DISCRETE SEMICONDUCTORS

DATA SHEET

BLU60/12UHF power transistor

Product specification

March 1986

UHF power transistor

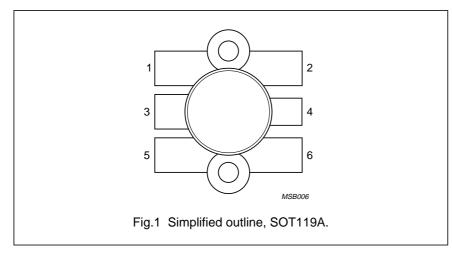
BLU60/12

DESCRIPTION

N-P-N silicon planar epitaxial transistor in SOT-119 envelope primarily intended for use in mobile radio transmitters in the 470 MHz communications band.

FEATURES

- multi-base structure and emitter-ballasting resistors for an optimum temperature profile.
- internal matching to achieve an optimum wideband capability and high power gain.
- gold metallization ensures excellent reliability.


The transistor has a 6-lead flange envelope with a ceramic cap. All leads are isolated from the flange.

QUICK REFERENCE DATA

R.F. performance up to $T_h = 25$ °C in a common-emitter class-B circuit

MODE OF OPERATION	V _{CE}	f MHz	P _L W	G _p dB	η _C %
narrow band; c.w.	12,5	470	60	> 4,4	> 55

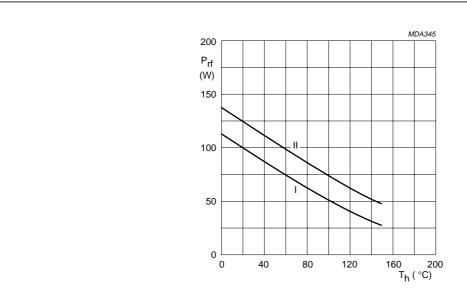
PIN CONFIGURATION

PINNING

PIN	DESCRIPTION
1	emitter
2	emitter
3	base
4	collector
5	emitter
6	emitter

PRODUCT SAFETY This device incorporates beryllium oxide, the dust of which is toxic. The device is entirely safe provided that the BeO disc is not damaged.

UHF power transistor


BLU60/12

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Collector-base voltage (open emitter)

peak value	V_{CBOM}	max.	36	V
Collector-emitter voltage (open base)	V_{CEO}	max.	16,5	V
Emitter-base voltage (open collector)	V_{EBO}	max.	4	V
Collector current				
d.c. or average	I_{C}	max.	12	Α
(peak value); f > 1 MHz	I_{CM}	max.	36	Α
Total power dissipation				
at $T_{mb} = 25 ^{\circ}\text{C}$; f > 1 MHz	P_{tot}	max.	110	W
Storage temperature	T _{stg}	-65 to	+ 150	°С
Operating junction temperature	Tj	max.	200	°С

- I Continuous operation (f > 1 MHz).
- II Short-time operation during mismatch (f > 1 MHz).

Fig.2 Power/temperature derating curves.

MAXIMUM THERMAL RESISTANCE

Dissipation = 72 W; T_{amb} = 25 °C

From junction to mounting base (r.f. operation) $R_{th \ j\text{-mb}} \qquad \text{max.} \qquad 1,4 \quad \text{K/W}$ From mounting base to heatsink $R_{th \ mb\text{-}h} \qquad \text{max.} \qquad 0,2 \quad \text{K/W}$

UHF power transistor

T_i = 25 °C unless otherwise specified

BLU60/12

60

170 pF

100 pF

3 pF

typ.

typ.

typ.

typ.

CHARACTERISTICS

Collector-base breakdown voltage open emitter; I_C = 100 mA $V_{(BR)CBO}$ 36 V min. Collector-emitter breakdown voltage open base; I_C = 200 mA 16,5 V $V_{(BR)CEO}$ min. Emitter-base breakdown voltage open collector; I_E = 20 mA $V_{(BR)EBO}$ 4 V min. Collector cut-off current $V_{BE} = 0; V_{CE} = 16 \text{ V}$ max. 44 mA I_{CES} Second breakdown energy L = 25 mH; f = 50 Hz; R_{BE} = 10 Ω $\mathsf{E}_{\mathsf{SBR}}$ min. 15 mJ D.C. current gain min. 15

 V_{CE} = 10 V; I_{C} = 8 A Collector capacitance at f = 1 MHz I_{E} = i_{e} = 0; V_{CB} = 12,5 V

Feedback capacitance at f = 1 MHz $I_C = 0$; $V_{CE} = 12,5$

Collector-flange capacitance

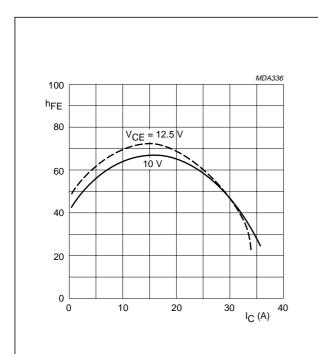
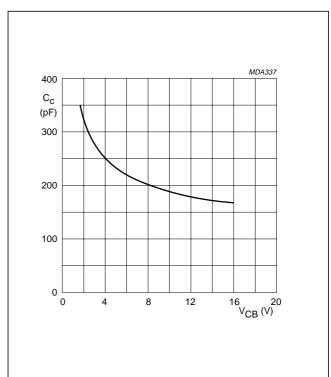



Fig.3 D.C. current gain versus collector current; $T_j = 25 \ ^{\circ}C.$

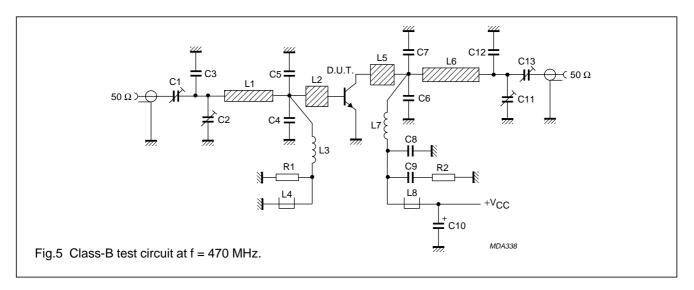
 h_{FE}

 C_c

 C_{re}

 C_{cf}

Fig.4 Output capacitance versus V_{CB} ; $I_E = i_e = 0$; f = 1 MHz.


UHF power transistor

BLU60/12

APPLICATION INFORMATION

R.F. performance at $T_h = 25$ °C in a common-emitter class-B circuit

MODE OF OPERATION	V _{CE}	f	P _L	G _p	η c
	V	MHz	W	dB	%
narrow band; c.w.	12,5	470	60	> 4,4 typ. 5,5	> 55 typ. 62

List of components:

C1 = C13 = 1,8 to 10 pF film dielectric trimmer (cat. no. 2222 809 05002)

C2 = C11 = 1,4 to 5,5 pF film dielectric trimmer (cat. no. 2222 809 09001)

C3 = 12 pF multilayer ceramic chip capacitor(1)

C4 = C5 = 8, 2 pF multilayer ceramic chip capacitor⁽²⁾

C6 = C7 = 15 pF multilayer ceramic chip capacitor⁽¹⁾

C8 = 110 pF multilayer ceramic chip capacitor⁽¹⁾

 $C9 = 3 \times 100 \text{ nF}$ multilayer ceramic chip capacitor in parallel

C10 = 2,2 μ F (35 V) electrolytic capacitor

C12 = 5,6 pF multilayer ceramic chip capacitor⁽¹⁾

L1 = 34,6 Ω stripline (17 mm \times 4 mm)

L2 = L5 = 25,3 stripline (6 mm \times 6 mm)

L3 = 45 nH; 4 turns, closely wound enamelled Cu-wire (0,5 mm); int. dia. 2,5 mm; leads 2 × 5 mm

L4 = L8 = Ferroxcube wideband h.f. choke, grade 3B (cat. no. 4312 020 36642)

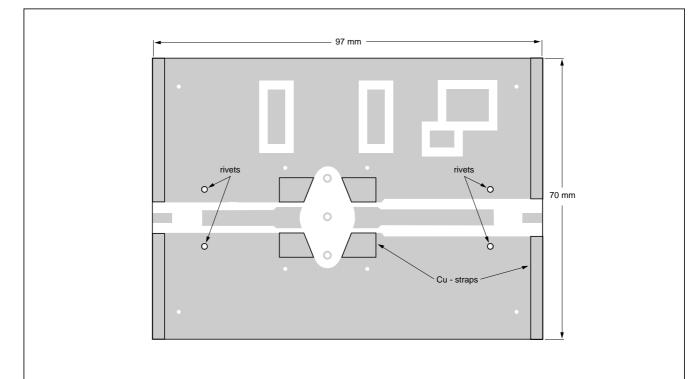
L6 = 29,2 Ω stripline (25,5 mm \times 5 mm)

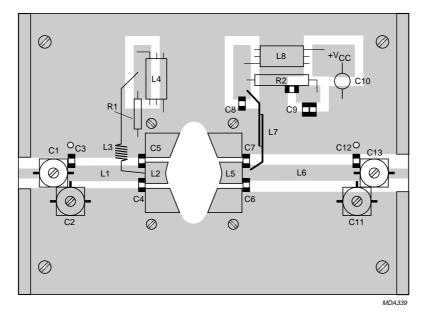
L7 = 10 nH; 1 turn Cu-wire (1,0 mm); int. dia. 5 mm; leads 2×5 mm

R1 = 1 $\Omega \pm 5\%$ (0,4 W) metal film resistor

R2 = 10 $\Omega \pm 5\%$ (1,0 W) metal film resistor

Notes

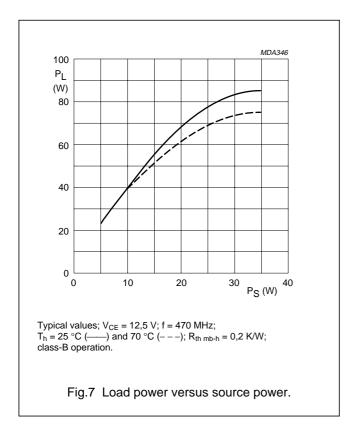

1. American Technical Ceramics capacitor type B or capacitor of the same quality.


2. Idem type A.

UHF power transistor

BLU60/12

Striplines are on a double Cu-clad printed circuit board with P.T.F.E. fibre-glass dielectric ($\varepsilon_r = 2,2$); thickness 1/32 inch.



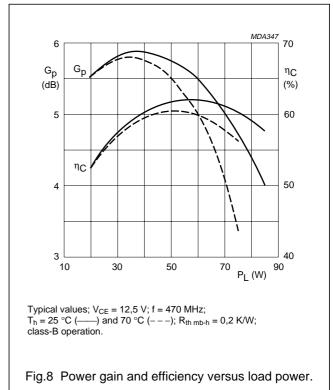
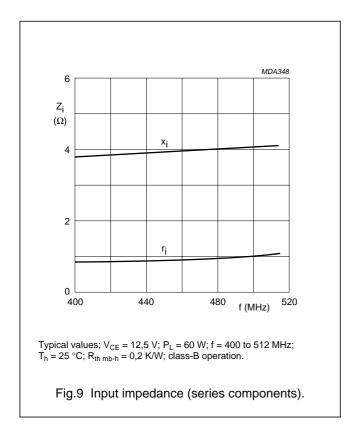
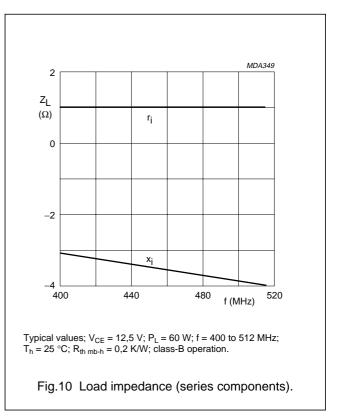

The circuit and the components are on one side of the PTFE fibre-glass board; the other side is unetched copper serving as a ground plane. Earth connections are made by fixing screws, hollow rivets and copper straps around the board and under the bases to provide a direct contact between the copper on the component side and the ground plane.

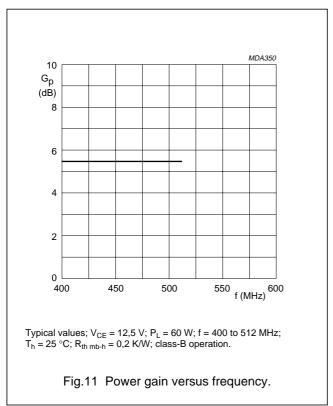
Fig.6 Printed circuit board and component layout for 470 MHz class-B test circuit.

UHF power transistor

BLU60/12

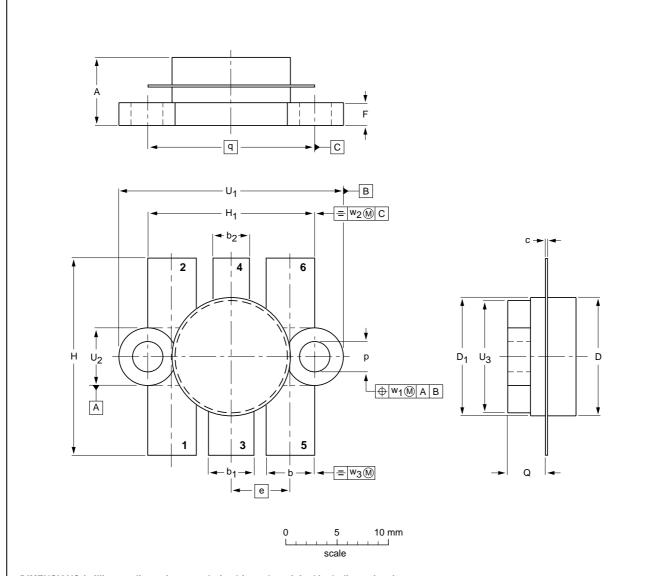



RUGGEDNESS


The BLU60/12 is capable of withstanding a full load mismatch (VSWR = 50 through all phases) up to 70 W under the following conditions; V_{CE} = 15,5 V; f = 470 MHz; T_h = 25 °C; $R_{th\ mb-h}$ = 0,2 K/W.

UHF power transistor

BLU60/12


UHF power transistor

BLU60/12

PACKAGE OUTLINE

Flanged ceramic package; 2 mounting holes; 6 leads

SOT119A

DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

UNIT	A	b	b ₁	b ₂	С	D	D ₁	е	F	н	Н ₁	р	ď	q	U ₁	U ₂	U ₃	w ₁	w ₂	w ₃
mm	7.39 6.32	5.59 5.33	5.34 5.08	4.07 3.81	0.18 0.07		12.83 12.57	6.48		22.10 21.08			4.58 3.98		25.23 23.95		12.76 12.06		1.02	0.26
inche	0.291 0.249	0.220 0.210	0.210 0.200	0.160 0.150	0.007 0.003	0.505 0.496	0.505 0.495	0.255	0.100 0.090	0.870 0.830	0.730 0.720	0.130 0.117	0.180 0.157	0.725	0.993 0.943	0.255 0.239	0.502 0.475	0.02	0.04	0.01

OUTLINE		REFER	EUROPEAN ISSUE DAT				EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE		
SOT119A						97-06-28		

Product specification Philips Semiconductors

UHF power transistor

BLU60/12

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

March 1986 10