FEATURES

- Four ADCs in one package
- Serial LVDS digital output data rates (ANSI-644)
- Data clock output provided
- On Chip Reference and SHA
- $\operatorname{SNR}=70 \mathrm{~dB}$ at Fin up to Nyquist
- Excellent Linearity:
- \quad DNL $= \pm 0.3$ LSB (Typical)
- \quad INL $= \pm 0.6$ LSB (Typical)
- 500 MHz full power analog bandwidth
- Per Channel Core Power Dissipation $=270 \mathrm{~mW}$ at 65MSPS/ 200 mW at 50MSPS
- 1 Vpp - 2 Vpp input voltage range
- +3.0 V supply operation
- Power down mode

APPLICATIONS

- Digital beam forming systems in ultrasound
- Wireless and wired broadband communications
- Communications test equipment
- Radar and satellite imaging sub-systems

PRODUCT DESCRIPTION

The AD9229 is a quad 12-bit monolithic sampling analog-todigital converter with an on-chip track-and-hold circuit and is designed for low cost, low power, small size and ease of use. The product operates up to a 65 M SPS conversion rate and is optimized for outstanding dynamic performance where a small package size is critical.

The ADC requires a single+3.0 V power supply and a TTL/CM OS compatible sample rate clock for full performance operation. No external reference or driver components are required for many applications. A separate output power supply pin supports LVDS compatible serial digital output levels.

The ADC automatically multiplies up the sample rate clock for the appropriate LVDS serial data rate. An M SB trigger is provided to

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram
signal a new output byte. Power down is supported and consumes less than 3 mW when enabled.

Fabricated on an advanced CM OS process, the AD9229 is available in a 48-LFCSP package specified over the industrial temperature range $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$.

PRODUCT HIGHLIGHTS

1. Four analog-to-digital converters are contained in one small, space saving package.
2. A Data Clock Output (DCO) is provided which operates up to 390 MHz .
3. The outputs of each ADC are serialized with a maximum data output rate of 780 M bps (12 -bits $\times 65 \mathrm{M} \mathrm{SPS}$).
4. The A D 9229 operates from a single +3.0 V analog power supply.

TABLE OF CONTENTS

AD9229-Specifications 3
DIGITAL SPECIFICATIONS 4
AC SPECIFICATIONS. 4
SWITCHING SPECIFICATIONS 5
EXPLANATION OF TEST LEVELS 5
Absolute M aximum Ratings 6
EQuivalent circuits 7
TYPICAL PERFORM ANCE CHARACTERISTICS 8
Theory of Operation 11
Analog Inputs 11
V oltage Reference. 11
Digital Outputs 11
Timing 11
PLL 11
Pin Function Descriptions 12
Pin Configurations. 13
Timing Diagram 14
Ordering Guide 15

REVISION HISTORY

Revision PrA: Initial Version

Revision PrB: Added Definition and Theory of Operation sections, updated Pin Configurations

Revision PrC: Deleted demux outputs
Revision PrD: Added Pin Info, Package Info

Revision PrE: Ch. 3.3V to 3.0V for supply, Updated Sinad spec typo, A dded analog typical Cin, Overange Recovery Time, Latency
Revision PrF: Added 50M SPS Grade, Removed CIk-, Updated Power, SN R,LVDS Rset, Tpd Estimates, Added Equiv Ckts, Added FFT, VREF figure, Corrected FCO, DCO polarity timing

AD9229- SPECIFICATIONS ${ }^{1}$

AVDD = 3.0V, DRVDD = 3.0V; INTERNAL REFERENCE; DIFFERENTIAL ANALOG INPUTS,MAXIMUM SAMPLE RATE, TII TO $\mathrm{T}_{\text {max }}$ UNLESS OTHERWISE NOTED

Parameter		Temp	Test Level	AD9229BCP-50			AD9229BCP-65			Unit	
		Min		Typ	Max	Min	Typ	Max			
RESOLUTION						12			12		Bits
ACCURACY	No Missing Codes	Full	VI		Guaran teed			Guaran teed			
	Offset Error	$25^{\circ} \mathrm{C}$	I		± 0.5			± 0.5		mV	
	Gain Error	$25^{\circ} \mathrm{C}$	1		± 0.5			± 0.5		\%FS	
	Offset Matching	$25^{\circ} \mathrm{C}$	I							mV	
	Gain Matching ${ }^{2}$	$25^{\circ} \mathrm{C}$	1							\% FS	
	Differential Nonlinearity (DNL)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \mathrm{VI} \end{gathered}$		± 0.3			± 0.3		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$	
	Integral Nonlinearity (INL)	$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { Full } \end{gathered}$	$\begin{gathered} \mathrm{I} \\ \mathrm{VI} \end{gathered}$		± 0.6			± 0.6		$\begin{aligned} & \text { LSB } \\ & \text { LSB } \end{aligned}$	
TEMPERATURE DRIFT	Offset Error	Full	V							$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
	Gain Error ${ }^{2}$	Full	V							$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
	Reference	Full	V							ppm $/{ }^{\circ} \mathrm{C}$	
REFERENCE	Internal Reference Voltage	$25^{\circ} \mathrm{C}$	I		0.5			0.5		V	
	Output Current	Full	V							uA	
	Input Current	Full	V							uA	
	Input Resistance	Full	V							$\mathrm{k} \Omega$	
ANALOG INPUTS	Differential Input Voltage Range				1-2			1-2		Vpp	
	Common Mode Voltage	Full	V		1.5			1.5		V	
	Input Capacitance	Full	V		7			7		pF	
	Analog Bandwidth, Full Power	Full	V		500			500		MHz	
POWER SUPPLY	AVDD	Full	IV	2.7	3.0	3.6	2.7	3.0	3.6	V	
	DRVDD	Full	IV	2.7	3.0	3.6	2.7	3.0	3.6	V	
	Power Dissipation ${ }^{3}$	Full	VI		940			1250		mW	
	Power Down Dissipation	Full	VI		<3			<3		mW	
	Power Supply Rejection Ratio (PSRR)	$25^{\circ} \mathrm{C}$	I							mV / V	
	IAVDD ${ }^{3}$	Full	VI		268			367		mA	
	IDRVDD ${ }^{3}$	Full	VI		28			30		mA	
	IPLLVDD ${ }^{3}$	Full	VI		18			19			

Table 1: DC Specifications

[^0]
DIGITAL SPECIFICATIONS

AVDD $=3.0 \mathrm{~V}$, DRVDD $=3.0 \mathrm{~V}$

Parameter		Temp	Test Level	AD9229BCP-50			AD9229BCP-65			Unit
				Min	Typ	Max	Min	Typ	Max	
CLOCK INPUT	V_{H}	Full	IV	2.0			2.0			V
	$\mathrm{V}_{\text {IL }}$	Full	IV			0.8			0.8	V
	Input Capacitance	$25^{\circ} \mathrm{C}$	IV		2			2		pF
PDWN INPUT	Logic '1' Voltage	Full	IV	2.0			2.0			V
	Logic '0' Voltage	Full	IV			0.8			0.8	V
	Input Capacitance	Full	IV		2			2		PF
DIGITAL OUTPUTS (LVDS Mode)*	Differential Output Voltage (V_{OD})	Full	IV	247		454	247		454	mV
	Output Offset Voltage (V $\mathrm{V}_{\text {s }}$)	Full	IV	1.125		1.375	1.125		1.375	V
	Output Coding	Full	IV	Offset Binary			Offset Binary			

Table 2: Digital Specifications
*LVDS Rset resistor $=3.6 \mathrm{~K}$, LVDS Output Termination Resistor $=100$ Ohms.

AC SPECIFICATIONS ${ }^{1}$

AVDD $=3.0 \mathrm{~V}$, DRVDD $=3.0 \mathrm{~V}$; INTERNAL REFERENCE; DIFFERENTIAL ANALOG INPUTS,MAXIMUM SAMPLE RATE,TMIN $T 0$ $\mathrm{T}_{\text {Max }}$, UNLESS OTHERWISE NOTED

	Parameter	Temp	Test Level	AD9229BCP-50			AD9229BCP-65			Unit
				Min	Typ	Max	Min	Typ	Max	
SIGNAL TO NOISE RATIO (SNR) Without Harmonics	$\mathrm{f}_{\mathrm{IW}}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		70.5			70.5		dB
	$\mathrm{f}_{\mathrm{N}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							dB
	$\mathrm{f}_{\text {IW }}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	1		69.7			69.7		dB
	$\mathrm{f}_{\text {IN }}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							dB
SIGNAL TO NOISE RATIO (SINAD) With Harmonics	$\mathrm{f}_{\text {IN }}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		70.3			70.3		dB
	$\mathrm{f}_{\mathrm{N}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							dB
	$\mathrm{f}_{\text {IN }}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I		69.5			69.5		dB
	$\mathrm{f}_{\text {IN }}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							dB
EFFECTIVE NUMBER OF BITS (ENOB)	$\mathrm{f}_{\text {IN }}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							Bits
	$\mathrm{f}_{\mathrm{IN}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							Bits
	$\mathrm{f}_{\text {IN }}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I							Bits
	$\mathrm{f}_{\text {IN }}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							Bits
SPURIOUS FREE DYNAMIC RANGE (SFDR)	$\mathrm{f}_{\text {IN }}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							dB
	$\mathrm{f}_{\mathrm{IN}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		85			85		dB
	$\mathrm{f}_{\mathrm{IW}}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I							dB
	$\mathrm{f}_{\text {IN }}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							dB
SECOND AND THIRD HARMONIC DISTORTION	$\mathrm{f}_{\text {IN }}=10.3 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							dBc
	$\mathrm{f}_{\mathrm{N}}=19.6 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		-85			-85		dBC
	$\mathrm{f}_{\mathrm{IN}}=32.5 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	I							dBC
	$\mathrm{f}_{\text {IN }}=51 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V							dBc
TWO TONE INTERMOD DISTORTION (IMD)	$\mathrm{f}_{\mathrm{N} 1}=19 \mathrm{MHz}, \mathrm{f}_{\mathrm{IN} 2}=20 \mathrm{MHz}$	$25^{\circ} \mathrm{C}$	V		-85			-85		dBC
	$\mathrm{f}_{\mathbb{N} 1}=x \times M H z, f_{\mathbb{N} 2}=x \times M H z$	$25^{\circ} \mathrm{C}$	V							dBc

[^1]| Parameter | | Temp | Test Level | AD9229BCP-50 | | | AD9229BCP-65 | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Min | | Typ | Max | Min | Typ | Max | |
| CROSSTALK | | | Full | V | | -80 | | | -80 | | dB |

Table 3: AC Specifications

SWITCHING SPECIFICATIONS

AVDD $=3.0 \mathrm{~V}$, DRVDD $=3.0 \mathrm{~V}$; DIFFERENTIAL ENCODE INPUT

Parameter		Temp	Test Level	AD9229BCP-50			AD9229BCP-65			Unit	
		Min		Typ	Max	Min	Typ	Max			
CLOCK	Clock Rate		Full	VI	10		50	10		65	MSPS
	Clock Pulse Width High (t_{EH})	Full	IV							ns	
	Clock Pulse Width Low (t_{EL})	Full	IV							ns	
OUTPUT PARAMETERS IN LVDSMODE	Valid Time (t_{V}) ${ }^{1}$	Full	VI							ns	
	Propagation Delay ($\left.\mathrm{t}_{\text {PD }}\right)^{1}$	Full	VI		5			5		ns	
	MSB Propagation Delay ($\left.\mathrm{t}_{\text {MSB }}\right)^{1}$	Full	VI		5			5		ns	
	Rise Time (t_{R}) (20\% to 80\%)	Full	V							ns	
	Fall Time (t_{F}) (20\% to 80\%)	Full	V							ns	
	DCO Propagation Delay ($\mathrm{t}_{\text {CPD }}$)	Full	VI		5			5		ns	
	Data to DCO Skew ($\mathrm{t}_{\text {PD }}-\mathrm{t}_{\text {CPD }}$)	Full	IV							ns	
	Pipeline Latency	Full	VI		9			9		cycles	
APERTURE	Aperture Delay (t_{A})	$25^{\circ} \mathrm{C}$	V							ps	
	Aperture Uncertainty (Jitter)	$25^{\circ} \mathrm{C}$	V		<1			<1		ps rms	
Out of Range Recovery Time		Full	IV			2			2	cycles	

Table 4: Switching Specifications

EXPLANATION OF TEST LEVELS

TEST LEVEL

I 100% production tested.
II 100% production tested at $+25^{\circ} \mathrm{C}$ and guaranteed by design and characterization at specified temperatures.
III Sample tested only.
IV Parameter is guaranteed by design and characterization testing.
V Parameter is a typical value only.
VI 100% production tested at $+25^{\circ} \mathrm{C}$ and guaranteed by design and characterization for industrial temperature range.

[^2]
ABSOLUTE MAXIMUM RATINGS

Parameter		Rating
Electrical	AVDD Voltage	3.9 V
	DRVDD Voltage	3.9 V
	Analog Input Voltage	
	Analog Input Current	
	Digital Input Voltage	
	Digital Output Current	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
	VREF Input Voltage	$150^{\circ} \mathrm{C}$

Table 5: Absolute Maximum Ratings
Stresses above those listed under the A bsolute M aximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Preliminary Technical Data

EQUIVALENT CIRCUITS

TYPICAL PERFORMANCE CHARACTERISTICS

Measured FFT Performance 32MHz Ain at 65MSPS

ANALOG BANDWIDTH

The analog input frequency at which the spectral power of the fundamental frequency (as determined by the FFT analysis) is reduced by 3 dB .

APERTURE DELAY

The delay between the 50% point of the rising edge of the ENCODE command and the instant at which the analog input is sampled.

APERTURE UNCERTAINTY (ITTER)

The sample-to-sample variation in aperture delay.

CROSSTALK

Coupling onto one channel being driven by a low level (-40 dBFS) signal when the adjacent interfering channel is driven by a fullscale signal.

DIFFERENTIAL ANALOG INPUT RESISTANCE, DIFFERENTIAL ANALOG INPUT CAPACITANCE, AND DIFFERENTIAL ANALOG INPUT IMPEDANCE

The real and complex impedances measured at each analog input port. The resistance is measured statically and the capacitance and differential input impedances are measured with a network analyzer.

DIFFERENTIAL ANALOG INPUT VOLTAGE RANGE

The peak to peak differential voltage that must be applied to the converter to generate a full scale response. Peak differential voltage is computed by observing the voltage on a single pin and subtracting the voltage from the other pin, which is 180 degrees out of phase. Peak to peak differential is computed by rotating the inputs phase 180 degrees and taking the peak measurement again. Then the difference is computed between both peak measurements.

DIFFERENTIAL NONLINEARITY

The deviation of any code width from an ideal 1 LSB step.

EFFECTIVE NUMBER OF BITS

The effective number of bits (ENOB) is calculated from the measured SNR based on the equation:

$$
E N O B=\frac{S N R_{\text {MEASURED }}-1.76 d B}{6.02}
$$

ENCODE PULSE WIDTH/DUTY CYCLE

Pulse width high is the minimum amount of time that the ENCODE pulse should be left in logic " 1 " state to achieve rated performance; pulse width low is the minimum time ENCODE pulse should be left in low state. See timing implications of changing tENCH in text. At a give clock rate, these specs define an acceptable Encode duty cycle.

FULL SCALE INPUT POWER

Expressed in dBm. Computed using the following equation:

$$
\text { Power }_{\text {Fullscale }}=10 \log \left(\frac{\frac{V_{\text {Fullscale }_{\text {mss }}}^{2}}{Z_{\text {Input }}}}{.001}\right)
$$

GAIN ERROR

Gain error is the difference between the measured and ideal full scale input voltage range of the worst ADC.

GAIN MATCHING

Expressed in \%FSR. Computed using the following equation:
GainMatching $=\frac{F S R_{\max }-F S R_{\min }}{\left(\frac{F S R_{\max }+F S R_{\min }}{2}\right)} * 100 \%$
where $F S R_{\text {max }}$ is the most positive gain error of the ADCs and $F S R_{\text {min }}$ is the most negative gain error of the ADCs.

HARMONIC DISTORTION, SECOND

The ratio of therms signal amplitude to the rms value of the second harmonic component, reported in dBc.

HARMONIC DISTORTION, THIRD

The ratio of the rms signal amplitude to therms value of the third harmonic component, reported in dBc .

INTEGRAL NONLINEARITY

The deviation of the transfer function from a reference line measured in fractions of 1 LSB using a "best straight line" determined by a least square curve fit.

MINIMUM CONVERSION RATE

The encode rate at which the SNR of the lowest analog signal frequency drops by no more than 3 dB below the guaranteed limit.

MAXIMUM CONVERSION RATE

The encode rate at which parametric testing is performed.

OFFSET ERROR

Offset error is the difference between the measured and ideal voltage at the analog input that produces the midscale code at the outputs. Offset error is given for the worst ADC.

OFFSET MATCHING

Expressed in mV. Computed using the following equation:

$$
\text { OffsetMatching }=O F F_{\max }-O F F_{\min }
$$

where $\mathrm{OFF}_{\text {max }}$ is the most positive offset error and $\mathrm{OFF}_{\text {min }}$ is the most negative offset error.

OUTPUT PROPAGATION DELAY

The delay between a differential crossing of CLK + and CLK- and the time when all output data bits are within valid logic levels.

NOISE (FOR ANY RANGE WITHIN THE ADC)

$$
\left.V_{n o i s e}=\sqrt{Z * .001 * 10^{\left(\frac{F S_{d B m}-S N R_{d B c}-\text { Signal }_{d B F S}}{}\right)}} 10\right)
$$

Where Z is the input impedance, FS is the full scale of the device for the frequency in question, SNR is the value for the particular input level and Signal is the signal level within the ADC reported in dB below full scale. This value includes both thermal and quantization noise.

POWER SUPPLY REJECTION RATIO

The ratio of a change in input offset voltage to a change in power supply voltage.

SIGNAL-TO-NOISE-AND-DISTORTION (SINAD)

The ratio of the rms signal amplitude (set 1 dB below full scale) to
therms value of the sum of all other spectral components, including harmonics but excluding dc.

SIGNAL-TO-NOISE RATIO (WITHOUT HARMONICS)

The ratio of the rms signal amplitude (set at 1 dB below full scale) to the rms value of the sum of all other spectral components, excluding the first five harmonics and dc.

SPURIOUS-FREE DYNAMIC RANGE (SFDR)

The ratio of the rms signal amplitude to the rms value of the peak spurious spectral component. The peak spurious component may or may not be a harmonic. It also may be reported in dBc (i.e., degrades as signal level is lowered) or dBFS (i.e., always related back to converter full scale).

TWO-TONE INTERMODULATION DISTORTION REJECTION

The ratio of the rms value of either input tone to the rms value of the worst third order intermodulation product; reported in dBc.

TWO-TONE SFDR

The ratio of the rms value of either input tone to the rms value of the peak spurious component. The peak spurious component may or may not be an IM D product. It also may be reported in dBc (i.e., degrades as signal level is lowered) or in dBFS (i.e., always relates back to converter full scale).

WORST OTHER SPUR

The ratio of the rms signal amplitude to the rms value of the worst spurious component (excluding the second and third harmonic) reported in dBc.

TRANSIENT RESPONSE TIME

Transient response time is defined as the time it takes for the ADC to reacquire the analog input after a transient from 10% above negative full scale to 10% below positive full scale.

OUT-OF-RANGE RECOVERY TIME

Out of range recovery time is the time it takes for the ADC to reacquire the analog input after a transient from 10% above positive full scale to 10% above negative full scale, or from 10% below negative full scale to 10% below positive full scale.

THEORY OF OPERATION

Analog Inputs

For best dynamic performance, the source impedances driving VIN + and VIN - should be matched such that common-mode settling errors are symmetrical. These errors will be reduced by the common-moderejection of the A/D.

Voltage Reference

The AD9229 has a stable and accurate reference voltage on chip, which sets the full-scale voltage at the analog input channels. Internal reference mode is established by grounding the SENSE pin. (Recommended decoupling capacitors shown below) The internal reference can be bypassed by setting SENSE to AVDD and driving VREF with an external IV reference.

Internal Reference ModeConnection
recommended to keep the trace length no longer than 1-2 inches and to keep differential output trace lengths as equal as possible.

The format of the output data is offset binary.

Timing

Data from each A/D is serialized and provided on a separate channel.

Two output clocks are provided to assist in capturing data from the AD9229. The data clock out (DCO) is used to clock the output data and is equal to 6 times the sample clock frequency. (390 M Hz for 65M Hz input clock) Data is clocked out of the AD 9229 on the rising and falling edges of DCO. The FCO clock signals the start of a new serial word, the rising edge of FCO occurs at the start of an MSB.

PLL

The AD9229 contains an internal PLL that is used to generate internal clocking signals, if the PLL is unlocked, the data outputs are static.

Digital Outputs

TheAD 9229's differential outputs conform to the ANSI-644 LVDS standard. To set the LVDS bias current, place a resistor (RSET is nominally equal to $3.6 \mathrm{k} \Omega$) to ground at the LVDSBIAS pin. The RSET resistor current ($\sim 1.2 /$ RSET) is ratioed on-chip setting the output current at each output equal to a nominal 3.5 mA . A 100Ω differential termination resistor placed at the LVDS receiver inputs results in a nominal 350 mV swing at the receiver.

TheAD 9229's LVDS outputs facilitate interfacing with LVDS receivers in custom ASICs and FPGAs that have LVDS capability for superior switching performance in noisy environments. Single point-to-point net topologies are recommended with a 100Ω termination resistor as close to the receiver as possible. It is

PIN FUNCTION DESCRIPTIONS

Pin No.	Name	Description	Pin No.	Name	Description
$8,16,21$, 29	AVDD	3.0 V Analog Supply	44	D+A	ADC A True Digital Output
$9,12,15$, $22,25,28$, 31	AGND	Analog Ground	43	D-A	ADC A Complement Digital Output
2,35					
1,36	DRVDD	3.0 V Digital Output Supply	42	D+B	ADC B True Digital Output
32	PLLVDD	Digital Ground	PLL 3.0V Supply	41	D-B
33	PLLGND	PLL Ground	40	D+C	ADC C True Digital Output
30	CLK	Input Clock	39	D-C	ADC C Complement Digital Output
18	VREF	Voltage Reference Input/Output	37	D+D	ADC D True Digital Output
17	SENSE	Reference Mode Selection	ADC D Complement Digital Output		
20	REFT	Differential Reference (Positive)	47	DCO+	Data Clock Output - True
19	REFB	Differential Reference (Negative)	46	FCO-	Data Clock Output - Complement
10	VIN+A	ADC A Analog Input - True	45	FCO-	Frame Clock Indicator - True Output
11	VIN-A	ADCA Analog Input - Complement	34	LVDSBIAS	LVDS Output Current Set Resistor Pin
14	VIN+B	ADC B Analog Input - True	7	PDWN	Power Down Selection (Logic '1' = Power Down)
13	VIN-B	ADC B Analog Input - Complement	$3,4,5,6$	DNC	Do Not Connect
23	VIN+C	ADC C Analog Input - True			
24	VIN-C	ADC C Analog Input - Complement			
27	VIN+D	ADCD Analog Input - True			
26	VIN-D	ADC A Analog Input - Complement			

Table 6: Pin Function Descriptions

Preliminary Technical Data

PIN CONFIGURATIONS

TIMING DIAGRAM

Figure 6: Serial LVDS Outputs

NOTE : Latency $=9$ cycles

OUTLINE DIMENSIONS

Figure 7

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Ordering Guide

Model	Temperature Range	Description
AD9229BCP-50	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Ambient)	$48-$ LFCSP
AD9229BCP-65	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Ambient)	$48-$ LFCSP
AD9229/PCB	$25^{\circ} \mathrm{C}$ (Ambient)	Evaluation Board (Supplied with -65 Grade)

Table 7: Ordering Guide

[^0]: ${ }^{1}$ Specifications subject to change without notice
 ${ }^{2}$ Gain error and gain temperature coefficients are based on the ADC only (with a fixed 0.5 V external reference and a 1 Vp -p differential analog input).
 ${ }^{3}$ Power dissipation measured with rated encode and a dc analog input (Outputs Static, I IvoD $=0$.). $I_{\text {vcc }}$ and $I_{\text {voo }}$ measured with TBD MHz analog input @ 0.5 dBFS .

[^1]: ${ }^{1} \mathrm{SNR} /$ harmonics based on an analog input voltage of -0.5 dBFS referenced to a 1 Vpp full-scale input range.

[^2]: ${ }^{1} t_{V}$ and $t_{P D}$ are measured from the transition points of the CLK input to the $50 \% / 50 \%$ levels of the digital outputs swing. The digital output load during test is not to exceed an ac load of 5 pF or a dc current of $\pm 40 \mu \mathrm{~A}$. Rise and fall times measured from 20% to 80%.

