

GENERAL DESCRIPTION

The CM8501/A is a low cost switching regulator designed to provide a desired output voltage or termination voltage for various applications by converting voltage supplies ranging from 2.0V to 4.0V. The CM8501 can be implemented to produce regulated output voltages in two different modes. In the default mode, when the VIN/2 pin is open, the output voltage is 50% of the VCCQ. The CM8501 can also be used to produce various user-defined voltages by forcing a voltage on the VIN/2 pin. In this case, the output voltage follows the VIN/2 pin input voltage. The regulated output voltage of CM8501A is internally set to be 50% of the applied VCCQ. The switching regulator is capable of sourcing or sinking up to 1.5A of current while regulating an output V $_{\rm TT}$ voltage to within 3% or less.

The CM8501A could guarantee to provide continuous sinking or sourcing up to 2A current while enlarging the layout GND pad dimension as layout suggestion in page 6.

The CM8501/A provides low profile 8-pin PSOP package to save system space as well as 16-pin PSOP and PTSSOP packages that are pin-to-pin compatible to the previous CM8500.

APPLICATIONS

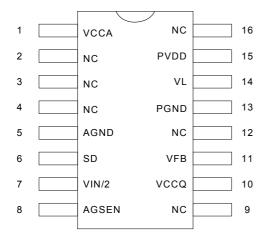
- Mother Board
- PCI/AGP Graphics
- Game/ Play Station
- Set Top Box

FEATURES

- ◆ Patent Filed #6,452,366
- 8-pin PSOP, 16 pin PTSSOP and 16 pin PSOP power packages
- Source and sink up to 1.5A, no heat sink required
- Peak Current to 3A
- ♦ Integrated Power MOSFETs
- Output voltage can be programmed by external resistors (CM8501)
- Separate voltages for VCCQ and PVDD
- ♦ V OUT of ±3% or less at 1.5A
- Minimum external components
- ◆ Shutdown for standby or suspend mode operation
- Thermal shutdown protection
- Soft start

24 Hours Technical Support---WebSIM

Champion provides customers an online circuit simulation tool called WebSIM. You could simply logon our website at www.champion-micro.com for details.

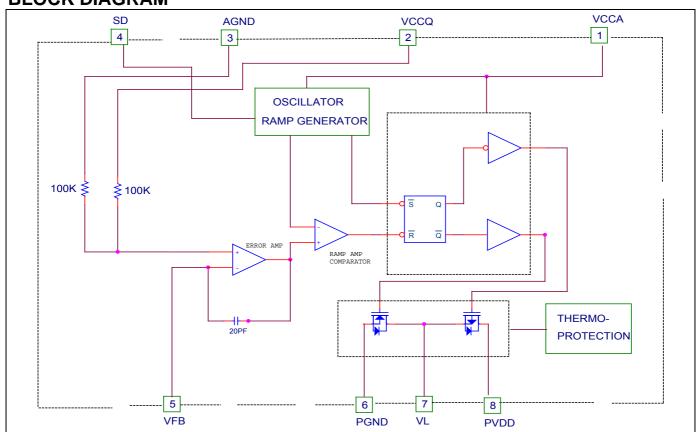

- ◆ IPC
- ◆ SCSI-III Bus terminator
- Buck Converter

PIN CONFIGURATION

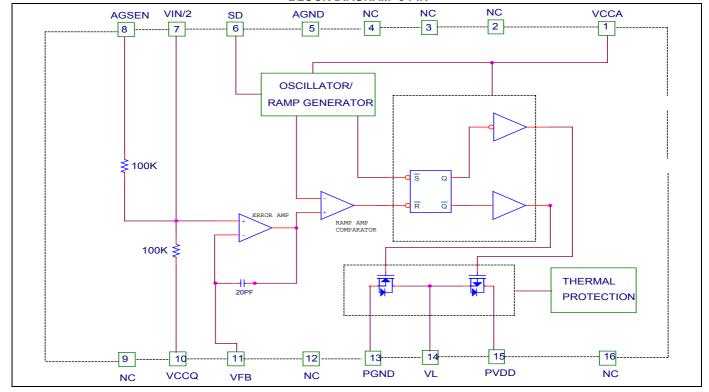
PSOP-16 (PS16)/PTSSOP-16 (PT16) Top View

PSOP-8 (PS08) Top View

PIN DESCRIPTION

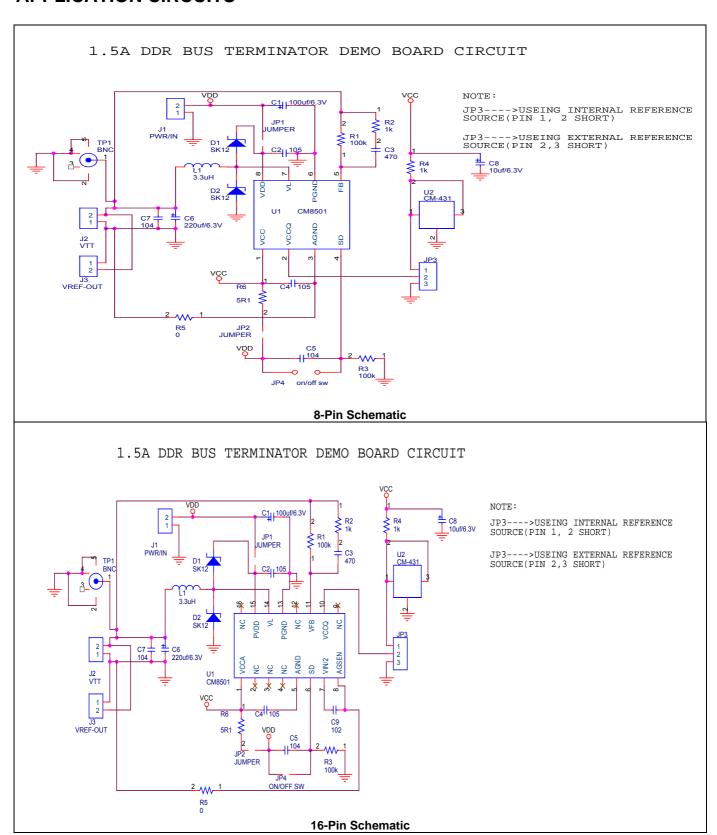

Pin No.		Symbol	Decerinti	Operating Rating				
8501	8501A	Syllibol	Description		Min.	Тур.	Max.	Unit
1	1	VCCA	Voltage supply for internal cire	2	2.5	5.5	V	
2,3,4,9,12,16		NC	No Connection					
5	3	AGND	Ground for internal reference					
6	4	SD	OMOO immediately	Shutdown level	0.75 x VCCA		VCCA+0.3	V
			CMOS input level	Enable level	0		2.0	
7		VIN/2	Input for external reference voltage			VCCQ/2		V
8		AGSEN	Ground for remote sensing					
10	2	VCCQ	Voltage reference for externa		2.5		V	
11	5	VFB	Feedback node for the V _{TT}		VCCQ/2		V	
13	6	PGND	Ground for output power trans					
14	7	VL	Output voltage/inductor conne	-2.0		+2.0	Α	
			Output RMS current)					
15	8	PVDD	Voltage supply for output pow	2	2.5	5.5	V	

ORDERING INFORMATION


Part Number	Temperature Range	Package		
CM8501IT	-40°C to 85°C	16-Pin PTSSOP (PT16)		
CM8501IS	-40°C to 85°C	16-Pin PSOP (PS16)		
CM8501AIS	-40°C to 85°C	8-Pin PSOP (PS08)		
CM8501GIT*	-40°C to 85°C	16-Pin PTSSOP (PT16)		
CM8501GIS*	-40°C to 85°C	16-Pin PSOP (PS16)		
CM8501AGIS*	-40°C to 85°C	8-Pin PSOP (PS08)		

^{*}Note: G : Suffix for Pb Free Product

BLOCK DIAGRAM



BLOCK DIAGRAM- 8 PIN

BLOCK DIAGRAM- 16 PIN

APPLICATION CIRCUITS

ABSOLUTE MAXIMUM RATINGS

Absolute maximum ratings are those values beyond which the	Junction Temperature150°			
device could be permanently damaged.	Storage Temperature65°C to 125°C			
PVDD/VCCA/VCCQ0.3V to 4.0V	Lead Temperature (Soldering, 5 sec)			
Voltage on Any Other Pin GND – 0.3V to VCC + 0.3V	16-Pin Package Thermal Resistance(θ _{JA})40°C/W			
Output RMS Current, Source or Sink 1.5A	8-Pin Package Thermal Resistance(θ_{JA})50°C/W			

OPERATING CONDITIONS

Temperature Range-40°C to 85°C PVDD Operating Range2.0V to 4.0V

ELECTRICAL CHARACTERISTICS (Unless otherwise stated, these specifications apply T_A=25°C; VCCA=+3.3V and PVDD=+3.3V) maximum ratings are stress ratings only and functional device operation is not implied. (Note 1)

0 1 1		Test Conditions			11.24			
Symbol	Parameter			Min.	Тур.	Max.	Unit	
SWITCHING	REGULATOR							
		IOUT = 0,	VCCQ = 2.3V	1.12	1.15	1.18	V	
			VCCQ = 2.5V	1.22	1.25	1.28	V	
		Note 2	VCCQ = 2.7V	1.32	1.35	1.38	V	
VL	Output Voltage, SSTL_2	IOUT =	VCCQ = 2.3V	1.09	1.15	1.21	V	
		±1.5A,	VCCQ = 2.5V	1.19	1.25	1.31	V	
		Note 2 Note 3	VCCQ = 2.7V	1.28	1.35	1.42	V	
		IOUT = 0 Note 2	VCCQ = 2.3V	1.139	1.15	1.162	V	
V _{IN} /2	Internal Resistor Divider		VCCQ = 2.5V	1.238	1.25	1.263	V	
			VCCQ = 2.7V	1.337	1.35	1.364	V	
Z _{IN}	V _{IN} /2 Reference Pin Input Impedance	Note 2	VCCQ = 0		50		KΩ	
fsw	Switching Frequency	CM8501/A		0.9	1.2	1.5	MHz	
I _{OUT(RMS)}	Minimum Output RMS Current	CM8501/A		1.5	2.0		Α	
I _{OUT(PEAK)}	Maximum Output Peak Current	СМ	8501/A			3	Α	
OTS	Over Temperature Shutdown	CM8501/A		135	150		$^{\circ}\!\mathbb{C}$	
MOSFETs								
RDS _(ON)	Drain to Source on-State Resistance	PVDD=5V			250		$m\Omega$	
SUPPLY								
	Quiescent Current	VFB = 1.4V			220			
I _{VCCA}	Quiescent Current	LC unconnected			220		μA	
loves		VFB	VFB = 1.4V		500			
I _{PVDD}		LC unconnected			300		μA	

Note 1: Limits are guaranteed by 100% testing, sampling, or correlation with worst case test conditions

Note 2: VCCA, PVDD = 3.3V ±10%, VIN/2=open for CM8501

Note 3: Guaranteed by design, not 100% test

FUNCTIONAL DESCRIPTION

The CM8501/A is a switching regulator that is capable of sinking and sourcing 1.5A of current without an external heat sink. CM8501/A uses a standard surface mount PTSSOP and PSOP package with bottom metal exposed and the heat can be piped through the bottom of the device and onto the PCB.

The CM8501/A integrates power MOSFETs that are capable of source and sink 1.5A of current while maintaining excellent voltage regulation. The output voltage can be regulated within 3% or less by using the external feedback. Separate voltage supply inputs have been added to fit applications with various power supplies for the databus and power buses.

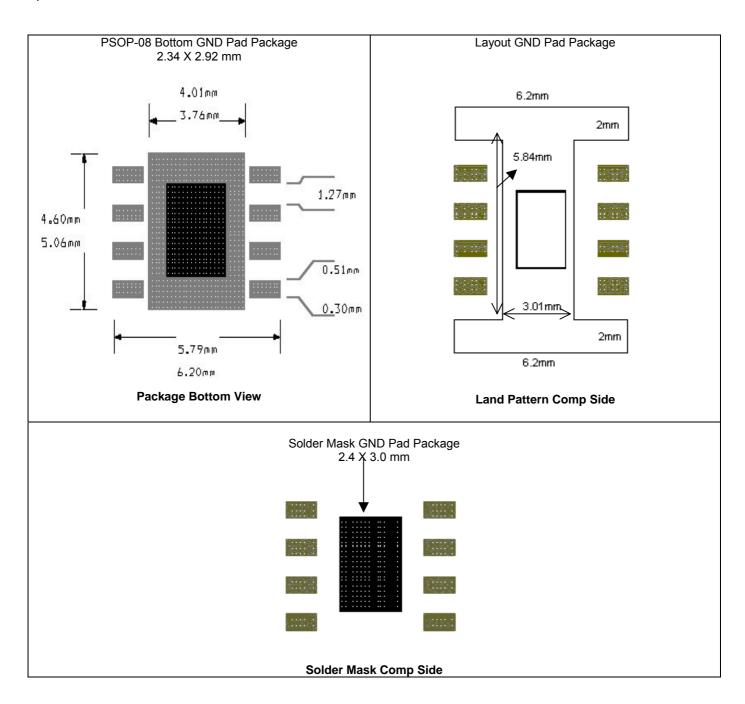
OUPUTS

The output voltage pins (VL) are tied to the databus, address, or clock lines via an external inductor. Output voltage is determined by the VCCQ or VIN/2 inputs for CM8501 and is determined by the VCCQ only for CM8501A.

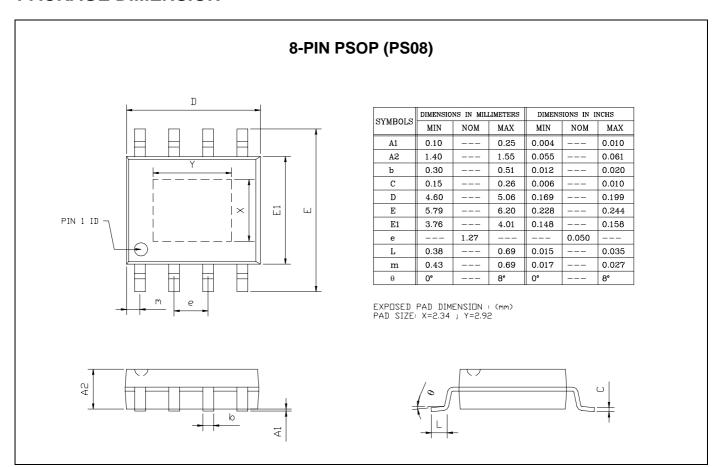
INPUTS

The input voltage pins (VCCQ & VIN/2 of CM8501 or VCCQ of CM8501A) determine the output voltages (VL). At CM8501, when the VIN/2 pin is open, the output voltage is 50% of the VCCQ input. If a specific voltage is forced at the VIN/2 pin, the output voltage follows the voltage at the VIN/2 pin. At CM8501A, the output voltage is always 50% of the VCCQ input. VCCQ is suggested to connect to VCCQ of memory module for better tracking with memory VCCQ.

OTHER SUPPLY VOLTAGES

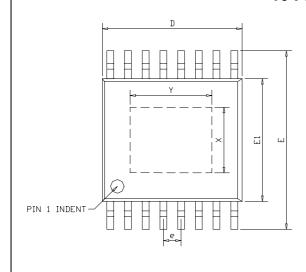

Several inputs are provided for the supply voltages: PVDD and VCCA

The PVDD provide the power supply to the power MOSFETs. VCCA provide the voltage supply to the logic section and internal error amplifiers of CM8501/A.

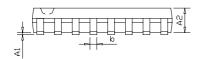

FEEDBACK

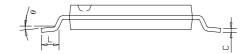
The VFB pin is an input that can be used for closed loop compensation. This input is derived from the voltage output. AGSEN pin is a contact node of internal resistor divider for remote sense (CM8501).

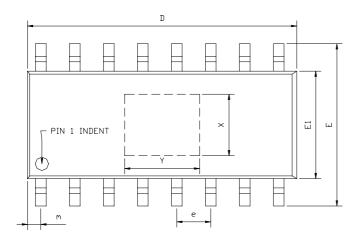
Suggested Layout GND Pad Dimension: to guarantee providing continuous sinking or sourcing current up to 2A.



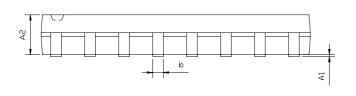
PACKAGE DIMENSION

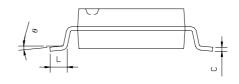

PACKAGE DIMENSION


16-PIN PTSSOP (PT16)


	DIMENSIO	NS IN MIL	LIMETERS	DIMENSIONS IN INCHS			
SYMBOLS	MIN	NOM	MAX	MIN	NOM	MAX	
A1	0.05		0.15	0.002		0.006	
A2	0.84		0.94	0.033		0.037	
b	0.20		0.30	0.008		0.012	
С	0.10		0.20	0.004		0.008	
D	4.88		5.13	0.192		0.202	
E	6.25		6.55	0.246		0.258	
E1	4.29		4.50	0.169		0.177	
е		0.65			0.026		
L	0.51		0.71	0.020		0.028	
θ	0°		8°	0°		8°	

EXPOSED PAD DIMENSION : (mm) PAD SIZE: X=2.4; Y=3.0




16-PIN PSOP (PS16)

SYMBOLS	DIMENSIO	NS IN MIL	LIMETERS	DIMENSIONS IN INCHS		
SIMBOLS	MIN	NOM	MAX	MIN	NOM	MAX
A1	0.05		0.15	0.002		0.006
A2	1.40		1.55	0.055		0.061
b	0.30		0.51	0.012		0.020
C	0.15		0.26	0.006		0.010
D	9.80		10.06	0.386		0.396
E	5.79		6.20	0.228		0.244
E1	3.76		4.01	0.148		0.158
e		1.27			0.050	
L	0.38		0.69	0.015		0.035
m	0.43		0.69	0.017		0.027
θ	0°		8°	0°		8°

EXPOSED PAD DIMENSION : (mm) PAD SIZE: X=2.3 ; Y=2.8

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

5F, No. 11, Park Avenue II, Science-Based Industrial Park, HsinChu City, Taiwan 300

TEL: +886-3-567 9979 FAX: +886-3-567 9909

http://www.champion-micro.com

Sales & Marketing

11F, No. 306-3, Sec. 1, Ta Tung Rd., Hsichih, Taipei Hsien, Taiwan 221

TEL: +886-2-8692 1591 FAX: +886-2-8692 1596