Key Features

256-Position

Available in four Resistance values
-AS1500 resistance 10kOhms
-AS1501 resistance 20kOhms
-AS1502 resistance 50kOhms
-AS1503 resistance 100kOhms
Power Shutdown -Less than $1 \mu \mathrm{~A}$
3-Wire SPI-Compatible Serial Data Input
10 MHz Update Data Loading Rate
2.7 V to 5.5 V Single-Supply Operation

Temperature Range $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Package SO-8
Compatible to AD8400

General Description

The AS1500 is a digital potentiometer with 256 programmable steps. The values of the resistor can be controlled via 3 wire serial interface capable to handle
programming rates up to 10 MHz . The AS1500 is available in four different resistor values. The AS1500 incorporates a $10 \mathrm{k} \Omega$, the AS 1501 a $20 \mathrm{k} \Omega$, the AS 1502 a $50 \mathrm{k} \Omega$ and the AS1503 a $100 \mathrm{k} \Omega$ fixed resistor. The wiper contact taps the fixed resistor at points determined by the 8 -bit digital code word. The resistance between the wiper and the endpoint of the resistor is linear. The switching action is performed in a way that no glitches occur. Furthermore the AS150x product family includes a shutdown mode, where it consumes less than $1 \mu \mathrm{~A}$. The AS150x is available in an 8 -pin SOIC package. All parts are guaranteed to operate over the extended industrial temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.

Applications

- Line Impedance Matching
- Volume Control, Panning
- Mechanical Potentiometer Replacement
- Power Supply Adjustment
- Programmable Filters, Delays, Time Constants

Figure 1 Pinout andfunctional Block Diagram of Digital Potentiometer AS150x family
($\mathrm{TA}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Limits
VDD to GND	$-0.3 \mathrm{~V},+7 \mathrm{~V}$
VA, VB, VW to GND	$0 \mathrm{~V}, \mathrm{VDD}$
AX - BX, AX - WX, BX - WX	$\pm 20 \mathrm{~mA}$
Digital Input and Output Voltage to GND	$0 \mathrm{~V},+7 \mathrm{~V}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Maximum Junction Temperature (TJ max)	$150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package body temperature ${ }^{1}$	$260^{\circ} \mathrm{C}$
Package Power Dissipation	$(\mathrm{TJ} \mathrm{max}-\mathrm{TA}) / \theta \mathrm{JA}$
ESD 2	1 kV

Table 1: Absolute Maximum Ratings

Pin	Name	Description
1	B	Terminal B RDAC
2	GND	Ground
3	CSN	Chip Select Input, Active Low. When CS returns high, data in the serial input register is loaded into the DAC register.
4	SDI	Serial Data Input
5	CK	Serial Clock Input, Positive Edge Triggered.
6	VDD	Positive power supply, specified for operation at both 3V and 5V.
7	W	Wiper RDAC
8	A	Terminal A RDAC

Table 2: Pin Function Description

[^0]
AS1500 / AS1501 - SPECIFICATIONS

$\mathrm{VDD}=3 \mathrm{~V} \pm 10 \%$ or $5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}}=\mathrm{VDD}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted.
ELECTRICAL CHARACTERISTICS - 10k and 20k VERSIONS

Parameter	Symbol	Conditions		Min	Typ ${ }^{3}$	Max	Unit	
DC CHARACTERISTICS RHEOSTAT MODE								
Nominal Resistance ${ }^{4}$	$\mathrm{R}_{\text {Ab }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V}, \mathrm{AS} 1500$, Version: $10 \mathrm{k} \Omega$		8	10	12	$\mathrm{k} \Omega$	
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V}, \mathrm{AS1501}$, Version: $20 \mathrm{k} \Omega$		16	20	24	$\mathrm{k} \Omega$	
Resistance Tempco ${ }^{5}$	$\Delta \mathrm{R}_{\text {AB }} / \Delta \mathrm{T}$	$\mathrm{V}_{\mathrm{AB}}=$ VDD, Wiper $=$ No Connect			500		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
Wiper Resistance	Rw	$\mathrm{VDD}=5 \mathrm{~V}$		20	100	200	Ω	
Resistor Differential NL^{6}	R-DNL	Rwb, VDD $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=$ No Connect		-1	$\pm 1 / 4$	+1	LSB	
Resistor Integral NL	R-INL	Rwb, VDD $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=$ No Connect		-2	$\pm 1 / 2$	+2	LSB	
DC CHARACTERISTICS POTENTIOMETER DIVIDER								
Resolution	N				8		Bits	
Integral Nonlinearity	INL	$\mathrm{VDD}=5.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-2	$\pm 1 / 2$	+2	LSB	
		VDD $=2.7 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-2	$\pm 1 / 2$	+2	LSB	
Differential Nonlinearity	DNL	$\mathrm{VDD}=5.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-1	$\pm 1 / 4$	+1	LSB	
		VDD $=2.7 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-1	$\pm 1 / 4$	+1	LSB	
Voltage Divider Tempco	$\Delta \mathrm{V}_{\mathrm{w}} / \Delta \mathrm{T}$	Code $=80 \mathrm{H}$			15		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$	
Full-Scale Error	Vwfse	Code $=$ FFh, $\mathrm{VDD}=5.5 \mathrm{~V}$		-4	-2.8	0	LSB	
Zero-Scale Error	VWZSE	Code $=00 \mathrm{H}, \mathrm{VDD}=5.5 \mathrm{~V}$		0	1.3	2	LSB	
RESISTOR TERMINALS								
Voltage Range ${ }^{7}$	$\mathrm{V}_{\text {A }, ~ B, ~ W}$			0		VDD	V	
Capacitance ${ }^{8} \mathrm{Ax}, \mathrm{Bx}$	$\mathrm{C}_{\mathrm{A}, \mathrm{B}}$	$\mathrm{f}=1 \mathrm{MHz}$, Measured	GND, Code $=80 \mathrm{H}$		75		pF	
Capacitance Wx	Cw	$\mathrm{f}=1 \mathrm{MHz}$, Measured	GND, Code $=80 \mathrm{H}$		120		pF	
DIGITAL INPUTS AND OUTPUTS								
Input Logic High	$\mathrm{V}_{\text {IH }}$	$\mathrm{VDD}=5 \mathrm{~V}$		2.4			V	
Input Logic Low	VIL	$V D D=5 \mathrm{~V}$				0.8	V	
Input Logic High	$\mathrm{V}_{\text {IH }}$	$\mathrm{VDD}=3 \mathrm{~V}$		2.1			V	
Input Logic Low	VIL	$\mathrm{VDD}=3 \mathrm{~V}$				0.6	V	
Input Current	ІІн, ILL	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ or $0 \mathrm{~V}, \mathrm{VDD}=5 \mathrm{~V}$				± 1	$\mu \mathrm{A}$	
Input Capacitance								
Power Supply Range	VDD			2.7		5.5	V	
Supply Current (CMOS)	IDD	$\mathrm{V}_{\mathrm{IH}}=\mathrm{VDD}$ or $\mathrm{V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{VDD}=5.5 \mathrm{~V}$			0.1	1	$\mu \mathrm{A}$	
Supply Current (TTL) ${ }^{9}$	IDD	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ or $0.8 \mathrm{~V}, \mathrm{VDD}=5.5 \mathrm{~V}$			0.9	4	mA	
Power Dissipation (CMOS) ${ }^{10}$	Poiss	$\mathrm{V}_{\mathrm{H}}=\mathrm{VDD}$ or $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}$, VDD $=5.5 \mathrm{~V}$				27.5	$\mu \mathrm{W}$	
Power Supply Suppression Ratio	PSSR	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V}+0.5 \mathrm{~V}_{\mathrm{P}} \\ & \text { sine wave @ } 1 \mathrm{kHz} \\ & \hline \end{aligned}$	AS1500, Version: $10 \mathrm{k} \Omega$		-54	-25	dB	
			AS1501, Version: $20 \mathrm{k} \Omega$		-52	-25	dB	
DYNAMIC CHARACTERISTICS ${ }^{11}$								
Bandwidth -3dB Bandwidth -3dB	BW_10k	$\mathrm{R}_{\text {wB }}=10 \mathrm{k} \Omega, \mathrm{VDD}=5 \mathrm{~V}$			1000		kHz	
	BW_20k	$\mathrm{R}_{\mathrm{wB}}=20 \mathrm{k} \Omega, \mathrm{VDD}=5 \mathrm{~V}$			500		kHz	
Total Harmonic Distortion	THDw	$\mathrm{V}_{\mathrm{A}}=1 \mathrm{~V}_{\text {RMS }}+2 \mathrm{~V}_{\text {DC }}, \mathrm{V}_{\mathrm{B}}=2 \mathrm{~V}_{\mathrm{DC}}, f=1 \mathrm{kHz}$			0.003		\%	
Vw Settling Time	ts_10k	$R_{w B}=5 k \Omega, V_{A}=V D D, V_{B}=0 V, \pm 1 \%$ Error Band			2		$\mu \mathrm{s}$	
	ts_20k	$\mathrm{R}_{\mathrm{WB}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{A}}=\mathrm{VDD}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \pm 1 \%$ Error Band			4		$\mu \mathrm{s}$	
Resistor Noise Voltage	enwb_10k	$\mathrm{R}_{\text {w }}=5 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}$			9		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	
	enwb_20k	Rws $=10 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}$			13		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$	

Table 3: Electrical Characteristics $\mathbf{- 1 0 k}$ and 20k Versions

[^1]
AS1502 / AS1503 - SPECIFICATIONS

$\mathrm{VDD}=3 \mathrm{~V} \pm 10 \%$ or $5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{A}}=\mathrm{VDD}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V},-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted.

ELECTRICAL CHARACTERISTICS - 50k and 100k VERSIONS

Parameter	Symbol	Conditions		Min	Typ ${ }^{12}$	Max	Unit
DC CHARACTERISTICS RHEOSTAT MODE							
Nominal Resistance ${ }^{13}$	$\mathrm{R}_{\text {Ab }}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V}, \mathrm{AS1502}$, Version: $50 \mathrm{k} \Omega$		40	50	60	k Ω
		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{VDD}=5 \mathrm{~V}, \mathrm{AS1503}$, Version: $100 \mathrm{k} \Omega$		80	100	120	$\mathrm{k} \Omega$
Resistance Tempco ${ }^{14}$	$\Delta \mathrm{R}_{\text {AB }} / \Delta \mathrm{T}$	$\mathrm{V}_{\text {AB }}=\mathrm{VDD}$, Wiper $=$ No Connect			500		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Wiper Resistance	Rw	$V D D=5 \mathrm{~V}$		20	100	200	Ω
Resistor Differential NL ${ }^{15}$	R-DNL	Rwb, VDD $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=$ No Connect		-1	$\pm 1 / 4$	+1	LSB
Resistor Integral NL	R-INL	Rwb, VDD $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=$ No Connect		-2	$\pm 1 / 2$	+2	LSB
DC CHARACTERISTICS POTENTIOMETER DIVIDER							
Resolution	N				8		Bits
Integral Nonlinearity	INL	$\mathrm{VDD}=5.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25$		-4	± 1	+4	LSB
		$\mathrm{VDD}=2.7 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ}$		-4	± 1	+4	LSB
Differential Nonlinearity	DNL	$\mathrm{VDD}=5.5 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-1	$\pm 1 / 4$	+1	LSB
		$\mathrm{VDD}=2.7 \mathrm{~V} \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		-1	$\pm 1 / 4$	+1	LSB
Voltage Divider Tempco	$\Delta \mathrm{V}_{\mathrm{W}} / \Delta \mathrm{T}$	Code $=80 \mathrm{H}$			15		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Full-Scale Error	$V_{\text {wfSE }}$	Code $=$ FFH, VDD $=5.5 \mathrm{~V}$		-1	-0.25	0	LSB
Zero-Scale Error	V WZSE	Code $=00 \mathrm{H}, \mathrm{VDD}=5.5 \mathrm{~V}$		0	0.1	1	LSB
RESISTOR TERMINALS							
Voltage Range ${ }^{16}$	$\mathrm{V}_{\text {A, }}$, W			0		VDD	V
Capacitance ${ }^{17} \mathrm{Ax}, \mathrm{Bx}$	$\mathrm{C}_{\text {A, }} \mathrm{B}$	$\mathrm{f}=1 \mathrm{MHz}$, Measured	GND, Code $=80{ }_{H}$		15		pF
Capacitance Wx	Cw	$\mathrm{f}=1 \mathrm{MHz}$, Measured	GND, Code $=80 \mathrm{H}$		80		pF
DIGITAL INPUTS AND OUTPUTS							
Input Logic High	VIH	$\mathrm{VDD}=5 \mathrm{~V}$		2.4			V
Input Logic Low	VIL	VDD $=5 \mathrm{~V}$				0.8	V
Input Logic High	VIH	$\mathrm{VDD}=3 \mathrm{~V}$		2.1			V
Input Logic Low	VIL	$\mathrm{VDD}=3 \mathrm{~V}$				0.6	V
Input Current	$\mathrm{IIH}^{\text {I IL }}$	$\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ or $0 \mathrm{~V}, \mathrm{VDD}=5 \mathrm{~V}$				± 1	$\mu \mathrm{A}$
Input Capacitance	CIL				5		pF
POWER SUPPLIES							
Power Supply Range	VDD			2.7		5.5	V
Supply Current (CMOS)	IDD	$\mathrm{V}_{\text {IH }}=\mathrm{VDD}$ or $\mathrm{V}_{\text {IL }}=0 \mathrm{~V}, \mathrm{VDD}=5.5 \mathrm{~V}$			0.1	1	$\mu \mathrm{A}$
Supply Current (TTL) ${ }^{18}$	IDD	$\mathrm{V}_{\mathrm{IH}}=2.4 \mathrm{~V}$ or $0.8 \mathrm{~V}, \mathrm{VDD}=5.5 \mathrm{~V}$			0.9	4	mA
Power Dissipation (CMOS) ${ }^{19}$	Poiss	$\mathrm{V}_{\mathrm{IH}}=\mathrm{VDD}$ or $\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{VDD}=5.5 \mathrm{~V}$				27.5	$\mu \mathrm{W}$
Power Supply Suppression Ratio	PSSR	$V D D=5 V+0.5 V_{P}$ sine wave @ 1 kHz	AS1502, Version: $50 \mathrm{k} \Omega$		-43	tbd.	dB
			$\begin{aligned} & \text { AS1503, Version: } \\ & 100 \mathrm{k} \Omega \end{aligned}$		-48	tbd.	dB
DYNAMIC CHARACTERISTICS ${ }^{20}$							
Bandwidth -3dB Bandwidth -3dB	BW_50k	$\mathrm{R}_{\mathrm{w}}=50 \mathrm{k} \Omega$, VDD $=5 \mathrm{~V}$			220		kHz
	BW_100k	$\mathrm{RwB}=100 \mathrm{k} \Omega, \mathrm{VDD}=5 \mathrm{~V}$			110		kHz
Total Harmonic Distortion	THDw	$\mathrm{V}_{A}=1 \mathrm{~V}_{\text {RMS }}+2 \mathrm{~V}_{\mathrm{DC}}, \mathrm{V}_{B}=2 \mathrm{~V}_{\mathrm{DC}}, \mathrm{f}=1 \mathrm{kHz}$			0.003		\%
Vw Settling Time	ts_50k	$\mathrm{RwB}_{\mathrm{B}}=50 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{A}}=\mathrm{VDD}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \pm 1 \%$ Error Band			9		$\mu \mathrm{s}$
	ts_100k	$\mathrm{Rw}_{\mathrm{B}}=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{A}}=\mathrm{VDD}, \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V}, \pm 1 \%$ Error Band			18		$\mu \mathrm{s}$
Resistor Noise Voltage	enwb_50k	$\mathrm{Rww}=50 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}$			20		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$
	enwb_{k}	$\mathrm{R}_{\text {ws }}=100 \mathrm{k} \Omega, \mathrm{f}=1 \mathrm{kHz}$			29		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

Table 4: Electrical Characteristics - 50k and 100k Versions

[^2]
AS150x - SPECIFICATIONS

$(\mathrm{VDD}=3 \mathrm{~V} \pm 10 \%$ or $5 \mathrm{~V} \pm 10 \%, \mathrm{VA}=\mathrm{VDD}, \mathrm{VB}=0 \mathrm{~V}$, $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq+125^{\circ} \mathrm{C}$ unless otherwise noted.)

ELECTRICAL CHARACTERISTICS-ALL VERSIONS

Table 5: Switching Characteristics

Detailed Description

Serial-Programming

Programming of the AS150x is done via the 3 wire serial interface. The three input signals are serial data input (SDI), clock(CK) and chip select (CS). A programming sequence consists of 10 -bit, where the last eight bit contain the code word for the resistor value. The first two bits A1 and A0 have to be low(see Table). The data is shifted into the internal 10 Bit register with the rising edge of the CK signal. With the rising edge of the CSN signal the data becomes valid and the resistance is updated (see figure 2). A detailed block diagram is shown in figure 3.

A1	A0	D7	D6	D5	D4	D3	D2	D1	D0
0	0	MSB			Data			LSB	

Table 6: Serial data format (16 bits)

[^3]

Figure 2: Timing Diagram

Figure 3: Detailed Timing Diagram

Rheostat Operation

The digital potentiometer family AS150x offers nominal resistor values of $10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$. The resistor has 256 contact points where the wiper can access the resistor. The 8 -bit code word determines the position of the wiper and is decoded through an internal logic. The lowest code 00 h is related to the terminal B. The resistance is then only determined by the wiper resistance (100Ω). The resistance for the next code 01 h is the nominal resistor RAB ($10 \mathrm{k} \Omega, 20 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ or $100 \mathrm{k} \Omega$) divided through 256 plus the wiper resistor. In case of AS1501 ($10 \mathrm{k} \Omega$) the total resistance is $39 \Omega+100 \Omega=139 \Omega$.
Accordingly the resistor for code 02 h is $78 \Omega+100 \Omega=178 \Omega$. The last code 255 h does not connect to terminal A directly (see Figure 5). So the maximum value is $10000 \Omega-39 \Omega$ $+100 \Omega=10061 \Omega$. The general formula for the calculation of the resistance Rws is:
$R_{w B}(D x)=(D x) / 256 \cdot R_{A B}+R_{w}$
where $R_{A B}$ is the nominal resistance between terminal A and B, R_{w} is the wiper resistance and $D x$ is the 8 -Bit Code word. In Table 7 the resistor values between the wiper and terminal B for AS1501 are given for specific codes Dx. In the zero-scale condition the wiper resistance of 100Ω remains present.

Dx (Dec)	Rwe (Ω)	Output State
255	10061	Full Scale
128	5100	Midscale
1	139	1 LSB
0	100	Zero-Scale (Wiper Contact Resistance)

Table 7: RDAC-Codes WB
The maximum current through the wiper and terminal B is 5 mA . If the current exceeds this limit the internal switches can degrade or even be damaged. As a mechanical potentiometer the resistance Rwa and Rwb are totally symmetrical. The relation between them is shown in Figure 4.

Figure 4: $\mathrm{R}_{\text {wa }}$ and $\mathrm{R}_{\text {wB }}$ versa Code

The resistance RWA is the complimentary resistor to RWB and can be controlled digitally as well. RWA starts at the maximum value of the nominal resistance and is reduced with increasing 8-Bit code words. The formula to calculate RWA is given below:
$R_{w A}(D x)=(256-D x) / 256 \cdot R_{A B}+R_{w}$
where $R_{A B}$ is the nominal resistance between terminal A and B, R_{w} is the wiper resistance and D_{x} is the 8 -Bit Code word. In Table 8 the resistor values between the wiper and terminal B for AS1501 are given for specific codes Dx.

Dx (Dec)	Rwa $(\boldsymbol{\Omega})$	Output State
255	89	Full Scale
128	5050	Midscale
1	10011	1 LSB
0	10050	Zero-Scale

Table 8: RDAC-Codes WA

Figure 5: Equivalent RDAC Circuit

Voltage Output Operation

The AS150x family can easily used in an voltage output mode, where the output voltage is proportional to an applied voltage to a given terminal. When 5 V are applied to terminal A and B is set to ground the ouput voltage at the wiper starts at zero volts up to 1 LSB less then 5 V . One LSB of voltage corresponds to the voltage applied at terminal $A B$ divided through 256 steps of possible wiper settings. The formula is given by

$$
V_{W}(D x)=(D x) / 256 \cdot V_{A B}+V_{B}
$$

where $V_{A B}$ is the voltage applied between terminal A and B, V_{W} is the voltage at the wiper, D_{x} is the 8 -Bit Code word and V_{B} is the voltage at terminal B. The temperature drift is significant better than in Rheostat mode, since the temperature coefficient is determined by the internal resistor ratio. Therefore the temperature drift is only $15 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

Applications

The digital potentiometer can replace in many applications the analog trimming potentiometer. The digital potentiometer is not sensitive to vibrations and shocks. It has an extremely small form-factor and can be adjusted very fast (e.g. AS1500 has an update rate of 600 kHz) Furthermore the temperature drift, resolution and noise are significant better and cannot be achieved with a mechanical trimming potentiometer. Due to the programmability the resistor settings can be stored in the system memory, so that after a power down the exact settings can be recalled easily.
All analog signals must remain within 0 to VDD range. For standard potentiometer applications the wiper output can be used directly. In the case of a low impedance load a buffer shall be used.

Package Information

The AS150x family is offered in a 8-pin SOIC package:

Package Dimensions in Inch and mm (values for $\mathrm{N}=8$ Pin package are valid):

$\stackrel{4}{7}$	$\begin{gathered} \text { COMMGN } \\ \text { IIMENSIDNS } \end{gathered}$				NDTE	3			5
,				$e^{N_{0^{\prime}}}$	VARIATIDNS		T		
	MIN,	NDM .	MAX,			MIN,	NDM,	MAX,	
A	061	. 064	068		AA	189	194	196	8
A_{1}	004	006	,0098		AB	337	342	. 344	14
$\mathrm{A}^{\text {A }}$	055	058	061		AD	. 386	391	3.393	6
B	0138	016	. 0192						
-	,0075	1008	, 0098						
D	SEE	VARIAT	- ${ }^{\text {a }}$	3					
E	150	155	. 157						
E		550 BS							
H	. 230	. 236	. 244						
h	. 1011	. 013	. 016						
L	. 016	. 025	. 035						
N	SEE	VARIAT	ONS	5					
¢	0°	$5{ }^{\circ}$	8°						
X	. 085	. 093	.100						

THIS TABLE IN MILLIMETERS

T	$\begin{aligned} & \text { CDMMDN } \\ & \text { DIMENSIDNS } \end{aligned}$				NDTE	,			N
T				$N_{n_{0}}$	VARI-		D		
号	MIN.	NDM.	MAX			MIF.	NDM.	MAX.	
A	1.55	1,63	1.73		AA	4.80	4.93	4.98	8
A_{1}	0.127	0.15	0.25		AB	8.58	8,69	8.74	14
A_{6}	1,40	1.47			AL	9.80	9.93	9.98	16
B	0.35	0.41	0.49						
	0.19	0.20	0.25						
-	SEE	VARIAT	DNS	3					
E	3, 81	3.94	3.97						
E		27 BSC							
H	5.84	5.99	6,20						
h	0.25	0.33	0.41						
L	0.41	0.64	0.89						
N	SEE	VARIAT	DNS	5					
$\stackrel{\square}{6}$	0°	$5{ }^{\circ}$	$8{ }^{\circ}$						
X	2.16	2.36	2.54						

Ordering Information

Part	Resistor	Pin Package	Delivery Form
AS1500	$10 \mathrm{k} \Omega$	8-pin SOIC	Tubes
AS1501	$20 \mathrm{k} \Omega$	8 8-pin SOIC	Tubes
AS1502	$50 \mathrm{k} \Omega$	8-pin SOIC	Tubes
AS1503	$100 \mathrm{k} \Omega$	8-pin SOIC	Tubes
AS1500-T	$10 \mathrm{k} \Omega$	8-pin SOIC	T\&R
AS1501-T	$20 \mathrm{k} \Omega$	8-pin SOIC	T\&R
AS1502-T	$50 \mathrm{k} \Omega$	8-pin SOIC	T\&R
AS1503-T	$100 \mathrm{k} \Omega$	8-pin SOIC	T\&R

For Pb-free package use suffix '-Z'

Copyright

Copyright © 2004 austriamicrosystems. Trademarks registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner. To the best of its knowledge, austriamicrosystems asserts that the information contained in this publication is accurate and correct.

Contact

austriamicrosystems AG
A 8141 Schloss Premstätten, Austria
T. +43 (0) 31365000
F. +43 (0) 313652501
info@austriamicrosystems.com

[^0]: The reflow peak soldering temperature (body temperature) is specified according IPC/JEDEC J-STD-020C "Moisture/Reflow Sensitivity Classification for non hermetic Solid State Surface Mount Devices".
 ${ }^{2}$ HBM MIL-Std883E 3015.7 methods.

[^1]: 3^{3} Typicals represent average readings at $25^{\circ} \mathrm{C}$ and $\mathrm{VDD}=5 \mathrm{~V}$.
 ${ }^{4}$ Wiper is not connected. $I_{A B}=350 \mu \mathrm{~A}$ for the $10 \mathrm{k} \Omega$ version and $175 \mu \mathrm{~A}$ for the $20 \mathrm{k} \Omega$ version.
 ${ }^{5}$ All Tempcos are guaranteed by design and not subject to production test.
 6 Terminal A is not connected. $\mathrm{I}_{\mathrm{w}}=350 \mu \mathrm{~A}$ for the $10 \mathrm{k} \Omega$ version and $175 \mu \mathrm{~A}$ for the $20 \mathrm{k} \Omega$ version.
 ${ }^{7}$ Resistor terminals A, B, W have no limitations on polarity with respect to each other.
 ${ }^{8}$ All capacitances are guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining resistor terminals are left open circuit.
 9 Worst-case supply current consumed when input logic level at 2.4 V , standard characteristic of CMOS logic.
 10 PDIss is calculated from (IDD×VDD). CMOS logic level inputs result in minimum power dissipation.
 ${ }^{11}$ All dynamic characteristics are guaranteed by design and not subject to production test. All dynamic characteristics use VDD $=5 \mathrm{~V}$.

[^2]: ${ }^{12}$ Typicals represent average readings at $25^{\circ} \mathrm{C}$ and VDD $=5 \mathrm{~V}$.
 ${ }^{13}$ Wiper is not connected. $\mathrm{I}_{\mathrm{AB}}=70 \mu \mathrm{~A}$ for the $50 \mathrm{k} \Omega$ version and $35 \mu \mathrm{~A}$ for the $100 \mathrm{k} \Omega$ version.
 ${ }^{14} \mathrm{All}$ Tempcos are guaranteed by design and not subject to production test.
 ${ }_{15}$ Terminal A is not connected. $I_{w}=70 \mu \mathrm{~A}$ for the $50 \mathrm{k} \Omega$ version and $35 \mu \mathrm{~A}$ for the $100 \mathrm{k} \Omega$ version.
 ${ }^{16}$ Resistor terminals A, B, W have no limitations on polarity with respect to each other.
 ${ }^{17}$ All capacitances are guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining resistor terminals are left open circuit.
 ${ }^{18}$ Worst-case supply current consumed when input logic level at 2.4 V , standard characteristic of CMOS logic.
 ${ }_{19}$ PoIss is calculated from (IDD \times VDD). CMOS logic level inputs result in minimum power dissipation.
 ${ }^{20}$ All dynamic characteristics are guaranteed by design and not subject to production test. All dynamic characteristics use VDD=5V.

[^3]: ${ }^{21}$ Typicals represent average readings at $25^{\circ} \mathrm{C}$ and VDD $=5 \mathrm{~V}$.
 ${ }^{22}$ Guaranteed by design and not subject to production test. Resistor-terminal capacitance tests are measured with 2.5 V bias on the measured terminal. The remaining resistor terminals are left open circuit.
 ${ }^{23}$ See timing diagram for location of measured values. All input control voltages are specified with $t_{R}=t_{F}=1 \mathrm{~ns}(10 \%$ to 90% of VDD) and timed from a voltage level of 1.6 V . Switching characteristics are measured using VDD $=3 \mathrm{~V}$ or 5 V . To avoid false clocking, a minimum input logic slew rate of $1 \mathrm{~V} / \mu$ s should be maintained.

