2ch. Read/Write Amplifier for Thin Film Head of Hard Disk Drive

Description

The CXA3188N is a Read/Write Amplifier for the thin film head of hard disk drive and designed to handle up to 2 channel heads.

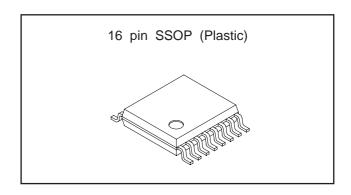
Features

- Operate on single +5 V power supply
- Low power consumption

Read: 90 mW

Write : 115 mW + $lw \times 5$

Idle: 8 mW


- Designed for two terminal thin-film or MIG heads.
- Read amplifier emitter follower output featuring 200 times gain(typ).
- Differential input capacitance for Read : 6pF (typ)
- Input noise : 0.47 nV / √Hz (typ)
- Write current range: 10 to 20 mA
- Differential Head voltage swing: 9 Vp-p (typ)
- Differential P-ECL write data input.
- Built-in write unsafe detection circuit.
- Built-in Servo write function.
- Read data outputs are high impedance in write mode.
- Unselected head voltage is high impedance.
- Self switching damping resistor 380 Ω .
- Built-in supply voltage monitor circuit prohibits incorrect write during power on or abnormal voltage.

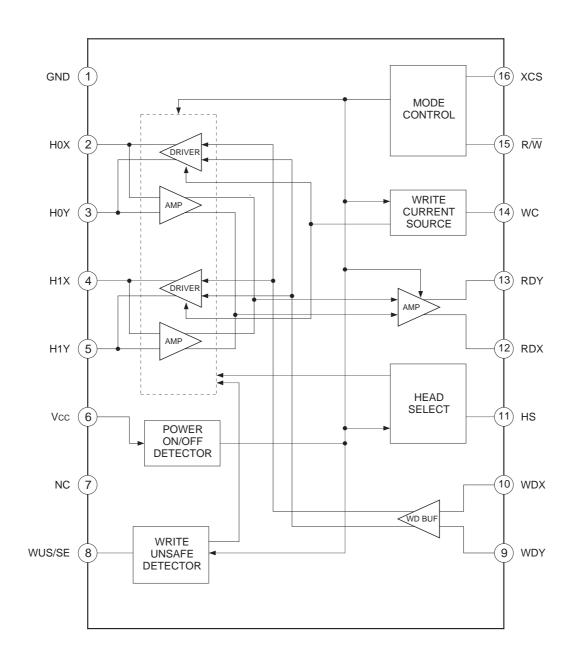
Function

Read, Write and Write unsafe detection for HDD, power supply ON/OFF detection.

Structure

Bipolar silicon monolithic IC

Absolute Maximum Ratings (Ta=25 °C)


 Supply voltage 	Vcc	6	V			
Operating temperature	Topr	-20 to +70	°C			
Storage temperature	Tstg	-55 to +150	°C			
 Allowable power dissipation (on board) 						
	PD	760	mW			
 Write current 	lw	22	mΑ			
• WUS/SE pin input curre	nt					
	ISEH	15	mΑ			

Operating Conditions

Supply voltage Vcc 5±0.5 V

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Block Diagram and Pin Configuration

Pin Description

No.	Symbol	Equivalent circuit	Description
1	GND		
2 3 4 5	H0X H0Y H1X H1Y	2 2k 2k 3 100k 3 GND	Head. 2 channels provided.
6	Vcc		5 V power supply.
7	NC		
8	WUS/SE	Vcc 8 GND	Write unsafe detection output / Servo Enable signal input.
9	WDY WDX	9 10 GND	Differential P-ECL write data input.

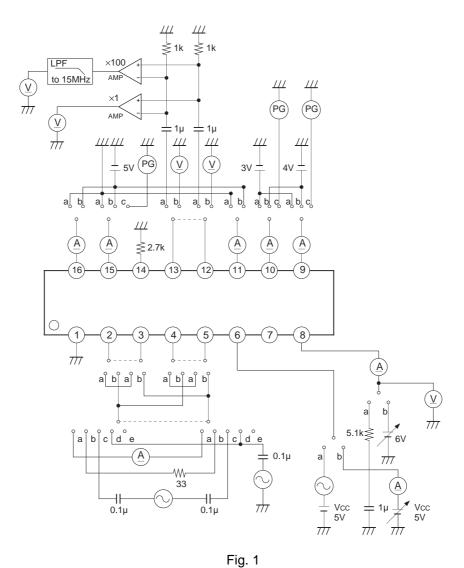
No.	Symbol	Equivalent circuit	Description
11	HS	Vcc 11 2.1V GND	Head select signal input. At "Low" : Head0 at "High" : Head1
12 13	RDY RDX	12 13 GND	Read amplifier output.
14	WC	Vcc Vcc Vcc School Vcc GND	A setting resistor for the write current value is connected between this pin and GND.
15	R/W	Vcc Vcc	Read/Write signal input. At "High": Read at "Low": Write
16	xcs	Vcc Vcc Vcc Vcc T6ND	Power save signal input At "High": Power saving.

Electrical Characteristics

(Unless otherwise specified, Vcc=5 V, Ta=25 °C, Write current lw=20 mA)

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit.
Current consumption for read	Iccr		11	18	25	mA
Current consumption for write	Iccw	lw=20 mA	14 +lw	23 +lw	33 +lw	mA
Current consumption for idle	Iccı		1.1	1.6	2.1	mA
Digital input "Low" input voltage	VIL				0.8	V
Digital input "High" input voltage	Vih		2.0			V
Digital input "Low" input current	lı∟	"H" applied voltage: 5 V	-100			μА
Digital input "High" input current	Іін	"L" applied voltage: 0 V			100	μA
Write data input current	lwd				50	μA
Write data input voltage range	Vwdv		Vcc-2.5		Vcc	V
WD input amplitude	Vwda		0.3		1	V
Power supply ON/OFF detector threshold voltage	Vтн		3.4	3.9	4.3	V
Write current setting range	lw		10		20	mAo-p
Write current voltage	Vwc		2.25	2.5	2.75	V
Write current gain	Aw	Iw=Aw • Vwc/Rwc	18	20	22	mA/mA
Write current setting constant	Kw	When write current is "Iw[mA]", Iw=Kw/Rwc. (Rwc=3.3 kΩ)	46	51	56	
Write unsafe output leak current	Iwus				50	μA
Write unsafe output Low voltage	VwusL	Output current: 1 mA			0.5	V
WUS/SE input current	Iseh	Servo write Enabled	5		14	mA
WUS/SE High input voltage	Vseh	Servo write Enabled	Vcc +1.5		Vcc +1.6	V

Item	Symbol	Test condition	Min.	Тур.	Max.	Unit.
Read amplifier differential voltage gain	A٧	Input voltage:1 mVp-p,300 kHz load resistor: (RDX, RDY) 1 k Ω	170	200	230	V/V
Frequency band width	Bw1	Frequency at which Av lower by 1dB	35	60		MHz
Trequency band width	Bw2	Frequency at which Av lower by 3dB	75	120		MHz
Input referred noise voltage	En	Head impedance: 0 Ω		0.47	0.65	$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Common mode rejection ratio	CMRR	Common input voltage: 100 mVp-p, 20 MHz	50			dB
Supply voltage rejection ratio	PSRR	Ripple voltage: 100 mVp-p, 20 MHz	50			dB
Channel Separation	CS	Selected head input voltage: 0 mVp-p Unselected head input voltage: 100 mVp-p, 20 MHz	50			dB
Read data output offset voltage for Read	Voff		-300		300	mV
RDX, RDY common mode output voltage difference between modes	Vdiff	Crd=0.1 µ	-300		300	mV
RDX, RDY common mode output voltage for Read	Vrd			Vcc -2.3		V


Unless otherwise specified, Vcc=5 V, Ta=25 °C, fwD (Write data frequency) =5 MHz, Iw=15 mA, LH (Head inductance) =1 μ H, RH (Head DC resistance value) =30 Ω

Item	Symbol	Measurement conditions	Min.	Тур.	Max.	Unit.
Head differential voltage amplitude	Vsw	Differential voltage between HX pin and HY pin at switching of Write current		9		Vp-p
Mode switching time Read to Write	Trw	TRW is the time required for Write current to turn to 90 % after Pin 15 changes from "High" to "Low".		0.13	0.3	μs
Mode switching time	Twr1	Twr1 is the time required for the Read amplifier output* to turn to 90 % after Pin 15 changes from "Low" to "High".		0.2	0.3	μs
Write to Read	Twr2	Twr2 is the time required for Write current to decreases to 10 % after Pin 15 changes from "Low" to "High".		0.1	0.3	μs
Mode switching time Power saving to Read	Tir	TIR is the time required for the Read amplifier output* to turn to 90 % after Pin 16 changes from "High" to "Low".			1	μs
Mode switching time safe to unsafe	Tsa1	Tsa1 is the time required for Pin 8 to turn "High" after the last transition of Write data when Write data is stopped in Write mode.		2.3	3.0	μs
Mode switching time unsafe to safe	Tsa2 is the time required for Pin 8 to turn "Low" after the first transition of Write data in Write				0.6	μs
Head switching time	Тн	TH is the time required for the Read amplifier output* to reach 90 % when the selected head switched in Read mode.			0.6	μs
Write current propagation delay time	Tpd	TPD is the time required for Write current to reach 90 % after the Write data falling edge.		2	7	ns
Write current rise/fall time	Tr/Tf	TR is the time required for Write current to reach 90 % from 10 %; TF is the same time required to reach 10 % from 90 %. LH=0 μ H, RH=0 Ω		1	3	ns

^{*}Read amplifier output 100 mVp-p 10 MHz

SONY CXA3188N

Test Circuit 1

Test Circuit 2

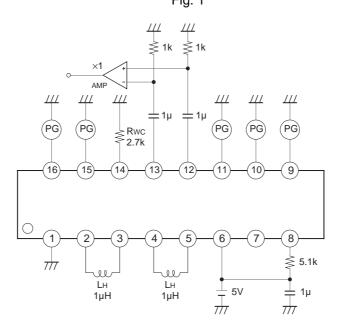


Fig. 2 —8—

Timing Chart 1

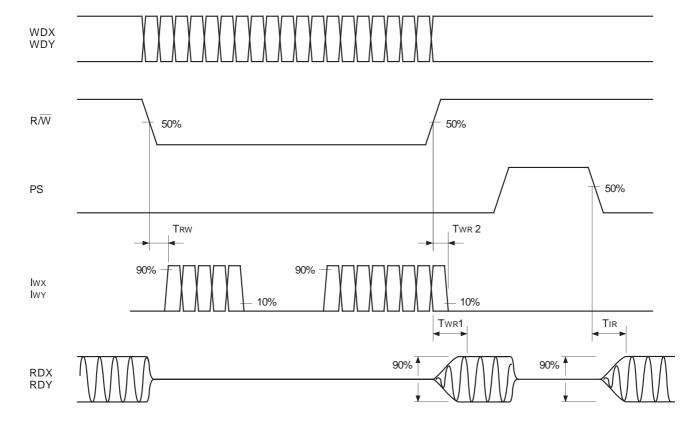


Fig. 3

Timing Chart 2

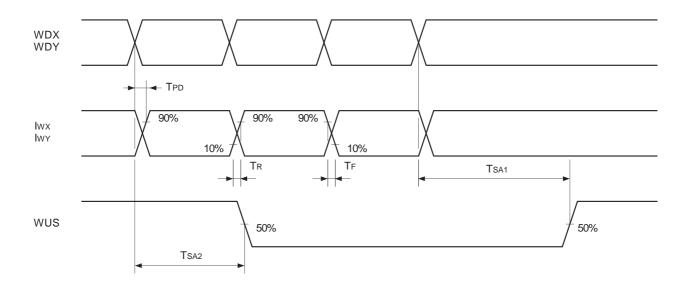


Fig. 4

Description of Functions

Read amplifier

This is a low noise amplifier for amplifying the signals from the heads with an emitter follower output.

The RDX and RDY are the outputs of the differential amplifier, the X side of the head input and RDX pin and the Y side of the head inputs and RDY pin have the same polarity.

Write circuit

The Write data input to WDX pin and WDY pin passes through the buffer amp. It drives the Write switch circuit which supplies the Write current to the heads.

The Write current flows into the X side when WDX is "Low" and WDY is "High".

Mode control

The mode are set as shown Table 1 by R/W and WUS/SE.

CS	R/W	WUS/SE	Mode
L	L	X	Write
L	Н	X	Read
L	L	**	Servo Write
Н	Х	Х	Power Save

Table 1. Mode selection

Servo write mode **

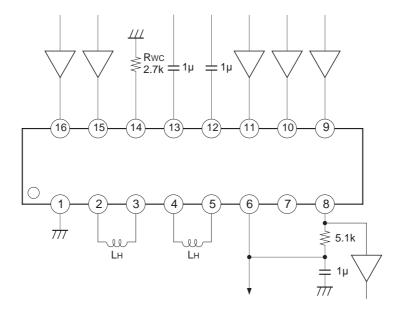
This mode allows for writing to multiple channels at once. In this mode the write driver will drive all channels simultaneously.

To enable servo write mode follow these steps:

- (1) Place the device in the Read mode.
- (2) Set WUS/SE to VSEH volts, or input ISEH to WUS/SE.
- (3) Initiate the write operation by setting R/W Low.

Write unsafe detection circuit

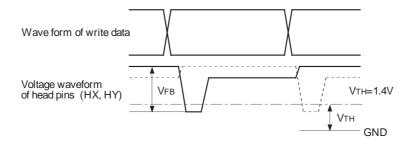
This circuit detects write errors.


In normal Write mode, the WUS output is low; in the conditions listed below, it is high.

- Head input is open (under the condition which R_H=∞ and Write data frequency is ≤ 10 MHz)
- Head input is shorted to GND or Vcc.
- Write data frequency is abnormally low.
- No Write current.
- In read mode.
- Supply voltage is abnormal (see "power supply ON/OFF detection").

Power supply ON/OFF detection

This circuit monitors Vcc to detect erroneous Writes. The error status is established when Vcc falls below the threshold voltage (VTH) of the power supply ON/OFF detector, in which case the recording and playback functions are prohibited. When Vcc rises above, VTH, the prohibition of these functions is released.

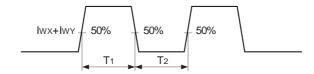

Application Circuit

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

Notes on operation

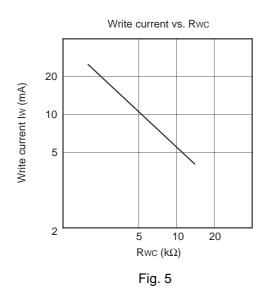
- This device handles high frequency and high gain signals. Please note the following;
 - ◆ Connect Vcc decoupling capacitor of approximately 1000 pF near the device.
 - Make the GND area as large as possible.
- The WC pin is a constant voltage pin. When noise affects this pin, it creates noise in Write current. Therefore, locate Rwc as close to the device as possible.
- Write unsafe detection circuit
 This circuit uses the voltage waveforms of the head pins for detection.

- ♦ VFB must be more than 2 V. When VFB < 2 V, it is possible that Write unsafe detection maximum frequency becomes more than 1 MHz.
- The normal operating area of write unsafe detection circuit is changed by head inductance, head DC resistance, write current and other.


Application Notes

Use the following characteristics for reference

Vcc=5 V, Ta=25 °C


	Item	Symbol	Condition	Min.	Тур.	Max.	Unit
Write mode	Differential output capacitance Co		Between head input pins		4.5	6	pF
write mode	Differential output resistance	R□	between nead input pins	250	380	490	Ω
	Differential input capacitance	Cı	Between head input pins		6	10	pF
Read mode	Differential input resistance	Rı	f=5MHz	0.4	1.2		kΩ
	Output resistance	RRD	RDX or RDY, f=5MHz		45	60	Ω
Unselected head differential current at write		lus	LH=2 μH, RH=30 Ω			0.2	m A n n
mode		108	Iw=15 mA			0.2	mAp-p
Write current symmetry		Tasy	LH=0 μH, RH=0 Ω	0.5		0.5	no
		TASY	Iw=15 mA	-0.5		0.5	ns

^{*}TAS=T1-T2

Setting of Write current

Write current can be set with resistor Rwc (k Ω) at Pin 14. Iw=K/Rwc (mA) Refer to Fig. 5.

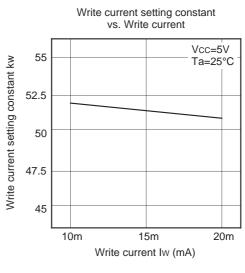
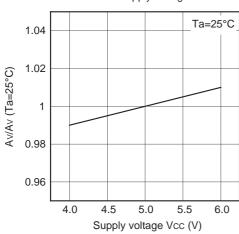
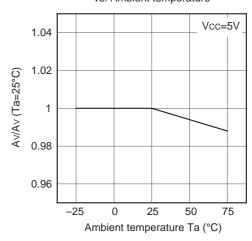
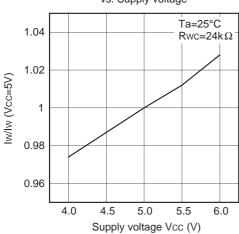
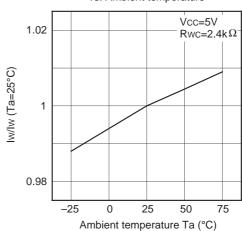
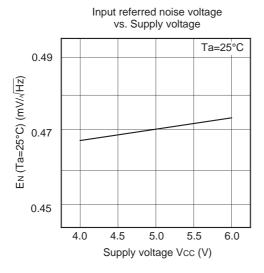




Fig. 6


Normalized read amplifier voltage gain vs. Supply voltage


Normalized read amplifier voltage gain vs. Ambient temperature



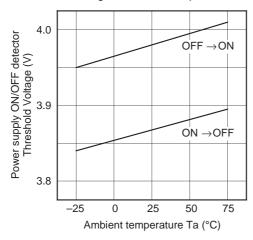
Normalized write current vs. Supply voltage

Normalized write current vs. Ambient temperature

Input referred noise voltage vs. Ambient temperature

0.55

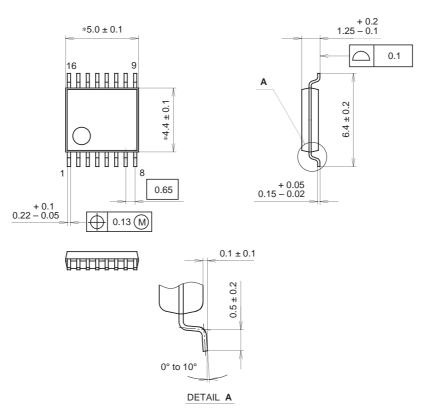
0.55


0.45

0.45

0.45

Ambient temperature Ta (°C)


Power supply ON/OFF detector threshold voltage vs. Ambient temperature

SONY CXA3188N

Package Outline Unit: mm

16PIN SSOP (PLASTIC)

NOTE: Dimension "*" does not include mold protrusion.

PACKAGE STRUCTURE

		PACKAGE MATERIAL	EPOXY RESIN
SONY CODE	SSOP-16P-L01	LEAD TREATMENT	SOLDER / PALLADIUM PLATING
EIAJ CODE	SSOP016-P-0044	LEAD MATERIAL	42/COPPER ALLOY
JEDEC CODE		PACKAGE MASS	0.1g

NOTE: PALLADIUM PLATING

This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).