

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

Ordering Code	Marking	Shipment
BULB128D-1	BULB128D	Tube

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR
- HIGH VOLTAGE CAPABILITY
- LOW SPREAD OF DYNAMIC PARAMETERS
- MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- VERY HIGH SWITCHING SPEED
- INTEGRATED ANTIPARALLEL

COLLECTOR-EMITTER DIODE

APPLICATIONS:

- ELECTRONIC BALLASTS FOR FLUORESCENT LIGHTING
- FLYBACK AND FORWARD SINGLE TRANSISTOR LOW POWER CONVERTERS

DESCRIPTION

The device is manufactured using high voltage Multi Epitaxial Planar technology for high switching speeds and medium voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.
The device is designed for use in lighting applications and low cost switch-mode power supplies.

INTERNAL SCHEMATIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CES}}$	Collector-Emitter Voltage $\left(\mathrm{V}_{\mathrm{BE}}=0\right)$	700	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	400	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0, \quad \mathrm{I}_{\mathrm{B}}=2 \mathrm{~A}, \quad \mathrm{t}_{\mathrm{p}}<10 \mu \mathrm{~s}, \mathrm{~T}_{\mathrm{j}}<150^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	V
I_{C}	Collector Current	4	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	8	A
I_{B}	Base Current	2	A
I_{BM}	Base Peak Current $\left(\mathrm{t}_{\mathrm{p}}<5 \mathrm{~ms}\right)$	4	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	70	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 150	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	150	${ }^{\circ} \mathrm{C}$

BULB128D-1

THERMAL DATA

$\mathrm{R}_{\mathrm{th} j \text {-case }}$	Thermal	Resistance Junction-Case	Max	1.78	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\mathrm{thj}-\mathrm{amb}}$	Thermal	Resistance	Junction-Ambient	Max	62.5

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Ices	Collector Cut-off Current (V BE $=0 \mathrm{~V}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=700 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=700 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=125{ }^{\circ} \mathrm{C}$			$\begin{aligned} & 100 \\ & 500 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
$I_{\text {CEE }}$	Collector Cut-off Current ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\mathrm{CE}}=400 \mathrm{~V}$				250	$\mu \mathrm{A}$
$\mathrm{V}_{\text {(bR) }{ }^{\text {ebo }} \text { (}}$	Emitter-Base Breakdown Voltage $(\mathrm{IC}=0)$	$\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$		9		18	V
$\mathrm{V}_{\text {CEO }}$ (sus)*	Collector-Emitter Sustaining Voltage $\left(\mathrm{IB}_{\mathrm{B}}=0\right)$	$\mathrm{IC}=100 \mathrm{~mA}$	$\mathrm{L}=25 \mathrm{mH}$	400			V
$\mathrm{V}_{\mathrm{CE} \text { (sat)* }}$	Collector-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A} \\ & \mathrm{I}=1 \mathrm{~A} \\ & \mathrm{I}=2.5 \mathrm{~A} \\ & \mathrm{I}=2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=1 \mathrm{~A} \end{aligned}$		0.5	$\begin{gathered} 0.7 \\ 1 \\ 1.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\mathrm{BE}(\text { sat) }}{ }^{*}$	Base-Emitter Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A} \\ & \mathrm{I}=1 \mathrm{~A} \\ & \mathrm{I}=2.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=0.1 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=0.5 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 1.1 \\ & 1.2 \\ & 1.3 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{h}_{\text {FE* }}$	DC Current Gain	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \\ & 12 \end{aligned}$		32	
V_{f}	Forward Voltage Drop	$\mathrm{I}_{\mathrm{f}}=2 \mathrm{~A}$				2.5	V
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	INDUCTIVE LOAD Storage Time Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=200 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A} \\ & \mathrm{R}_{\mathrm{BB}}=0 \Omega \\ & (\text { see fig.1) } \end{aligned}$	$\begin{aligned} & \mathrm{I} \mathrm{C}=2 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{BE}(\text { off })}=-5 \mathrm{~V} \\ & \mathrm{~L}=200 \mu \mathrm{H} \end{aligned}$		$\begin{aligned} & 0.6 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	RESISTIVE LOAD Storage Time Fall Time	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=250 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{B} 1}=0.4 \mathrm{~A} \\ & \mathrm{~T}_{\mathrm{p}}=300 \mu \mathrm{~s} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 2}=-0.4 \mathrm{~A} \\ & (\text { see fig.2) } \end{aligned}$	2	0.2	2.9	$\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$

* Pulsed: Pulse duration = $300 \mu \mathrm{~s}$, duty cycle 1.5%

Safe Operating Areas

DC Current Gain

Collector Emitter Saturation Voltage

Derating Curve

DC Current Gain

Base Emitter Saturation Voltage

Inductive Fall Time

Resistive Load Fall Time

Reverse Biased SOA

Inductive Storage Time

Resistive Load Storage Time

Figure 1: Inductive Load Switching Test Circuits.

Figure 2: Resistive Load Switching Test Circuits.


```
BULB128D-1
```

TO-262 (${ }^{2}$ PAK) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	4.4		4.6	0.173		0.181
A1	2.49		2.69	0.098		0.106
B	0.7		0.93	0.027		0.036
B2	1.14		1.7	0.044		0.067
C	0.45		0.6	0.017		0.023
C2	1.23		1.36	0.048		0.053
D	8.95		9.35	0.352		0.368
e	2.4		10.4	0.393		0.106
E	10		13.6	0.515		0.409
L	13.1		3.78	0.137		0.531
L1	3.48		1.4	0.050		0.149
L2	1.27				0.055	

P011P5/E

BULB128D-1

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics.
All other names are the property of their respective owners.
© 2003 STMicroelectronics - All Rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

