

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

VCC Supply Voltage	7.0 V
$\mathrm{~V}-$ Supply Voltage	-30 V
$\mathrm{~V}+$ Supply Voltage	+30 V

V $+/ \mathrm{V}-$ Voltage Differential	40 V
Logic Input Voltage	5.5 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	
AH0014, AH0015, AH0019	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
AH0014C, AH0015C, AH0019C	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$

Electrical Characteristics (Notes 1 and 2)

Parameter	Conditions	Min	Typ	Max	Units
Logical "1" Input Voltage	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	2.0			V
Logical "0" Input Voltage	$\mathrm{V}_{C C}=4.5 \mathrm{~V}$			0.8	V
Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=2.4 \mathrm{~V}$			5	$\mu \mathrm{A}$
Logical '1" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=5.5 \mathrm{~V}$			1	$\mu \mathrm{A}$
Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0.4 \mathrm{~V}$		0.2	0.4	mA
Power Supply Current Logical " 1 " Input-Each Gate (Note 3)	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=4.5 \mathrm{~V}$		0.85	1.6	mA
Power Supply Current Logical "0" Input-Each Gate (Note 3) $\begin{aligned} & \text { AH0014, AH0014C } \\ & \text { AH0015, AH0015C } \\ & \text { AH0019, AH0019C } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}$		$\begin{gathered} 1.5 \\ 0.22 \\ 0.22 \end{gathered}$	$\begin{gathered} 3.0 \\ 0.41 \\ 0.41 \end{gathered}$	mA mA mA
Analog Switch ON Resistance-Each Gate	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}(\text { Analog })=+10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}(\text { Analog })=-10 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} 75 \\ 150 \\ \hline \end{gathered}$	$\begin{array}{r} 200 \\ 600 \\ \hline \end{array}$	$\begin{aligned} & \Omega \\ & \Omega \end{aligned}$
Analog Switch OFF Resistance			10^{11}		Ω
```Analog Switch Input Leakage Current- Each Input (Note 4) AH0014, AH0015, AH0019 AH0014C, AH0015C, AH0019C```	$\begin{aligned} \mathrm{V}_{\mathrm{IN}} & =-10 \mathrm{~V} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =125^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =25^{\circ} \mathrm{C} \\ \mathrm{~T}_{\mathrm{A}} & =70^{\circ} \mathrm{C} \end{aligned}$		$\begin{aligned} & 25 \\ & 25 \\ & 0.1 \\ & 30 \end{aligned}$	$\begin{gathered} 200 \\ 200 \\ 10 \\ 100 \end{gathered}$	pA   nA   nA   nA
Analog Switch Output Leakage Current—Each Output (Note 4) AH0014, AH0015, AH0019 AH0014C, AH0015C, AH0019C	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=-10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=70^{\circ} \mathrm{C} \\ & \hline \end{aligned}$		$\begin{gathered} 40 \\ 40 \\ 0.05 \\ 4 \\ \hline \end{gathered}$	$\begin{gathered} 400 \\ 400 \\ 10 \\ 50 \end{gathered}$	pA   nA   nA   nA
Analog Input (Drain) Capacitance	1 MHz @ Zero Bias		8	10	pF
Output Source Capacitance	1 MHz @ Zero Bias		11	13	pF
Analog Turn-OFF Time-toff	See Test Circuit; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		600	750	ns
$\begin{aligned} & \text { Analog Turn-ON Time-toN } \\ & \text { AH0014, AH0014C } \\ & \text { AH0015, AH0015C } \\ & \text { AH0019, AH0019C } \\ & \hline \end{aligned}$	See Test Circuit; $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{aligned} & 350 \\ & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 425 \\ & 150 \\ & 150 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$

Note 1: Min/max limits apply across the guaranteed temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ for $\mathrm{AH} 0014, \mathrm{AH} 0015, \mathrm{AH} 0019$ and $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for AH 0014 C , AH0015C, AH0019C. $\mathrm{V}^{-}=-20 \mathrm{~V} . \mathrm{V}^{+}=+10 \mathrm{~V}$ and an analog test current of 1 mA unless otherwise specified.
Note 2: All typical values are measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ with $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} . \mathrm{V}^{+}=+10 \mathrm{~V}, \mathrm{~V}^{-}=-22 \mathrm{~V}$.
Note 3: Current measured is drawn from $V_{C C}$ supply.
Note 4: All analog switch pins except measurement pin are tied to $\mathrm{V}^{+}$.

Analog Switch Characteristics (Note 2)



## Selecting Power Supply Voltage

The graph shows the boundary conditions which must be used for proper operation of the unit. The range of operation for power supply $\mathrm{V}^{-}$is shown on the X axis. It must be between -25 V and -8 V . The allowable range for power supply $\mathrm{V}^{+}$is governed by supply $\mathrm{V}^{-}$. With a value chosen for $\mathrm{V}^{-}, \mathrm{V}^{+}$may be selected as any value along a vertical line passing through the $\mathrm{V}^{-}$value and terminated by the boundaries of the operating region. A voltage difference between power supplies of at least 5 V should be maintained for adequate signal swing.

## Analog Switching Time Test Circuit



TL/K/10125-8


TL/K/10125-9


TL/K/10125-10


Physical Dimensions inches (millimeters)


14 Lead Hermetic Dual-In-Line Package (D)
Order Number AH0014D, AH0014CD, AH0019D or AH0019CD
NS Package Number D14D
AH0014/AH0014C DPDT, AH0015/AH0015C Quad SPST, AH0019/AH0019C
Physical Dimensions inches (millimeters) (Continued)
Lit. \# 101021

16 Lead Hermetic Dual-In-Line Package (D) Order Number AH0015D or AH0015CD NS Package Number D16C

## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017   Tel: 1(800) 272-9959   Fax: 1(800) 737-7018	National Semiconductor Europe   Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: $(+49)$ 0-180-534 1680	National Semiconductor Hong Kong Ltd.   13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong   Tel: (852) 2737-1600   Fax: (852) 2736-9960	National Semiconductor Japan Ltd.   Tel: 81-043-299-2309   Fax: 81-043-299-2408

