but always within a voltage span of 22.5 V .
The offset DAC offsets all DAC functions. It also centers the current range, such that zero current always flows at midscale code irrespective of offset DAC setting.

Rearranging the transfer function for the DAC output gives the following equation to determine what Offset DAC code is required for a given reference and output voltage range.
OFFSETDAC.CODE $=\left(\frac{2^{16}\left(V_{\text {OUT }}-D U T G N D\right)}{3.5 V_{\text {REF }}}\right)-\left(\frac{4.5 \times D A C C O D E}{3.5}\right)$

## OFFSET AND GAIN REGISTERS

Each DAC level contains independent offset and gain control registers that allow the user to digitally trim offset and gain. These registers give the user the ability to calibrate out errors in the complete signal chain, including the DAC, using the internal m and c registers, which hold the correction factors. All registers in the AD5522 are volatile, so need to be loaded on power on during a calibration cycle.

The digital input transfer function for each DAC can be represented as

$$
x 2=\left[(m+1) / 2^{n} \times x 1\right]+\left(c-2^{n-1}\right)
$$

where:
$x 2=$ the data-word loaded to the resistor string DAC.
$x 1=$ the 16 -bit data-word written to the DAC input register.
$\mathrm{m}=$ code in gain register (default code $=2^{16}-1$.)
$\mathrm{c}=$ code in offset register (default code $=2^{15}$ )
$n=$ DAC resolution ( $n=16$ ).
The calibration engine is only engaged when data is written to the x 1 register. This has the advantage of minimizing the setup time of the device.

## CACHED X2 REGISTERS

Each DAC has a number of cached x2 values. These registers store the result of an offset and gain calibration in advance of a mode change. This enables the user to preload registers; allow the calibration engine to calculate the appropriate x 2 value and store until ready to change modes. As the data is ready and held in the appropriate register, this enables mode changing be as time efficient as possible. If an update occurs to a DAC register set that is currently part of the operating PMU mode, the DAC output will update immediately (depending on $\overline{\mathrm{LOAD}}$ condition).

## Offset and Gain registers for the FIN DAC

The FIN (force amplifier input) DAC level contains independent offset and gain control registers that allow the user to digitally trim offset and gain. There are six sets of $x 1, m$ and $c$ registers, one set ( $\mathrm{x} 1, \mathrm{~m}$ and c ) for the force voltage range, and one set for each of the force current ranges ( 4 internal current ranges and 1 external current range). Six x2 registers store calculated DAC values ready to load to the DAC register on a mode change.


Figure 12. FIN DAC Registers

## Offset and Gain registers for the COMPARATOR DACs

The Comparator DAC levels contain independent offset and gain control registers that allow the user to digitally trim offset and gain. There are six sets of ( $\mathrm{x} 1, \mathrm{~m}$ and c ) registers, one set for the voltage mode, and one set for each of the four internal current ranges and one set for the external current range. In this way, xl may also be preprogrammed, so switching different modes, allows for efficient switching into the required compare mode. Six x2 registers store cached calculated DAC values ready to load to the DAC register on a mode change.


Figure 13. Comparator Registers

## Offset and Gain registers for the Clamp DACs

The clamp DAC levels contain independent offset and gain control registers that allow the user to digitally trim offset and gain. There are just two sets of registers, one for the voltage mode and another register set ( $\mathrm{x} 1, \mathrm{~m}$ and c ) for all five current ranges. Two x 2 registers store cached calculated DAC values ready to load to the DAC register on a PMU mode change.


Figure 14. Clamp Registers

## $V_{\text {Ref }}$

One buffered analog input supplies all 20 DACs with the necessary reference voltage to generate the required $D C$ levels.

## REFERENCE SELECTION

The voltage applied to the $V_{\text {ref }}$ pin determines the output voltage range and span applied to the force amplifier, clamp and comparator inputs. This device can be used with a reference input ranging from 2 V to 5 V , however, for most applications, a reference input of 5 V or 2.5 V will be sufficient to meet all voltage range requirements. The DAC amplifier gain is 4.5 , which gives a DAC output span of 22.5 V . The DACs have offset and gain registers which can be used to calibrate out system errors.

In addition, the gain register can be used to reduce the DAC output range to the desired force voltage range. The Force DAC will retain 16 bit resolution even with a gain register setting of quarter scale ( $0 \times 4000$ ). Therefore, from a single 5 V reference, it is possible to get a voltage span as high as 22.5 V or as low as 5.625 V all from one 5 V reference.

When using the offset and gain registers, the chosen output range should take into account the system offset and gain errors that need to be trimmed out. Therefore, the chosen output range should be larger than the actual, required range.

When using low supply voltages, ensure that there is sufficient headroom and footroom for the required force voltage range. Also, note that with a supply differential of less than 18 V and a full scale current range requirement, it is necessary to reduce the current measure in amp gain to 5 so the feedback path can swing through the full range.

Also, the forced current range will only be the quoted full scale range with an applied reference of 5 V or 2.5 V (with ISENSE AMP gain =5).

For other voltage/current ranges, the required reference level can be calculated as follows:

1. Identify the nominal range required
2. Identify the maximum offset span and the maximum gain required on the full output signal range.
3. Calculate the new maximum output range including the expected maximum offset and gain errors.
4. Choose the new required $\mathrm{VOUT}_{\text {max }}$ and $\mathrm{VOUT}_{\text {min }}$, keeping the VOUT limits centered on the nominal values. Note that $A V_{D D}$ and $A V_{S S}$ must provide sufficient headroom.
5. Calculate the value of $\mathrm{V}_{\text {ReF }}$ as follows:

$$
V_{\text {REF }}=\left(\text { VOUT }_{\text {MAX }}-\text { VOUT }_{M I N}\right) / 4.5
$$

## Reference Selection Example

Nominal Output Range $=10 \mathrm{~V}(-2 \mathrm{~V}$ to $+8 \mathrm{~V})$
Offset Error $= \pm 100 \mathrm{mV}$
Gain Error $= \pm 0.5 \%$
REFGND $=$ AGND $=0 \mathrm{~V}$

1) Gain Error $= \pm 0.5 \%$
=> Maximum Positive Gain Error $=+0.5 \%$
=> Output Range incl. Gain Error
$=10+0.005(10)=10.05 \mathrm{~V}$
2) Offset Error $= \pm 100 \mathrm{mV}$
=> Maximum Offset Error Span $=2(100 \mathrm{mV})=0.2 \mathrm{~V}$
$\Rightarrow$ Output Range including Gain Error and Offset Error $=$ $10.05 \mathrm{~V}+0.2 \mathrm{~V}=10.25 \mathrm{~V}$
3) $V_{\text {ReF }}$ Calculation

Actual Output Range $=10.25 \mathrm{~V}$, that is -2.125 V to +8.125 V (centered);
$V_{\text {REF }}=(8.125 \mathrm{~V}+2.125 \mathrm{~V}) / 4.5=2.28 \mathrm{~V}$
If the solution yields an inconvenient reference level, the user can adopt one of the following approaches:

1. Use a resistor divider to divide down a convenient, higher reference level to the required level.
2. Select a convenient reference level above $V_{\text {ref }}$ and modify the Gain and Offset registers to digitally downsize the reference. In this way the user can use almost any convenient reference level.
3. Use a combination of these two approaches

In this case, the optimum reference to choose is a 2.5 V reference, then use the m and c registers and the OFFSET DAC to achieve the required -2 V to +8 V range. The ISENSE amplifier gain should be changed to a gain of 5 . This ensures a full scale current range of the specified values and also allows optimization of power supplies and minimizes power consumption within the device.

## CALIBRATION

The user can perform a system calibration by overwriting the default values in the m and c registers for any individual DAC channels as follows:

Calculate the nominal offset and gain coefficients for the new output range (see previous example)

Calculate the new $m$ and $c$ values for each channel based on the specified offset and gain errors

## Calibration Example

Nominal Offset Coefficient $=32768$
Nominal Gain Coefficient $=10 / 10.25 x 65535=63937$
$12 / 12.26 \times 65535=64145$

```
Example 1: Gain Error \(=+\mathbf{0 . 5 \%}\), Offset Error \(=+\mathbf{1 0 0 m V}\)
1) Gain Error ( \(0.5 \%\) ) Calibration: \(63937 \times 0.995=63617\)
=> Load Code "0b1111 100010000001 " to \(m\) register
2) Offset Error (100mV) Calibration:
LSB Size \(=10.25 / 65535=156 \mu \mathrm{~V}\);
Offset Coefficient for 100 mV Offset \(=100 / 0.156=641\) LSBs
=> Load Code "0b0111 11010111 1111" to c register
```


## SYSTEM LEVEL CALIBRATION

There are many ways to calibrate the device on power on. The following gives an example of how to calibrate the FIN DAC of the device without a DUT or DUT board connected.
Calibration Procedure for Force and Measure circuitry:

1) Calibrate Force Voltage (2 point)

Write zero scale to the Force DAC (FIN), connect SYS_FORCE to FOHx and SYS_SENSE to MEASVHx, close the internal Force/Sense Switch (SW 7). Using the System PMU, measure the error between voltage at FOHx, MEASVHx and desired value.
Similarly, load Full scale to the Force DAC, and measure the error between FOHx , MEASVH and the desired value. Work out $m$ and $c$ values. Load these values to appropriate $m$ and c registers for Force DAC.
2) Calibrate Measure Voltage (2 point) Connect SYS_FORCE to FOH, SYS_SENSE to MEASVHx Close Internal Force/Sense switch (SW 7). Force voltage on FOH via SYS_FORCE and measure voltage at MEASOUT. The difference is the error between the actual forced voltage and the voltage at MEASOUT.
3) Calibrate Force current (2 point)

In Force current mode, write zero and fullscale to the Force DAC. Connect SYS_FORCE to external ammeter and to FOH pin. Measure error on zero and fullscale current and calculate m and c values.
4) Calibrate Measure Current (2 Point)

Write zero scale to the Force DAC in Force Current mode. Connect SYS_FORCE to an external ammeter and to the FOH pin. Measure the error between ammeter reading and MEASOUT reading. Repeat with Full scale loaded to the Force DAC.
5) Repeat for all four channels.

Similarly, calibrate the comparators and clamp DACs and load the appropriate gain and offset registers. Calibrating these DACs will require some successive approximation to find where the comparator trips or the clamps engage.

## CIRCUIT OPERATION

## FORCE VOLTAGE, FV

Most PMU measurements are performed while in force voltage and measure current mode, for example, when the device is used as a device power supply, or in continuity or leakage testing. In the force voltage mode, the voltage forced is mapped directly to the DUT. The voltage measure amplifier completes the loop giving negative feedback to the forcing amplifier. See Figure 15.

$$
\text { Forced Voltage at DUT }=\text { VFIN }
$$

Where:
VFIN $=$ Voltage of the FIN DAC, See Vout for DAC levels.


Figure 15. Forcing voltage, measuring current

## FORCE CURRENT, FI

In the force current mode, the voltage at FIN is now converted to a current and applied to the DUT. The feedback path is now the current measure amplifier, feeding back the voltage measured across the sense resistor and MEASOUT reflects the voltage measured across the DUT. See Figure 16.

For the suggested current ranges, the maximum voltage drop across the sense resistors is $\pm 1 \mathrm{~V}$, however, to allow for correction of errors, there is some over range available in the current ranges. The maximum full-scale voltage range that can be loaded to the FIN DAC is $\pm 11.5 \mathrm{~V}$; the forced current may be calculated as follows:

$$
F I=\frac{V F I N}{R S E N S E \times \text { Gain }}
$$

Where:
FI = Forced Current
VFIN = Voltage of the FIN DAC, See Vout for DAC levels.
RSENSE = Selected Sense Resistor
Gain of Current Measure Instrumentation amplifier, it may be set (via the serial interface) to 5 or 10 .

The ISENSE amplifier is biased by the Offset DAC output voltage, in such as way as to center the Measure current output irrespective of the voltage span used.

Using the $5 \mathrm{k} \Omega$ sense resistor and ISENSE gain of 10 , the maximum current range possible is $\pm 225 \mu \mathrm{~A}$. Similarly for the other current ranges, there is an over range of $12.5 \%$ to allow for correction.


Figure 16. .Forcing current, measuring voltage
Rev. PrL | Page 24 of 45

## SERIAL INTERFACE

The AD5522 contains two high-speed serial interfaces, an SPI compatible, interface operating at clock frequencies up to 50 MHz , and an EIA-644-compliant, LVDS interface. To minimize both the power consumption of the device and onchip digital noise, the interface powers up fully only when the device is being written to, that is, on the falling edge of $\overline{\text { SYNC. }}$

## SPI INTERFACE

The serial interface operates over a 2.3 V to 5.25 V DV CC supply range. The serial interface is controlled by four pin, as follows:
$\overline{\text { SYNC }}$ Frame synchronization input.
SDI Serial data input pin.
SCLK Clocks data in and out of the device.
SDO Serial data output pin for data readback purposes.
There is also an $\overline{\mathrm{SPI}} / \mathrm{LVDS}$ select pin, which must be held low for SPI interface and high for LVDS interface.

## LVDS INTERFACE

The LVDS interface uses the same input pins as the SPI interface with the same designations. In addition, three other pins are provided for the complementary signals needed for differential operation, thus:
SYNC/ $\overline{\text { SYNC }}$ Differential frame synchronization signal.
SDI/SDI Differential serial data input.
SCLK/SCLK Differential clock input.
SDO/SDO Serial data output pin for data readback

## SERIAL INTERFACE WRITE MODE

The AD5522 allows writing of data via the serial interface to every register directly accessible to the serial interface, which is all registers except the DAC registers.

The serial word is 29 bits long. The serial interface works with both a continuous and a burst (gated) serial clock. Serial data applied to SDI is clocked into the AD5522 by clock pulses applied to SCLK. The first falling edge of SYNC starts the write cycle. At least 29 falling clock edges must be applied to SCLK to clock in 29 bits of data, before SYNC is taken high again.

The input register addressed is updated on the rising edge of $\overline{\text { SYNC. In order for another serial transfer to take place, } \overline{\text { SYNC }}}$ must be taken low again.
the section Power On Default). This sequence takes approx $300 \mu \mathrm{~s}$. The falling edge of $\overline{\text { RESET }}$ initiates the reset process; $\overline{B U S Y}$ goes low for the duration, returning high when RESET is complete. While $\overline{\mathrm{BUSY}}$ is low, all interfaces are disabled. When $\overline{\text { BUSY }}$ returns high, normal operation resumes and the status of the $\overline{\operatorname{RESET}}$ pin is ignored until it goes low again. The SDO output will be high impedance during a power on reset or a $\overline{\text { RESET. }}$

Power on reset follows the same function as $\overline{\text { RESET. }}$

## $\overline{B U S Y}$ AND $\overline{\text { LOAD }}$ FUNCTION

$\overline{B U S Y}$ is an open drain output that indicates the status of the AD5522 interface. When writing to any of the registers BUSY goes low and stays low until the command completes.

Writing to a DAC register drives the $\overline{\text { BUSY }}$ signal low for longer than a simple PMU or System Control Register write. For the DACs, the value of the internal cached (x2) data is calculated and stored each time the user writes new data to the corresponding x1 register. During this write and calculation, the $\overline{\text { BUSY }}$ output is driven low. While $\overline{\text { BUSY }}$ is low, the user can continue writing new data to the $\mathrm{x} 1, \mathrm{~m}$, or c registers, but no output updates can take place.

X2 values are stored and held until a PMU word is written that calls the appropriate cached x 2 register. Only then does a DAC output update.

The DAC outputs and PMU modes are updated by taking the $\overline{\text { LOAD }}$ input low. If $\overline{\mathrm{LOAD}}$ goes low while $\overline{\mathrm{BUSY}}$ is active, the $\overline{\text { LOAD }}$ event is stored and the DAC outputs or PMU modes update immediately after $\overline{\text { BUSY }}$ goes high. A user can also hold the $\overline{\mathrm{LOAD}}$ input permanently low. In this case, the change in DAC outputs or PMU modes update immediately after $\overline{\text { BUSY }}$ goes high.
The $\overline{\text { BUSY }}$ pin is bidirectional and has a $50 \mathrm{k} \Omega$ internal pullup resistor. Where multiple AD5522 devices may be used in one system, the $\overline{\text { BUSY }}$ pins can be tied together. This is useful where it is required that no DAC or PMU in any device is updated until all others are ready. When each device has finished updating the x 2 registers, it will release the $\overline{\mathrm{BUSY}} \mathrm{pin}$. If another device has not finished updating its x 2 registers, it will hold $\overline{\text { BUSY }}$ low, thus delaying the effect of $\overline{\text { LOAD }}$ going low. As there is only one multiplier shared between four channels, this task must be done sequentially, so the length of the BUSY pulse will vary according to the number of channels being updated.

## RESET FUNCTION

Bringing the level sensitive $\overline{\text { RESET }}$ line low resets the contents of all internal registers to their power-on reset state (detailed in

Table 12. $\overline{\text { BUSY }}$ Pulse Width

| Action | $\overline{\text { BUSY Pulse Width }}$ <br> $(\mu \mathrm{s} \mathrm{max})$ |
| :--- | :--- |
| Loading data to PMU, System Control <br> Register or Readback | 0.15 |
| Loading x1 to any $\mathbf{1}$ PMU DAC Channel | 1.25 |
| Loading x1 to any 2 PMU DAC Channels | 1.75 |
| Loading x1 to any 3 PMU DAC Channels | 2.25 |
| Loading x1 to any 4 PMU DAC Channels | 2.75 |

$\overline{\text { BUSY }}$ Pulse Width $=(($ Number of channels +1$) \times 500 \mathrm{~ns})+250 \mathrm{~ns}$
$\overline{\text { BUSY }}$ also goes low during power-on reset and when a falling edge is detected on the $\overline{\text { RESET }}$ pin.


Figure 17. Multiple writes to DAC $\times 1$ registers
Writing data to the System control register, PMU control register, m or c registers do not involve the digital calibration engine, thus speeding up configuration of the device on power on.

## REGISTER UPDATE RATES

As mentioned previously the value of the X 2 register is calculated each time the user writes new data to the corresponding X1 register. The calculation is performed by a three stage process. The first two stages take 500 ns each and the third stage takes 250 ns . When the writes to one of the X1 registers is complete the calculation process begins. If the write operation involves the update of a single DAC channel the user is free to write to another register provided that the write operation doesn't finish until the first stage calculation is complete, i.e. 500 ns after the completion of the first write operation.


Figure 18. Multiple Single Channel writes engaging calibration engine

## REGISTER SELECTION

The serial word assignment consists of 29 bits. Bits 28 through to 22 are common to all registers, whether writing to or reading from the device. PMU3 to PMU0 data bits address each PMU channel (or associated DAC register). When PMU3 to PMU0 are all zeros, the System Control Register is addressed. Mode Bits MODE0 and MODE1 address the different sets of DAC registers and the PMU register.

## Readback Control, RD/WR

The R/ $\bar{W}$ bit set high initiates a readback sequence of PMU, Alarm, Comparator, System Control Register or DAC information as determined by address bits.

## PMU Address Bits, PMU3, PMU2, PMU1, PMU0

Bits PMU3 through PMU0 address each of the PMU channels on chip. This allows individual control of each PMU channel or any manner of combined addressing in addition to multi channel programming. PMU bits also allow access to write registers such as the System Control Register and the many DAC registers, in addition to reading from all the registers.
Table 13. Mode Bits

| B23 | B22 | WRITE FUNCTION |
| :--- | :--- | :--- |
| MODE1 | MODE0 | Action |
| 0 | 0 | System Control Register or PMU Register |
| 0 | 1 | DAC Gain (m) Register |
| 1 | 0 | DAC Offset (c) Register |
| 1 | 1 | DAC Input Data Register, (x1) |

Table 14. Read and Write Functions of the AD5522

| B28 | B27 | B26 | B25 | B24 | B23 | B22 | B21 to B0 | SEL | REGI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD/ $\overline{W R}$ | PMU3 | PMU2 | PMU1 | PMU0 | MODE1 | MODEO | DATA BITS | CH3 | CH2 | CH1 | CHO |
| WRITE FUNCTIONS |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | DATA BITS | Write to System Control Register (Table 16) |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 | 1 | DATA BITS | RESERVED |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 1 | 0 | DATA BITS | RESERVED |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1111111111111111111111 b | NOP (No Operation) |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 1 | 1 | DATA BITS other than all 1 's | RESERVED |  |  |  |
| WRITE ADDRESSED DAC OR PMU REGISTER |  |  |  |  |  |  |  |  |  |  |  |
| 0 | 0 | 0 | 0 | 1 | Select DAC or PMU Registers. See Table 13 |  | DATA BITS | $\times$ | $\times$ | $\times$ | CHO |
| 0 | 0 | 0 | 1 | 0 |  |  | $\times$ | $\times$ | CH1 | $\times$ |
| 0 | 0 | 0 | 1 | 1 |  |  | $\times$ | $\times$ | CH1 | CH0 |
| 0 | 0 | 1 | 0 | 0 |  |  | $\times$ | CH 2 | $\times$ | $\times$ |
| 0 | - | - | - | - |  |  | - | - | - $\quad$ - |  |
| 0 | 1 | 0 | 0 | 0 |  |  | CH3 | $\times$ | $\times$ | $\times$ |
| 0 | - | - | - | - |  |  | - | - | - |  |
| 0 | 1 | 1 | 1 | 0 |  |  | CH3 | CH2 | CH1 | $\times$ |
| 0 | 1 | 1 | 1 | 1 |  |  | CH3 | CH2 | CH1 | CH0 |
| READ FUNCTIONS |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |  | All zeros | Read from System Control Register |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 |  | All zeros | Read from Comparator Status Registers |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 |  | X | Reserved |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 |  | All zeros | Read from Alarm Status Register |  |  |  |
| READ ADDRESSED DAC or PMU REGISTER - Can only read one PMU or DAC register at one time. |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 1 | PMU/.DAC REGISTER ADDRESS SEE Table 13 |  |  | DAC ADDRESS SEE Table 21 | $\times$ | $\times$ | $\times$ | CH0 |
| 1 | 0 | 0 | 1 | 0 |  |  | $\times$ |  | $\times$ | CH1 | $\times$ |
| 1 | 0 | 1 | 0 | 0 |  |  | $\times$ |  | CH2 | $\times$ | $\times$ |
| 1 | 1 | 0 | 0 | 0 |  |  | CH3 |  | $\times$ | $\times$ | $\times$ |

## NOP (No Operation)

If a NOP (No Operation) command is loaded, no change is made to DAC or PMU registers. This code is useful when performing a read back of a register within the device (via the SDO pin) where a change of DAC code or PMU function may not be required

## Reserved Commands

Any bit combination that is not described in the Register address tables for the PMU, DAC and System Control Registers are Reserved commands. These commands are unassigned commands; they are reserved for factory use. To ensure correct operation of the device, do not used reserved commands.

## WRITE SYSTEM CONTROL REGISTER

The System Control Register is accessed when the PMU channel address PMU3-PMU0 and Mode Bits, MODE1 and MODE0 are all zeros. It allows quick setup of different functions within the device. The System Control Register operates on a per device basis.

Table 15. System Control Register Bits

| B28 | B27 | B26 | B25 | B24 | B23 | B22 | B21 | B20 | B19 | B18 | B17 | B16 | B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 | B4 | B3 | B2 | B1/0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \| | $\sum_{0}^{\infty}$ | $\sum_{\infty}^{N}$ | $\sum_{i}$ | $\sum_{0}^{\circ}$ | $\begin{aligned} & \overline{\mathrm{O}} \\ & \stackrel{0}{\Sigma} \end{aligned}$ | $\begin{aligned} & \text { O} \\ & \stackrel{U}{0} \\ & \stackrel{O}{\Sigma} \end{aligned}$ | $\underset{0}{2}$ | ปֶ | Э | 언 | $\begin{aligned} & \text { m } \\ & \text { 훈 } \\ & \text { in } \end{aligned}$ | $\begin{aligned} & \text { N } \\ & \text { O} \\ & \text { O } \end{aligned}$ | $\begin{aligned} & \text { 포 } \\ & \text { 은 } \end{aligned}$ | $\begin{aligned} & \text { 우 } \\ & \text { 은 } \end{aligned}$ |  | $\begin{aligned} & \text { I } \\ & 0 \\ & 0 \\ & 0 \\ & 5 \end{aligned}$ |  | $\begin{aligned} & \sum_{\frac{1}{2}}^{0} \\ & \sum_{d}^{0} \end{aligned}$ | $\begin{aligned} & \text { 들 } \\ & \underset{Z}{2} \end{aligned}$ | $\begin{aligned} & \text { Zu} \\ & \text { O} \\ & \text { © } \end{aligned}$ | $\underset{\substack{\underset{\sim}{c} \\ \hline}}{ }$ |  |  | $\sum_{k}^{\bar{n}}$ | $\sum_{i}^{\circ}$ | $\begin{aligned} & \text { 萼 } \\ & \text { 安 } \end{aligned}$ | - |

Table 16. System Control Register Functions


| 8 | GUARD EN | Guard enable. The Guard Amplifier is disabled on power on; write a " 1 " to enable it. Disabling the guard function if not in use saves power (typically 400 A A per Channel). |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | GAIN1 | MEASOUT Output Range. The MEASOUT range defaults to the voltage force span for voltage and current measurements, this is $\pm 11.25 \mathrm{~V}$, which includes some over range to allow for offset correction. The MEASOUT range may be reduced by using the GAIN0 and GAIN1 data bits. This allows for use of asymmetrical supplies and also for use of a smaller input range ADC. |  |  |  |  |  |  |  |
| 6 | GAIN0 |  |  |  |  |  |  |  |  |
|  |  | MEASOUT Function |  |  |  |  |  | GAIN1 = "0" $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$ | GAIN1 = "1" |
|  |  |  |  |  |  |  |  | MEASOUT Gain = 1 | MEASOUT Gain = 1/5 |
|  |  | MV |  |  |  |  |  | $\pm$ VDUT (up to 11.25 V ) | 0 to 4.5VREF |
|  |  | MI | GAIN0 $=$ "0" |  |  |  |  | $\pm \mathrm{V}_{\text {RSENSE }} \mathrm{X} 10=$ up to $\pm 11.25 \mathrm{~V}$ | 0 to 4.5V |
|  |  |  | GAIN0 |  | CURRENT MEAS GAIN = 5 |  |  | $\pm \mathrm{V}_{\text {RSENSE }} \mathrm{X} 5=$ up to $\pm 5.625$ | 0 to 2.25 V |
| 5 | TMP ENABLE | Thermal Shutdown Function, TMP ENABLE, TMP1, TMP0 |  |  |  |  |  |  |  |
| 4 | TMP1 |  |  |  |  |  |  |  |  |
| 3 | TMP0 | To disable the Thermal Shutdown feature, write a " 0 " to the TMP ENABLE bit (enabled by default). Bits TMP1 and TMP0 allow the user to program the thermal shutdown temperature of operation. |  |  |  |  |  |  |  |
|  |  | TMP ENABLE |  | TMP1 |  | TMPO | Action |  |  |
|  |  | 0 |  | X |  | X | Thermal Shut | own Disabled |  |
|  |  | 1 |  | X |  | X | Thermal Shut | own Enabled |  |
|  |  | 1 |  | 0 |  | 0 | Shutdown at (Power On De | unction Temp of $130^{\circ} \mathrm{C}$ ault) |  |
|  |  | 1 |  | 0 |  | 1 | Shutdown at | unction Temp of $120^{\circ} \mathrm{C}$ |  |
|  |  | 1 |  | 1 |  | 0 | Shutdown at | unction Temp of $110^{\circ} \mathrm{C}$ |  |
|  |  | 1 |  | 1 |  | 1 | Shutdown at | unction Temp of $100^{\circ} \mathrm{C}$ |  |
| 2 | LATCHED | Configure open drain $\overline{\mathrm{CGALM}}$ as a latched or unlatched output pin. When high, this bit sets the $\overline{\mathrm{CGALM}}$ alarm output as latched outputs allowing it to drive a controller I/O without having to poll the line constantly. Default condition on power on is unlatched. |  |  |  |  |  |  |  |
| 1 | 0 | Unused bits. Set to 0 . |  |  |  |  |  |  |  |
| $\begin{aligned} & \hline 0 \\ & (\mathrm{LSB}) \end{aligned}$ | 0 |  |  |  |  |  |  |  |  |

## WRITE PMU REGISTER

To address PMU functions, set Mode bits MODE1, MODE0 low, this selects the PMU register as outlined in Table 13 and Table 14. The AD5522 has very flexible addressing, in that it allows writing of data to a single PMU channel, any combination of them or all PMU channels. This enables multi pin broadcasting to similar pins on a DUT. Bits 27 to 24 select which PMU or group of PMUs is addressed.

Table 17. PMU Register Bits

| B28 | B27 | B26 | B25 | B24 | B23 | B22 | B21 | B20 | B19 | B18 | B17 | B16 | B15 | B14 | B13 | B12 | B11 | B10 | B9 | B8 | B7 | B6 | B5 to B0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{RD} / \overline{\mathrm{WR}}$ | PMU3 | PMU2 | PMU1 | PMU0 | MODE1 | MODEO | $\begin{aligned} & \hline \mathrm{CH} \\ & \mathrm{EN} \end{aligned}$ | FORCE1 | FORCE0 | X | C2 | C1 | C0 | MEAS1 | MEASO | FIN | SFO | SFO | CL | CPOLH | COMPARE V/I | CLEAR | UNUSED DATA BITS |

Table 18. PMU Register Functions

| Bit | Bit name | Description |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 28 \\ & (\mathrm{MSB}) \end{aligned}$ | RD/ $\overline{\mathrm{WR}}$ | When low, a write function takes place to the selected register, while if the RD/ $\overline{W R}$ bit is set high, this initiates a readback sequence of PMU, Alarm, Comparator, System Control or DAC register as determined by address bits. |  |  |  |  |  |  |  |  |  |  |
| 27 | PMU3 | Bits PMU3 through PMU0 address each of the PMU channels in the device. This allows individual control of each PMU channel or any manner of combined addressing in addition to multi-channel programming. |  |  |  |  |  |  |  |  |  |  |
| 26 | PMU2 |  |  |  |  |  |  |  |  |  |  |  |
| 25 | PMU1 | B27 | B26 | B25 | B24 | B23 | B22 | SELE | ED RE | TER |  |  |
| 24 | PMUO | PMU3 | PMU2 | PMU1 | PMU0 | MODE1 | MODE0 | CH3 | CH2 | CH1 | CH0 |  |
|  |  | 0 | 0 | 0 | 0 | 0 | 0 | Write to System Control Register |  |  |  |  |
|  |  | 0 | 0 | 0 | 1 | Select DAC or PMU Registers. See below |  | $\times$ | $\times$ | $\times$ | CHO |  |
|  |  | 0 | 0 | 1 | 0 |  |  | $\times$ | $\times$ | CH1 | $\times$ |  |
|  |  | 0 | 0 | 1 | 1 |  |  | $\times$ | $\times$ | CH1 | CH0 |  |
|  |  | 0 | 1 | 0 | 0 |  |  | $\times$ | CH2 | $\times$ | $\times$ |  |
|  |  | - | - | - | - |  |  | - | - | - | - |  |
|  |  | 1 | 0 | 0 | 0 |  |  | CH3 | $\times$ | $\times$ | $\times$ |  |
|  |  | - | - | - | - |  |  | - | - | - | - |  |
|  |  | 1 | 1 | 1 | 0 |  |  | CH3 | CH2 | CH1 | $\times$ |  |
|  |  | 1 | 1 | 1 | 1 |  |  | CH3 | CH2 | CH1 | CHO |  |
| 23 | MODE1 | Mode Bits, MODE0 and MODE1 allow addressing of the PMU register or the DAC gain (m), offset (c) or input register (x1). Set to zero to access the PMU Register. |  |  |  |  |  |  |  |  |  |  |
| 22 | MODE0 |  |  |  |  |  |  |  |  |  |  |  |  |  |

to zero to access the PMU Register.

| MODE1 | MODEO | Action |
| :--- | :--- | :--- |
| $\mathbf{0}$ | $\mathbf{0}$ | System Control Register or PMU Register |
| 0 | 1 | DAC Gain (m) Register |
| 1 | 0 | DAC Offset (c) Register |
| 1 | 1 | DAC Input Data Register, (x1) |

## PMU REGISTER SPECIFIC BITS

| 21 | CHEN | Channel Enable, Set high to enable the selected channel, similarly, set low to disable a selected channel or group of channels. When disabled, SW 2 is closed, SW 5 open. |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | FORCE1 | Bits FORCE1 and FORCEO address the force function for each of the PMU channels (in association with P3-P0). All combinations of forcing and measuring (using MEASO and MEAS1) are available. The Hi-Z (voltage and current) modes allows user to optimize glitch response during mode changes. While in these modes, with PMU Hi-Z, new x1 codes loaded to the FIN DAC register and the Clamp DAC register will be calibrated, stored in $\times 2$ register and loaded directly to the DAC outputs. |  |  |  |  |
| 19 | FORCEO |  |  |  |  |  |
|  |  | FORCE1 |  |  |  | Action |
|  |  | 0 |  | 0 |  | FV \& Current Clamp (if clamp enabled) |
|  |  | 0 |  | 1 |  | FI \& Voltage Clamp (if clamp enabled) |
|  |  | 1 |  | 0 |  | Hi-Z FOH Voltage (pre load FIN DAC \& Clamp DAC) |
|  |  | 1 |  | 1 |  | Hi-Z FOH Current (pre load FIN DAC \& Clamp DAC) |
| 18 | RESERVED | 0 |  |  |  |  |
| 17 | C2 | Bits C 2 through C0 address allow selection of the required current range. |  |  |  |  |
| 16 | C1 |  |  |  |  |  |
| 15 | C0 | 0 | 0 | 0 | $\pm 5 \mu$ | A current range |
|  |  | 0 | 0 | 1 | $\pm 20$ | $\mu \mathrm{A}$ current range |
|  |  | 0 | 1 | 0 | $\pm 20$ | 㬴 current range |
|  |  | 0 | 1 | 1 | $\pm 2 \mathrm{~m}$ | A current range |
|  |  | 1 | 0 | 0 | $\pm \mathrm{ex}$ | ernal current range |
|  |  | 1 | 0 | 1 | NOP |  |
|  |  | 1 | 1 | 0 | NOP |  |
|  |  | 1 | 1 | 1 | NOP |  |



## AD5522

## WRITE DAC REGISTER

The DAC input, gain and offset registers are addressed through a combination of PMU bits (Bits 27 through 24) and MODE bits (Bits 23 and 22). Bits A5 through A0 address each of the DAC levels on chip. D15 through D0 are the DAC data Bits when writing to these registers. PMU address bits allow addressing to DAC across any combination of PMU channels.

Table 19. DAC Register Bits

| $\mathbf{B 2 8}$ | B27 | B26 | B25 | B24 | B23 | B22 | B21 | B20 | B19 | B18 | B17 | B16 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| B15 to $\mathbf{B 0}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| RD $/ \overline{W R}$ | PMU3 | PMU2 | PMU1 | PMU0 | MODE1 | MODE0 | A5 | A4 | A3 | A2 | A1 | A0 |
|  | DATA BITS D15 (MSB to D0 (LSB) |  |  |  |  |  |  |  |  |  |  |  |

Table 20. DAC Register Functions

| Bit | Bit name | Description |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 (MSB) | RD/ $\overline{W R}$ | When low, a write function takes place to the selected register, while if the RD/ $\overline{W R}$ bit is set high, this initiates a readback sequence of PMU, Alarm, Comparator, System Control or DAC register as determined by address bits. |  |  |  |  |  |  |  |  |  |
| 27 | PMU3 | Bits PMU3 through PMU0 address each of the PMU and DAC channels in the device. This allows individual control of each DAC channel or any manner of combined addressing in addition to multi-channel programming. |  |  |  |  |  |  |  |  |  |
| 26 | PMU2 |  |  |  |  |  |  |  |  |  |  |
| 25 | PMU1 | B27 | B26 | B25 | B24 | B23 | B22 | SELE | ED RE | TER |  |
| 24 | PMU0 | PMU3 | PMU2 | PMU1 | PMU0 | MODE1 | MODE0 | CH3 | CH2 | CH1 | CH0 |
|  |  | 0 | 0 | 0 | 0 | 0 | 0 | Write to System Control Register |  |  |  |
|  |  | 0 | 0 | 0 | 1 | Select DAC or PMU Registers. See below |  | $\times$ | $\times$ | $\times$ | CHO |
|  |  | 0 | 0 | 1 | 0 |  |  | $\times$ | $\times$ | CH1 | $\times$ |
|  |  | 0 | 0 | 1 | 1 |  |  | $\times$ | $\times$ | CH1 | CH0 |
|  |  | 0 | 1 | 0 | 0 |  |  | $\times$ | CH2 | $\times$ | $\times$ |
|  |  | - | - | - | - |  |  | - | - | - | - |
|  |  | 1 | 0 | 0 | 0 |  |  | CH3 | $\times$ | $\times$ | $\times$ |
|  |  | - | - | - | - |  |  | - | - | - | - |
|  |  | 1 | 1 | 1 | 0 |  |  | CH3 | CH2 | CH1 | $\times$ |
|  |  | 1 | 1 | 1 | 1 |  |  | CH3 | CH2 | CH1 | CHO |
| 23 | MODE1 | Mode Bits, MODE0 and MODE1 allow addressing of the DAC gain (m), offset (c) or input register (x1) |  |  |  |  |  |  |  |  |  |
| 22 | MODE0 | MODE1 | MODE0 | - Action |  |  |  |  |  |  |  |
|  |  | 0 | 0 | System Control Register or PMU Register |  |  |  |  |  |  |  |
|  |  | 0 | 1 | DAC Gain (m) Register |  |  |  |  |  |  |  |
|  |  | 1 | 0 | DAC Offset (c) Register |  |  |  |  |  |  |  |
|  |  | 1 | 1 | DAC Input Data Register, (x1) |  |  |  |  |  |  |  |


| DAC REGISTER SPECIFIC BITS |  |  |
| :--- | :--- | :--- |
| $21,20,19$ | A5,A4,A3 | DAC Address Bits. A5 to A3 select which register set is addressed. See Table 21 |
| $18,17,16$ | A2,A1,A0 | DAC Address Bits, A2 to A0 select which DAC is addressed. See Table 21 |
| 15 to 0(LSB) | D15 (MSB) to D0(LSB) | 16 DAC Data bits. D15 MSB. |

## DAC Addressing

For the FIN and Comparator (CPH \& CPL) DACs, there are sets of $\mathrm{x} 1, \mathrm{~m}$ and c registers for each current range and for the voltage range, but only two sets for the Clamp function (CLL and CLH).

When calibrating the device, $m$ and $c$ registers allow volatile storage of offset and gain coefficients. Calculation of the corresponding DAC x 2 register only occurs when x 1 data is loaded (no internal calculation occurs on m or c updates).

There is one Offset DAC per all four channels in the device, it is addressed through any PMU0-3 address. The Offset DAC only has an input register associated with it; there are no m or c registers for this DAC. When writing to this DAC, set both Mode bits high to address the DAC input register ( x 1 ).

This address table is also used for readback of a particular DAC address.
Table 21. DAC Register Addressing

|  |  |  | Address bits A5 to A3 (DAC ADDRESS Register) |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Register Set | 000 |  |  | 001 | 010 | 011 | 100 | 101 | 110 | 111 |
| A2 to A0 |  |  | MODE1 | MODE0 |  | FIN | RESERVED | RESERVED | CPL | CPH | RESERVED | RESERVED |
| (REGISTER |  |  | 0 | 1 | RESERVED |  |  |  |  |  |  |  |
| ADDRESS) |  |  | 1 | 0 | RESERVED |  |  |  |  |  |  |  |
|  | 000 | $\pm 5 \mu \mathrm{~A}$ I range | 1 | 1 | OFFSET DAC |  |  |  |  |  |  |  |
|  | 001 | $\pm 20 \mu \mathrm{~A}$ I range | RESERVED |  |  | FIN | RESERVED | RESERVED | CPL | CPH | RESERVED | RESERVED |
|  | 010 | $\pm 200 \mu \mathrm{~A}$ I range | RESERVED |  |  | FIN | RESERVED | RESERVED | CPL | CPH | RESERVED | RESERVED |
|  | 011 | $\pm 2 \mathrm{~mA}$ I range | RESERVED |  |  | FIN | RESERVED | RESERVED | CPL | CPH | RESERVED | RESERVED |
|  | 100 | $\pm$ external I range | RESERVED |  |  | FIN | CLLI ${ }^{1}$ | CLH ${ }^{1}$ | CPL | CPH | RESERVED | RESERVED |
|  | 101 | Voltage range | RESERVED |  |  | FIN | CLL V ${ }^{\mathbf{2}}$ | CLH V ${ }^{\text {2 }}$ | CPL | CPH | RESERVED | RESERVED |
|  | 110 | RESERVED | RESERVED |  |  | RESERVED |
|  | 111 | RESERVED | RESERVED |  |  | RESERVED |

${ }^{1}$ CLL I = Clamp Level Low Current register. CLH I = Clamp Level High Current Register. When forcing a voltage, current clamps are engaged, so this register set will be loaded to the Clamp DAC.
${ }^{2}$ CLL V = Clamp Level Low Voltage register. CLH V = Clamp Level High Voltage Register. When forcing a current, voltage clamps are engaged, so this register set will be loaded to the Clamp DAC.

## AD5522

## READ REGISTERS

Readback of all the registers in the device is possible via the both SPI and LVDS interfaces. In order to readback data from a register, it is first necessary to write a "readback" command to tell the device which register is required to readback. See Table 22 to address the appropriate channel.

Table 22. Read Functions of the AD5522

| B28 | B27 | B26 | B25 | B24 | B23 | B22 | B21 to B0 |  | LECT | EGIST |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RD/ $\overline{\mathrm{WR}}$ | PMU3 | PMU2 | PMU1 | PMU0 | MODE1 | MODEO | DATA BITS | CH3 | CH2 | CH1 | CH0 |
| READ FUNCTIONS |  |  |  |  |  |  |  |  |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | All zeros | Read from System Control Register |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | All zeros | Read from Comparator Status Registers |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 1 | 0 | X | Reserved |  |  |  |
| 1 | 0 | 0 | 0 | 0 | 1 | 1 | All zeros | Read from Alarm Status Register |  |  |  |

READ ADDRESSED PMU REGISTER - ONLY ONE PMU REGISTER CAN BE READ AT ONE TIME

| 1 | 0 | 0 | 0 | 1 | 0 | 0 | All zeros | $\times$ | $\times$ | $\times$ | CH0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 | 0 | 0 |  | $\times$ | $\times$ | CH1 | $\times$ |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |  | $\times$ | CH 2 | $\times$ | $\times$ |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 |  | CH3 | $\times$ | $\times$ | $\times$ |

READ ADDRESSED DAC " $m$ " Register -ONLY ONE DAC REGISTER CAN BE READ AT ONE TIME

| 1 | 0 | 0 | 0 | 1 | 0 | 1 | DAC ADDRESS SEE Table 21 | $\times$ | $\times$ | $\times$ | CH0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 | 0 | 1 |  | $\times$ | $\times$ | CH1 | $\times$ |
| 1 | 0 | 1 | 0 | 0 | 0 | 1 |  | $\times$ | CH2 | $\times$ | $\times$ |
| 1 | 1 | 0 | 0 | 0 | 0 | 1 |  | CH3 | $\times$ | $\times$ | $\times$ |

READ ADDRESSED DAC " c " Register - ONLY ONE DAC REGISTER CAN BE READ AT ONE TIME

| 1 | 0 | 0 | 0 | 1 | 1 | 0 | DAC ADDRESS SEE Table 21 | $\times$ | $\times$ | $\times$ | CH0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 1 | 0 | 1 | 0 |  | $\times$ | $\times$ | CH1 | $\times$ |
| 1 | 0 | 1 | 0 | 0 | 1 | 0 |  | $\times$ | CH2 | $\times$ | $\times$ |
| 1 | 1 | 0 | 0 | 0 | 1 | 0 |  | CH3 | $\times$ | $\times$ | $\times$ |

READ ADDRESSED DAC "x1" Register - ONLY ONE DAC REGISTER CAN BE READ AT ONE TIME

| 1 | 0 | 0 | 0 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 | 0 | 1 | 1 |
| 1 | 0 | 1 | 0 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 | 0 | 1 | 1 |

DAC ADDRESS
SEE Table 21

| $\times$ | $\times$ | $\times$ | CH0 |
| :---: | :---: | :---: | :---: |
| $\times$ | $\times$ | CH 1 | $\times$ |
| $\times$ | CH 2 | $\times$ | $\times$ |
| CH3 | $\times$ | $\times$ | $\times$ |

Once the required channel has been addressed, the device will load the 24 bit Readback data into the MSB positions of the 29 Bit serial shift register, the five LSB bits will be filled with zeros. SCLK rising edges clock this readback data out on SDO(framed by the $\overline{\text { SYNC }}$ signal).

A minimum of 24 clock rising edges are required to shift the readback data out of the shift register. If writing a 24 -bit word to shift data out of the device, user must ensure that the 24 bit write is effectively a NOP (No Operation) command. The last 5 bits in the shift register will always be 00000 b , these five bits will become the MSBs of the shift register when the 24 bit write is loaded. To ensure the device receives a NOP command as outlined in Table 14, the recommended flush command is 0xFFFFFF and no change will be made to any register within the device.

Readback data may also be shifted out by writing another 29 bit write or read command. If writing a 29-bit command, the readback data will be MSB data available on SDO, followed by 00000b.

## READBACK OF SYSTEM CONTROL REGISTER

The readback function is a 24 bit word, mode, address and System Control Register data bits as shown in the following table.
Table 23. Readback System Control Register Data

| Bit | Bit name | Description |
| :---: | :---: | :---: |
| 23 (MSB) | MODE1 | 0 |
| 22 | MODE0 | 0 |
| SYSTEM CONTROL REGISTER SPECIFIC READBACK BITS |  |  |
| 21 | CL3 | Readback the status of the individual Clamp Enable bits. A " 0 " means the clamp is disabled, while a " 1 " enabled. The clamp enable function is also available in the System Control Register. This dual functionality allows flexible enable or disabling of this function. When reading back information on the status of the clamp enable function, what was most recently written to the clamp register from either System Control register or PMU register will be available in the readback word. |
| 20 | CL2 |  |
| 19 | CL1 |  |
| 18 | CLO |  |
| 17 | CPOLH3 | Readback information on the Comparator Output Enable status. A " 1 " signifies the function is enabled, while a " 0 " disabled. A logic high indicates that the PMU comparator output is enabled, while if low, it's disabled. The comparator output enable function is also available in the PMU Register. This dual functionality allows flexible enable or disabling of this function. When reading back information on the status of the comparator output enable function, what was most recently written to the comparator register from either System Control register or PMU register will be available in the readback word. |
| 16 | CPOLH2 |  |
| 15 | CPOLH1 |  |
| 14 | CPOLH0 |  |
| 13 | CPBIASEN | This readback bit tells the status of the Comparator Enable function. A " 1 " in this bit position means the Comparator functions are enabled, while a " 0 " disabled. |
| 12 | DUTGND/CH | DUTGND per channel enable. If this bit is set at " 1 ", DUTGND per channel is enabled, while if " 0 ", individual guard inputs are available per channel. |
| 11 | GUARD ALM | These bits give status on which of these alarm bits trigger the $\overline{\text { CGALM }}$ pin. |
| 10 | CLAMP ALM |  |
| 9 | INT10K | If this bit is set high, the internal 10k resistor is connected between FOH and MEASVH, and between DUTGND and AGND. If low, they are disconnected. |
| 8 | GUARD EN | Readback status of the Guard amplifies. If high, Amplifiers are enabled. |
| 7 | GAIN1 | Status of the selected MEASOUT Output Range. |
| 6 | GAIN0 |  |
| 5 | TMP ENABLE | Information is available on the status of the setting for Thermal shutdown function. Refer to System control write register. |
| 4 | TMP1 |  |
| 3 | TMP0 |  |
| 2 | LATCHED | This bit tells of the status of the open drain outputs. When high, the open drain alarm outputs are latched outputs, while if low, they are unlatched. |
| 1 | Unused Readback bits | Will be loaded with zeros. |
| 0 (LSB) |  |  |

## READBACK OF PMU REGISTER

The PMU readback function is a 24 bit word, mode, address and PMU data bits.
Table 24. Readback PMU Register (Only one PMU register may be read back at any one time).

| Bit | Bit name | Description |
| :---: | :---: | :---: |
| 23 (MSB) | MODE1 | 0 |
| 22 | MODE0 | 0 |
| PMU REGISTER SPECIFIC BITS |  |  |
| 21 | CH EN | Channel Enable, If high selected channel is enabled, otherwise disabled. |
| 20 | FORCE1 | These bits tell what force and measure mode the selected channel is in. |
| 19 | FORCE0 |  |
| 18 | RESERVED | 0 |
| 17 | C2 | These three bits tell what forced or measured current range is set for the selected channel. |
| 16 | C1 |  |
| 15 | C0 |  |
| 14 | MEAS1 | Bits MEAS1 and MEAS0 tell which measure mode is selected, voltage, current, temperature sensor or HiZ. |
| 13 | MEASO |  |
| 12 | FIN | This bit shows the status of the Force input amplifier. |
| 11 | SFO | The system force and sense lines may be connected to any of the four PMU channels. Reading back these bits tell if they are switched in or not. |
| 10 | SSO |  |
| 9 | CL | A logic high in this readback position tells if the Per PMU clamp is enabled, while if low, the clamp is disabled. The clamp enable function is also available in the System Control Register. This dual functionality allows flexible enable or disabling of this function. When reading back information on the status of the clamp enable function, what was most recently written to the clamp register from either System Control register or PMU register will be available in the readback word. |
| 8 | CPOLH | A logic high indicates that the PMU comparator output is enabled, while if low, it's disabled. The comparator output enable function is also available in the System Control Register. This dual functionality allows flexible enable or disabling of this function. When reading back information on the status of the comparator output enable function, what was most recently written to the comparator register from either System Control register or PMU register will be available in the readback word. |
| 7 | COMPARE V/I | A logic high selects indicates the selected channel is comparing voltage function, while logic low, current function. |
| 6 | $\overline{\text { LTMPALM }}$ | $\overline{\text { TMPALM }}$ corresponds to the open drain TMPALM output pin which flags the user of a temperature event exceeding the default or user programmed level. The temperature alarm is a per device alarm, and latched ( $\overline{\text { LTMPALM }}$ ) and unlatched (TMPALM) bits tell a temperature event occurred and if the alarm still exists (if the junction temperature still exceeds the programmed alarm level). To reset an alarm event, the user must write to the CLEAR bit in the PMU register. |
| 5 | $\overline{\text { TMPALM }}$ |  |
| 4, 3, 2, 1, 0 (LSB) | Unused Readback bits | Will be loaded with zeros. |

## READBACK OF COMPARATOR STATUS REGISTER

The Comparator output status Register is a read only register giving access to the output status of each of the comparators on the chip. Table 25 shows the format of the comparator readback word.
Table 25. Comparator Status Readback Register

| Bit | Bit name | Description |
| :---: | :---: | :---: |
| 23 (MSB) | MODE1 | 0 |
| 22 | MODE0 | 1 |
| COMPARATOR STATUS REGISTER SPECIFIC BITS |  |  |
| 21 | CPOLO | Comparator output conditions per channel corresponding to the comparator output pins. |
| 20 | CPOH0 |  |
| 19 | CPOL1 |  |
| 18 | CPOH1 |  |
| 17 | CPOL2 |  |
| 16 | CPOH2 |  |
| 15 | CPOL3 |  |
| 14 | CPOH3 |  |
| 13 to 0 (LSB) | Unused Readback bits | Will be loaded with zeros. |

## READBACK OF ALARM STATUS REGISTER

The Alarm Status register is a READ only register that gives information on temperature, clamp and guard alarm events. In the event the Guard and Clamp alarm functions are not used, (the alarm function may be switched off in the System Control Register). In this case, the Temperature alarm status is also available in the contents of any of the four PMU readback registers.

Table 26. Alarm Status Readback Register

| Bit | Bit name | Description |
| :---: | :---: | :---: |
| 23 (MSB) | MODE1 | 1 |
| 22 | MODE0 | 1 |
| ALARM STATUS READBACK REGISTER SPECIFIC BITS |  |  |
| 21 | LTMPALM | $\overline{\text { TMPALM }}$ corresponds to the open drain TMPALM output pin which flags the user of a temperature event exceeding the default or user programmed level. The temperature alarm is a per device alarm, and latched (LTMPALM) and unlatched (TMPALM) bits tell a temperature event occurred and if the alarm still exists (if the junction temperature still exceeds the programmed alarm level). To reset an alarm event, the user must write to the CLEAR bit in the PMU register. |
| 20 | $\overline{\text { TMPALM }}$ |  |
| 19 | $\overline{\mathrm{LGO}}$ | $\overline{\mathrm{LGx}}$ is the per channel latched Guard Alarm bit and $\overline{\mathrm{Gx}}$ is an unlatched alarm bit. These bits give information on which channel flagged an alarm on the open drain alarm $\overline{\text { CGALM }}$ pin and if the alarm condition still exists. |
| 18 | $\overline{\mathrm{GO}}$ |  |
| 17 | $\overline{\mathrm{LG} 1}$ |  |
| 16 | $\overline{\mathrm{G1}}$ |  |
| 15 | $\overline{\mathrm{LG} 2}$ |  |
| 14 | $\overline{\mathrm{G} 2}$ |  |
| 13 | $\overline{\text { LG3 }}$ |  |
| 12 | $\overline{\text { G3 }}$ |  |
| 11 | $\overline{\mathrm{LCO}}$ | $\overline{\mathrm{LCx}}$ is a per channel latched Clamp alarm bit and $\overline{\mathrm{Cx}}$ is the unlatched alarm bit. These bits give information on which channel flagged an alarm on the open drain alarm $\overline{\text { CGALM }}$ pin and if the alarm condition still exists. |
| 10 | $\overline{\mathrm{CO}}$ |  |
| 9 | $\overline{\mathrm{LC} 1}$ |  |
| 8 | $\overline{\mathrm{C} 1}$ |  |
| 7 | $\overline{\mathrm{LC} 2}$ |  |
| 6 | $\overline{\mathrm{C} 2}$ |  |
| 5 | $\overline{\mathrm{LC} 3}$ |  |
| 4 | $\overline{\text { C3 }}$ |  |
| 3 to 0 (LSB) | Unused Readback bits | Will be loaded with zeros. |

## READBACK OF DAC REGISTER

The DAC readback function is a 24 bit word, mode, address and DAC data bits.
Table 27. DAC Register Readback

| Bit | Bit name | Description |
| :--- | :--- | :--- |
| $23(\mathrm{MSB})$ | MODE1 | 0 |
| 22 | MODE0 | 0 |
| DAC READBACK REGISTER SPECIFIC BITS |  |  |
| 21 to 16 | A5, A4, A3, A2, A1 | Address Bits indicating the DAC register that is read. |
| 15 to 0 (LSB) | D15 to D0 | Contents of the addressed DAC register ( $\mathrm{x} 1, \mathrm{~m}$ or c). |

## POWER ON DEFAULT

The power on default for all DAC channels is that the contents of each m register is set to full-scale ( 0 xFFFF ) and c register to midscale ( $0 \times 8000$ ). The contents of the DAC registers are :

Offset DAC: 0xA492, FIN DACs: 0x8000, CLL DACs: 0x0000, CLH DACs: 0xFFFF, CPL DACs: 0x0000, CPH DACs: 0xFFFF
The power on defaults of the PMU register and the System Control Register are shown below.
Table 28. Power on Default for System Control Register and PMU Register

|  | SYSTEM CONTROL REGISTER POWER ON DEFAULT |  | PMU REGISTER POWER ON DEFAULT |  |
| :---: | :---: | :---: | :---: | :---: |
| Bit | Bit name | Description | Bit name | Description |
| 21 (MSB) | CL3 | 0 | CH EN | 0 |
| 20 | CL2 | 0 | FORCE1 | 0 |
| 19 | CL1 | 0 | FORCEO | 0 |
| 18 | CLO | 0 | RESERVED | 0 |
| 17 | CPOLH3 | 0 | C2 | 0 |
| 16 | CPOLH2 | 0 | C1 | 1 |
| 15 | CPOLH1 | 0 | C0 | 1 |
| 14 | CPOLHO | 0 | MEAS1 | 1 |
| 13 | CPBIASEN | 0 | MEASO | 1 |
| 12 | DUTGND/CH | 0 | FIN | 0 |
| 11 | GUARD ALM | 0 | SFO | 0 |
| 10 | CLAMP ALM | 0 | SSO | 0 |
| 9 | INT10K | 0 | CL | 0 |
| 8 | GUARD EN | 0 | CPOLH | 0 |
| 7 | GAIN1 | 0 | COMPARE V/I | 0 |
| 6 | GAINO | 0 | LTMPALM | 1 |
| 5 | TMP ENABLE | 1 | $\overline{\text { TMPALM }}$ | 1 |
| 4 | TMP1 | 0 | Unused Data Bits | 0 |
| 3 | TMPO | 0 |  | 0 |
| 2 | LATCHED | 0 |  | 0 |
| 1 | Unused Data Bits | 0 |  | 0 |
| 0 (LSB) |  | 0 |  | 0 |

## SETTING UP THE DEVICE ON POWER ON

On power on, default conditions are recalled from the power on reset register ensuring each PMU and DAC channel is powered up to a known condition. To operate the device, the user must:

1) Configure the device by writing to the System Control register to set up different functions as required.
2) Calibrate out errors and load required calibration values to (Gain) m and (Offset) c registers, and load codes to each DAC input register (x1). Once x 1 values are loaded to the individual DACs, the calibration engine calculates the appropriate x 2 value and stores it ready for the PMU address to call it.
3) Load the required PMU channel with the required force mode, current range etc. Loading the PMU channel configures the switches around the Force Amplifier, Measure function, clamps and comparators and also acts as a load signal for the DACs, loading the DAC register with the appropriate stored x 2 value.
4) As the voltage and current ranges have individual DAC registers associated with them, each PMU register mode of operation calls a particular x2 register. Hence, only updates (changes to x 1 register) to DACs associated with the selected mode of operation are reflected to the output of the PMU. If there is a change to the x 1 value associated with a different PMU mode of operation, then this x1 value and it's $m$ and $c$ coefficients are used to calculate a corresponding x 2 value which is stored in the correct x 2 register, but it does not get loaded to the DAC.

## CHANGING MODES

There are different ways of handling a mode change:

1) Load any DAC $x 1$ values that are required to change. Remember that x1 registers are available per voltage and current range (for Force Amplifier and Comparator DACs), so you can preload these and may not need to make changes. The calibration engine will calculate the x2 values and store them.
2) Now change into the new PMU mode. This will load the new switch conditions in the PMU circuitry and load the DAC register with the stored x 2 data.
or
3) Use the Hi-Z V or Hi-Z I mode in the PMU register, this makes the amplifier high impedance.
4) Now load any DAC x1 values that need to be loaded. Remember that x1 registers are available per voltage and current range, so you can preload these and may not need to make changes.
5) When the Hi-Z (V or I) modes are used, the relevant DAC outputs are automatically updated (FIN, CLL, CLH DACs). For example, when selecting Hi-Z V (Voltage), the FIN Voltage x 2 result is loaded, offset and gain corrected, cached and loaded to the FIN DAC. When forcing a voltage, current clamps are engaged, so the CLL I (Current) register can be loaded, gain and offset corrected and loaded to the DAC register. Similarly, for the CLH I register.
6) Now change into the new PMU mode (FI/FV). This will load the new switch conditions in the PMU circuitry. As the DAC outputs are already loaded, transients when changing current or voltage mode will be minimized.

## REQUIRED EXTERNAL COMPONENTS

The minimum required external components are shown in the block diagram below. Decoupling will be very dependent on the type of supplies used, other decoupling on the board and the noise in the system. It is possible more or less decoupling may be required as a result.


Figure 19. External components required for use with this PMU device.

## POWER SUPPLY DECOUPLING

In any circuit where accuracy is important, careful consideration of the power supply and ground return layout helps to ensure the rated performance. The printed circuit board on which the AD5522 is mounted should be designed so that the analog and digital sections are separated and confined to certain areas of the board. If the AD5522 is in a system where multiple devices require an AGND-to-DGND connection, the connection should be made at one point only. The star ground point should be established as close as possible to the device. For supplies with multiple pins ( $\mathrm{AV}_{\text {Ss }}, \mathrm{AV}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC}}$ ), it is recommended to tie these pins together and to decouple each supply once.
The AD5522 should have ample supply decoupling of $10 \mu \mathrm{~F}$ in parallel with $0.1 \mu \mathrm{~F}$ on each supply located as close to the package as possible, ideally right up against the device. The $10 \mu \mathrm{~F}$ capacitors are the tantalum bead type. The $0.1 \mu \mathrm{~F}$ capacitor should have low effective series resistance (ESR) and effective series inductance (ESI), such as the common ceramic types that provide a low impedance path to ground at high frequencies, to handle transient currents due to internal logic switching.
Digital lines running under the device should be avoided, because these couple noise onto the device. The analog ground plane should be allowed to run under the AD5522 to avoid noise coupling (only with the package with paddle up).. The power supply lines of the AD5522 should use as large a trace as possible to provide low impedance paths and reduce the effects of glitches on the power supply line. Fast switching digital signals should be shielded with digital ground to avoid radiating noise to other parts of the board, and should never be run near the reference inputs. It is essential to minimize noise on all Vref lines. Avoid crossover of digital and analog signals. Traces on opposite sides of the board should run at right angles to each other. This reduces the effects of feedthrough through the board. As is the case for all thin packages, care must be taken to avoid flexing the package and to avoid a point load on the surface of this package during the assembly process.

Also note that the exposed paddle of the AD5522 is connected to the negative supply $\mathrm{AV}_{\text {ss }}$.

## TYPICAL APPLICATION FOR THE AD5522

Figure 20 shows the AD5522 as used in an ATE system. This device can used as a per pin parametric unit in order to speed up the rate at which testing can be done.

The central PMU shown in the block diagram is usually a highly accurate PMU, and is shared among a number of pins in the tester. In general, many discrete levels are required in an ATE system for the pin drivers, comparators, clamps, and active loads. DAC devices, such as the AD5379, offer a highly integrated solution for a number of these levels. The AD5379 is a dense 40-channel DAC designed with high channel requirements, such as ATE


Figure 20. Typical Applications Circuit using the AD5522 as a per pin parametric unit.

## OUTLINE DIMENSIONS



COMPLIANT TO JEDEC STANDARDS MS-026-ADD-HD
Figure 21. 80 lead TQFP/EP with exposed pad on bottom


COMPLIANT TO JEDEC STANDARDS MS-026-ADD-HU
Figure 22. 80 lead TQFP/EP with exposed pad on top

ORDERING GUIDE

| Model | Function | Package Description ${ }^{1}$ | Package <br> Options |
| :--- | :--- | :--- | :--- |
| AD5522JSVDZ ${ }^{2}$ | Quad PMU with 4 internal current ranges, full <br> comparator function, 1 external current range, SPI and <br> LVDS serial interfaces. | 80 Lead TQFP with exposed pad on bottom | SV-80 |
| AD5522JSVUZError! <br> Bookmarknot defined. | Quad PMU with 4 internal current ranges, full <br> comparator function, 1 external current range, SPI and <br> LVDS serial interfaces. | 80 Lead TQFP with exposed pad on top | SV-80 |
| AD5523JCPZError! <br> Bookmarknot defined.3 | Quad PMU, 4 internal current ranges, window <br> comparator function, SPl interface. | 64 Lead LFCSP with exposed pad on bottom <br> $9 m m \times 9 m m$ | CP-64 |

${ }^{1}$ Exposed pad is tied to $\mathrm{AV}_{\mathrm{ss}}$.
${ }^{2}$ Lead Free.
${ }^{3}$ Reduced functionality. Contact factory for AD5523 datasheet and more details..

## NOTES


[^0]:    $5^{\text {th }}$ Sept, Update to block diagram, timing and READ functions. .

