System Controller for Compact Disc Players

For the availability of this product, please contact the sales office.

Description

The CXP1042Q is a 4-bit single chip microcomputer based on the SPC500 series. It incorporates programs in firmware for CD operations. It can be connected directly to the CDL-500 series of LSIs for CD players, and can directly drive LCDs, in addition to other features. It can be employed in a wide range of equipment, from deck-type CD players to radio cassettes and portable systems.

Functions

- Key inputs of up to 16 keys is possible through matrix scanning. The following functions can be selected by setting their respective keys.
- $\boldsymbol{\|}, \boldsymbol{I I}, \boldsymbol{\|}$
-

$\cdot \mu, \rightarrow 1$
,

- Repeat
- OPEN/CLOSE
- $\mathrm{A} \leftrightarrow \mathrm{B}$
- SHUFFLE
- PROG
- REMAIN
- INTRO
- AUTO
- MUSIC calendar
- REMOTE
- 10key
- Syncro
- $\times 2$
- Battery detection

PLAY/PAUSE/PLAY PAUSE keys
STOP key
SKIP key; on memory input, this becomes the tune selection key
Fast forward key; speed differs during PLAY and PAUSE
One tune or all tunes repeat
Loading function (when deck type device is selected)
$\mathrm{A} \leftrightarrow \mathrm{B}$ repeat function
Shuffle (random) function
Program; up to 21 tune memory, can indicate remainder
Indicates single tune or all tunes remaining, up to 31 tunes
Fixes introscan at 10 seconds
Sets auto space at 4 seconds
Can display up to 16 tunes
Enables input using NEC format remote control devices with modifiable custom codes Direct tune selection using keypad; selects tune on memory input (remote control only)
Synchronization input and processing
Double speed playback
When portable mode selected, there is battery detection function

- Simple adjustment of tracking gain/balance

Recommended Combinations

- RF amplifier/servo signal processor CXA1782B
- Digital signal processor

CXD2507A/2508A

- Pickup mechanism

KSL 2101

Structure

Silicon gate CMOS IC

[^0]
Features

- Can be connected directly to CDL-500 series LSIs for CD use
- Up to 16 keys can be connected directly; expansion of functions through addition of keys is possible

Types of Keys

*/** Multiple functions can be combined.

- LCDs can be driven directly. This includes time display, music calendar, remaining tunes and other display functions.
- NEC format remote control input possible; direct tune selection through keypad and other functions can be added.
- Supports auxiliary functions including synchronization input and double-speed playback.
- Easy switching between deck and portable equipment using external pins.
(i) With deck type selected, performs tray loading function.
(ii) With portable type selected, displays detection of weak battery and executes emergency termination when battery voltage is low.
In this way, it functions specific to the system required.
- An simple tracking gain/balance function is built-in, enabling adjustment of the tracking gain/balance according to the disc.

Pin Configuration and Pin Description

Pin No.	Symbol	Function code	I/O	
1	PY0	XLT	O	Latch output; connect to XLAT of CXD2507A/2508A
2	PY1	MODE	O	Setting scan output signal for microcomputer operation mode
3	PY2	FOK	I	Inputs focus condition; connect to CXA1782B FOK
4	PY3	SCOR	I	SCOR input; connect to CXD2507A/2508A SCOR
5	PX0	SQCK/CLK	O	SUB-Q reading clock output; 8-bit data clock output
6	PX1	DATA	O	8-bit data output
7	PX2	SENSE	I	Sense input (monitor for different systems); connect to CXD2507A/2508A SENS
8	PX3	SUBQ	I	SUB-Q code input port; connect to CXD2507A/2508A SQSO
9	PD0	GFS	I	Monitors disc state; connect to CXD2507A/2508A GFS
10	PD1	SYNC IN	I	Used to start the CD synchronously with external equipment (cassette deck, etc). Starts at falling edge (Z)
11	PD2	Disc IN*1/ OPEN	I	Switch to "L" when tray enters unit in deck mode, or when lid is closed in portable mode
12	PD3	Disc Out*1/ Batt-E	I	Switch to "L" when tray is open in deck mode, and when there are no batteries in portable mode
13	PC0	KI0	I	Key scan input port;

Pin No.	Symbol	Function code	I/O	Description
17	PB0	MUTG	O	Turns mute on when mute signal is " H "; turned on when unit is opened or stopped
18	PB1	MUT2	O	Turns mute on when "L", turned on when unit is opened, stopped, paused or accessed.
19	PB2	UNLOAD/ Batt-W	I/O	In deck mode, output to tray loading motor; in portable mode, output to battery warning display
20	PB3	$\begin{aligned} & \text { LOAD/ } \\ & \text { DECK-PT } \end{aligned}$	I/O	In deck mode, indicates tray loading motor operation; on "L" detection immediately after reset, performs portable mode branching
21	PAO	KSO	\bigcirc	Key scan output signal
22	PA1	KS1	O	
23	PA2	KS2	0	
24	PA3	KS3	0	
25	Vss	Vss		Connect to GND
26	N.C.	NC		Do not connect to anything
27	PE3	RS3	0	RMC customer code scan signal
28	PE2	RS2	0	
29	PE1	RS1	0	
30	PE0	RS0	0	
31	SEG19	-		Unused (do not connect to anything)
32	SEG18	SEG18	0	Connect to LCD (refer to LCD example)
33	SEG17	SEG17	0	
34	SEG16	SEG16	0	
35	SEG15	SEG15	0	
36	SEG14	SEG14	0	
37	SEG13	SEG13	0	
38	SEG12	SEG12	0	
39	SEG11	SEG11	0	
40	SEG10	SEG10	0	
41	SEG9	SEG9	0	
42	SEG8	SEG8	0	
43	SEG7	SEG7	0	
44	SEG6	SEG6	0	
45	SEG5	SEG5	0	
46	SEG4	SEG4	0	
47	SEG3	SEG3	0	
48	SEG2	SEG2	0	
49	SEG1	SEG1	0	
50	SEG0	SEG0	0	

$\begin{aligned} & \text { Pin } \\ & \text { No. } \end{aligned}$	Symbol	Function code	I/O	Description
51	COM3	COM3	0	Connect to LCD (refer to LCD example)
52	COM2	COM2	0	
53	COM1	COM1	O	
54	COM0	COM0	0	
55	VLC1			LCD bias power supply
56	VLC2			
57	VLC3			
58	VDD	VDD		VdD
59	VL		O	LCD bias power supply
60	XTAL	XTAL		Connect to a 2 MHz oscillator
61	EXTAL	EXTAL	1	Connect to a 2 MHz oscillator
62	$\overline{\text { RST }}$	Reset	I/O	Connect reset
63	WP		1	Not used (connect to Vss or Vid)
64	INT1	RMC	1	Connect to remote control input and remote control module

(Mentioned here after with Pin No./Function code.)
The expansion port of the CXD2507A/2508A is used to detect the LD on/off output, limit switch input and tray open/close input.

CXD2507A/2508A

Pin No.		Symbol	Function code	I/O	Description
2507 A	2508 A		I	Limit switch input. "L" when the pickup is at the innermost track.	
61	19	SPOB	LIMSW	O	LD on/off "L": on, "H": off At this point, switch the IC whose one driver output functions also as spindle loading motor output.
64	22	XLON	LDON	I	Goes "L" when the tray is fully opened.
63		SPOD	DISC OUT*2 (OPEN)	I	Goes "L" when the tray is closed.
62	20	SPOC	DISC IN*2 (CLOSE)	I8	SPOA

*1, *2
The tray switch is determined according to the state where Pin 2 (PY1/MODE) and Pin 16 ($\mathrm{PC} / / \mathrm{KI} 3$) is connected immediately after reset or not.

Connected: DSP expansion port used
Not connected: Microcomputer port used
However, use the microcomputer port when the OPEN/Batt-E function is employed for portable mode.
The selected mute (Pin 2 (PY1/MODE) or Pin 15 (PC2/KI2)) is used to identify which of the CXD2507A or CXD2508A is employed for DSP.
Therefore, select the suitable method for the used DSP.
CXD2508A: DAC mute selected
CXD2507A: DSP mute selected

REPEAT 11 ALL A" B SHUFFLE X2 PROGRAM 1234

Key Matrix

The CXP1042Q has the key matrix configuration shown below.

*Key combination mode

$\boxed{14}, \rightarrow$ key and REP key have the combination mode which combines the other keys' functions.

1. 1 U4, \rightarrow key combination mode

Combination mode is set when Pin 2 (MODE) and Pin 13 (KIO) is not connected with diode.
In this time,function.
2. REP key combination mode

Combination mode is set when Pin 2 (MODE) and Pin 14 (KI1) is not connected with diode.
In this time, REP combines SHL and PRG functions.

List of Functions

1. Deck/Portable select
2. Remote control input
3. $\Delta, \Pi, \square \Pi$,
4.

14,

5.
6. Remain
7. Repeat
8. $\mathrm{A} \leftrightarrow \mathrm{B}$
9. Shuffle
10. AUTO
11. INTRO
12. PROG
13. 1 to $10,+10$
14. Battery input
15. Sync rate input
16. Double-speed playback
17. Loading function
18. Key combining function

Switches between deck mode and portable mode. In deck mode the tray loading function is activated; in portable mode, the battery detection function is activated.

Accepts signals from a NEC format remote control unit. A 16-bit custom code can be selected.

Keys to initiate playing can be selected.

Performs tune selection.

Performs fast-forward and rewind. The speed differs during Play and Pause.

Can display Single Remain, All Remain, Program Remain.

For repetition of one or of all tunes.

For performance of $A \leftrightarrow B$ repeat.

Performed shuffled (random) playing.

Inserts 4-second blanks between tunes.

Plays the initial 10 seconds of a disc.

Enables programming of up to 21 tunes.

Enables direct tune selection using the keypad (for use with a remote control unit only).

A function for detection of reduced battery voltage is provided by the BattW and Batt-E pins (portable mode only).

For sync rate input and activation.

Double-speed playback is executed only when $\triangle \mathbb{\Delta} \rightarrow$ key is set to the independent mode and REP key to repeat key if sync rate input is made for stop.

With the deck mode selected, tray loading is possible.

The tune select and fast-forward keys can be combined or kept independent, and the repeat key and mode key can be selected.

1. Deck mode/portable mode selection

A feature of the CXP1042Q is its ability to be used in both deck-type and in portable equipment.
(a) Selection

Selection is executed through Pin 20 (LOAD/DECK-PT). Mode selection is determined by the condition of this pin immediately after reset of the CXP1042Q.

When Pin 20 (LOAD/DECK-PT) is high: Deck mode
When Pin 20 (LOAD/DECK-PT) is low: Portable/radio cassette mode
(b) Deck mode

- In deck mode the tray loading function is activated.
- Pins necessary for tray operation:

For the loading motor	For the tray SW
Pin 19 (UNLOAD/Batt-W) goes "H" when tray is ejected	Disc IN goes "L" when the tray is closed
Pin 20 (LOAD/DECK PT) goes "H" when tray is closed	Disc OUT goes "L" when tray is fully opened

The tray switch state is input from the microcomputer port or DSP port according to the microcomputer operation mode.

- The relation between Pin 19 (UNLOAD/Batt-W) and Pin 20 (LOAD/DECK-PT) is as follows.

State	Pin 19/UNLOAD	Pin 20/LOAD
Open (stopped)	H	H
LOAD direction	L	H
UNLOAD direction	H	L
Close completed (stopped)	H	H

(c) Portable mode

- In portable mode, when the lid is closed the operation changes to TOC reading.
- Pin 20 (LOAD/DECK-PT) should be held "L".
- Pin 11 (Disc IN/OPEN) should be connected to a switch that makes the pin go "L" when the lid is closed.
- Two pins used in deck mode can be employed to detect a reduced battery voltage.
- When Pin 19 (UNLOAD/Batt-W) is made "L" through the reduced voltage detection circuit, BATT] is displayed.
- In addition, when Pin 19 (UNLOAD/Batt-W) is "L", forcing Pin 12 (Disc OUT/Batt-E) "L" induces the STOP state.
- Input the Disc IN/OPEN and Disc OUT/Batt-E to the microcomputer port because the DSP expansion port can not be used for the portable mode.
(d) Selection of tray switch input port

The microcomputer port or DSP port can be selected for the tray switch input (Disc IN/OUT) according to the state where Pin 2 (MODE) and Pin $16(\mathrm{KI} 3)$ is connected immediately after reset or not.

Not connected: Microcomputer port used
Connected with diode: DSP port used
However, use the microcomputer port when the OPEN/Batt-E function is employed for portable mode.

Selection State of Operation Mode and Connection of Each Switch

Operation mode		Deck modeDSP expansion port used		Deck mode Microcomputer port used	Portable mode
		DSP: CXD2507A	DSP: CXD2508A		
	Pin 20 (LOAD/DEC-PT)	H	H	H	L
	Pin 2 (MODE) and Pin 16 (KI3)	Connected	Connected	Not connected	-
	Pin 2 (MODE) and Pin 15 (K12)	Connected	Not connected	-	-
등 0.0 0 0 0 0 0 0	Lid open switch	-	-	-	Microcomputer Pin 11 (Disc IN/OPEN)
	Battery switch	-	-	-	Microcomputer Pin 19 (UNLOAD/Batt-W)
	Detection switch without battery	-	-	-	Microcomputer Pin 12 (Disc OUT/Batt-E)
	Tray open switch	SPOD for DSP	SPOA for DSP	Microcomputer Pin 11 (Disc IN/OPEN)	-
	Tray close switch	SPOC for DSP	SPOC for DSP	Microcomputer Pin 12 Disc OUT/Batt-E)	-
	Limit switch	SPOB for DSP	SPOB for DSP	SPOB for DSP	SPOB for DSP

2. Selection of microcomputer operation mode

In the CXP1042Q, functions can be selected according to the state where Pin 2 (MODE) and Pins 13 to 16 (KIO to 3) are connected with diode immediately after reset or not.

Selection function	Tray switch Not connected: Microcomputer port Connected: DSP port	Mute Not connected: DAC mute Conected: DSP mute	REP key function Not connected: Combine mode Connected: Repeat key	Not connected: Combine mode Connected: Independent mode
Applicable pin	Pin 16 (KI3)	Pin 15 (KI2)	Pin 14 (KI1)	Pin 13 (KI0)

Example of connection

In this example, the microcomputer port and DSP mute (CXD2507A) is used for the tray switch, and the REP key is used as repeat key and $\$ / \rightarrow$ key is used in the combination mode.

- Tray switch selection

Connected: Input the content of tray switch from the DSP expansion port
Not connected: Input the content of tray switch from the microcomputer port

- Mute selection

Connected: DSP mute (select for the CXD2507A used)
Not connected: DAC mute (select for the CXD2508A used)

- $\boldsymbol{\boxed { } 4}, \triangle$ key function selection

Connected: $\boldsymbol{\pi 4} / \boxed{\pi 4}, \rightarrow / \rightarrow$ key independent mode

Operation for combination mode

Function differs depending on length of time pressed and state of operation

- In stopped state: Functions as $\boldsymbol{1 4}$, key regardless of the length of time pressed

If the length of time pressed for playback is:

- 0.5 seconds or less: Functions as $\boldsymbol{\boxed { 4 } , ~} \boldsymbol{\Delta}$ key
- Longer than 0.5 seconds: Functions as $\boldsymbol{4 4}, \Delta$ key
- REP key function selection

Connected: Functions as repeat key
Not connected: Functions as combination mode

Operation of combination mode

Function differs depending on the state of operation

- In stopped state: Functions as program key
- In normal playback state: Switches between single-tune repeat, all-tune repeat and tune shuffle
- In program playback state: Switches between single-tune repeat and all the programmed tunes repeat

Select the the independent mode for $\mathbf{1 4 4}, \boldsymbol{M}$ key and repeat key for REP key to execute the double-speed playback.

3. Mute function

The CXP1042Q has two mute pins, Pin 17 (MUTG...active high) and Pin 18 (MUT2...active low).
The command transferred to the DSP and the state of mute pin differ depending on the selected mute method when mute is turned on.

- DAC mute (CXD2508A used)

When "mute on" is requested, set Pin 18 (MUT2) active and then transfer the attenuate command (A00000h) to the DAC.
Only when "open/stop" is requested, set Pin 17 (MUTG) active after approximately 32 ms from the command transfer.

- DSP mute (CXD2507A used)

When "mute on" is requested, set Pin 17 (MUTG) and Pin 18 (MUT2) active and then transfer the mute command (A207F0h) to the DSP.

Note that A007F0h is transferred when mute is turned off both for DAC mute and DSP mute.

Timing chart for mute on

4. Remote control

Any NEC format remote control can be used. Please note that no other remote control units are supported.
(a) Format

(b) Custom code setting

16 bits of the custom code can be set.
(c) Remote control data

(Example: custom code "1234")
By forming a diode matrix, a single bit of data is created; adding a diode at each point sets that point to " 0 ". Please use the above example as a reference.

This matrix is read only immediately after the power is turned on.

$\mathrm{D} 7 \xrightarrow{\text { Code }} \mathrm{D} 0$	Contents	$\mathrm{D} 7 \stackrel{\text { Code }}{\text { D0 }}$	Contents
00000000	SHUFFLE	00010000	OPEN
00000001	Repeat	00010001	7
00000010	Remain	00010010	10
00000011	PROGRAM	00010011	-
00000100	INTRO	00010100	11
00000101	AUTO SPACE	00010101	8
00000110	$\mathrm{A} \leftrightarrow \mathrm{B}$	00010110	+10
00000111	-	00010111	9
00001000	-	00011000	-
0000010001	1	000011001	5
00001010	4	00011010	$\rightarrow 1$
000001011	II	00011011	6
000001100	-	000011100	-
000011001	4	000111001	2
000000111110	14	$\begin{array}{llllllll}0 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$	\rightarrow
00001111	\square	00011111	3

The data on the receiving end is as shown above and cannot be changed.
For the transmitting end, please refer to the specifications of the transmitting side chip.

5. To play in deck mode

(a) Turn the power on.

- If the tray is in the open state, a disc can be loaded.
- A focus search is performed, and if a disc is already loaded, the TOC is read.
- If a disc is not loaded, "disc" is displayed.
(b) When the TOC has been read

(c) To load a disc
- Press OPEN

(d) To play the disc
- Press \square or ΔI.

(e) To pause during playing
- Press \square or \triangle.

6. To play in portable mode

(a) Turn the power on.

- When the lid is open, no operation takes place.
- A focus search is performed, and if a disc is already loaded, the TOC is read.
- When no disc is loaded, "disc" is displayed.
(b) When the TOC has been read

(c) To load a disc
- Open the lid.

(d) To play the disc
- Press Δ or $\Delta \boldsymbol{I}$.
(e) To pause during playing
- Press \square or \triangle.

(f) To stop playing
- Press

Functions common to the deck mode and the portable/radio cassette mode.

7. To begin listening from a specific tune

- Press \rightarrow or $\$ \mathbf{T}$.
(Example: Sixth tune specified)
- If the keys are pressed continuously, the tune number continues to change.

- After a few seconds playing starts.

\rightarrow tune can be specified directly only by remote control.

Tunes 1 to 10 can be specified directly using the corresponding keys. For tunes following tune 10, the following procedure is used.

- Press +10 .
- Following this, press a key from 1 to 10 .
- If there are not more than 10 tunes on the disc, the +10 key is invalid.

8. To move to a desired place on the disc

- During play, press
or 4
- The player moves at high speed, emitting a small sound during play, or without emitting a sound during pause.

9. To check the time remaining on the disc

- Press Remain.
- When pressed once, the time remaining for the tune currently being played is displayed. When the tune being played is beyond the 32nd

- Pressing Remain once again causes the time remaining on the disc to be displayed.
- Pressing Remain once again restores the normal display.

10. To repeat a tune or tunes

- Press Repeat.
- Pressing once causes one tune to be repeated.
- Pressing once more causes all tunes to be repeated. In program playback mode, all the programmed tunes to be repeated.
- Pressing once more turns off Repeat mode.

11. $A \leftrightarrow B$ repeat function

Used to repeatedly play the part of the disc from a certain point A to a certain point B.

- At the starting point of the interval $A \leftrightarrow B$, press $A \leftrightarrow B$.
- At the ending point of the interval $A \leftrightarrow B$, once again press $A \leftrightarrow B$. On doing so, the interval $A \leftrightarrow B$ will be played repeatedly.
- To stop repeated $A \leftrightarrow B$ play, press $A \leftrightarrow B$ once again, or press Repeat.

12. To play tunes out of order (Shuffle)

- Press SHUFFLE.
- Press Δ or $\Delta I \mathbf{D}$.
- Play starts.
- If SHUFFLE is pressed during play, shuffled play starts from the end of the current tune.

13. To insert a 4-second blank between tunes

When dubbing onto tapes or in similar situations, it is sometimes necessary to insert blanks between tunes.

- Press AUTO.

- Pressing AUTO once more cancels the function.

Note) When playing the introduction and when
 is pressed, blank is not inserted.
14. To listen to the disc introduction only for 10 seconds

- Press INTRO.
- Pressing INTRO once more cancels the function.
- It is possible to play the introduction during Shuffle and Program operation also.
- In Repeat All mode, introduction play does not halt even when the last tune is reached, but is repeated.

15. Program play

Up to 21 tunes can be programmed for listening and played.
(a) Press PROG.

(b) Select a tune number using the \qquad and $\rightarrow 1$ keys. (The remote control 1 to 10 and +10 keys can also be used.)

(c) Press PROG.

Repeat steps (b) and (c) for all the tunes desired.

(d) Indicate that input is completed by pressing \square.
(e) When Remain is pressed while in state (b), the total remaining time is displayed while the key is pressed. By using the Ψ and Δ keys with the Remain key, the total play time can be checked while programming.
(f) If, among the tunes included in programming, any one or more tunes is numbered above 32 , the display shown on the right appears.

(g) Pressing Δ or Δ begins play.

(h) The music calendar of a tune disappears as the tune is completed.

(i) In the above state, pressing the Remain key causes the remaining time of the tune being played to display.

(j) If the tune being played is numbered above 32, the display shown on the right appears.

(k) During display of the remaining time of the current tune, if the Remain key is pressed once more the remaining time for all the programmed tunes is displayed.

(I) If any of the tunes remaining to be played is numbered above 32, the display shown on the right appears.

(m) To stop playing press

To play the previous program again, press PROG once more and set Memory mode. The contents of the previous program are stored and can be used again.
When the tray or lid is opened, the program contents are cleared.

16. Battery input (in portable mode)

Using pins: Pin 19 (UNLOAD/Batt-W)
Pin 12 (Disc OUT/Batt-E)

(a) When Batt-W is "L", the BATT lamp lights.
(b) When both Batt-W and Batt-E are "L", the unit is forced to stop, "disc" is displayed, and keys no longer function.

17. Sync rate function

This function is used to play the CD player in synchronization with the record key of a cassette deck.
Operation is triggered by (the falling edge), and differs depending on the state of the CD player.
(a) While stopped

The CD player enters the Play state, and starts after 4 seconds. During this time, double-speed playback is executed when
 key is set to the independent mode and REP key to repeat key.
(b) During play pause

The CD player pauses at the beginning of the current tune, and after 4 seconds begins playing.
(c) While open

When the tray is loaded, the player enters the Play state.
Output is not at double speed even for any operation mode.
(d) During shuffled play

Play is shuffled, and (a) and (b) are executed.

(e) During program play

Program play begins, and (a) and (b) are executed.

Absolute Maximum Ratings

$\left(\mathrm{Ta}=-20\right.$ to $\left.+75^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Item	Symbol	Rating	Unit	Remarks
Supply voltage	Vdd	-0.3 to +7.0	V	
LCD bias voltage	Vlc1, Vlc2, Vlc3	-0.3 to $+7.0^{* 1}$	V	
Input voltage	VIn	-0.3 to $+7.0^{* 1}$	V	
Output voltage	Vout	-0.3 to $+7.0^{* 1}$	V	
High level output current	IOH	-5	mA	General purpose port 1 pins*2
High level total output current	£ loh	-50	mA	Total for all output pins
Low level output current	lob	15	mA	General purpose port 1 pins*2
Low level total output current	Elol	50	mA	Total for all output pins
Operating temperature	Topr	-20 to +75	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$	
Allowable power dissipation	Pd	600	mW	QIP

*1 Vlc1, Vlc2, Vlc3, Vin and Vout must not exceed Vdd + 0.3V.
*2 PA to PD, PX0 to PX2, PY0, PY1 and, when the mask option port is selected, PE and PF.
Note) Usage exceeding absolute maximum ratings may permanently impair the LSI. Normal operation should be conducted under the recommended operating conditions. Exceeding these conditions may adversely affect the reliability of the LSI.

Recommended Operating Conditions
(Vss = 0V)

Item	Symbol	Min.	Max.	Unit	Remarks
Supply voltage	Vdd	3.5	5.5	V	
LCD bias voltage	Vlc1, Vlc2, Vlc3	Vss	Vdd	V	LCD power supply range*3
High level input voltage	VIH	0.7 Vdd	Vdd	V	
	Vihs	0.8Vdd	Vdd	V	Hysteresis input*4
	Vihex	Vdd - 0.4	VDD +0.3	V	EXTAL pin*5
Low level input voltage	VIL	0	0.3 Vdd	V	
	Vils	0	0.2 Vdd	V	Hysteresis input*4
	Vilex	-0.3	0.4	V	EXTAL pin*5
Operating temperature	Topr	-20	+75	${ }^{\circ} \mathrm{C}$	

*3 The optimum value will vary depending on the characteristics of the liquid crystal display.
*4 Each pin of INT1, WP, PX0, PX3, PY2, PY3, and RST.
*5 Specified only for external clock input.

Electrical Characteristics

DC characteristics

Item	Symbol	Pin	Conditions	Min.	Typ.	Max.	Unit
High level output voltage	Vон	PA to PE*1 PX0 to PX2 PYO, PY1 VL (Vol only) RST (Vol only)	VDD $=4.5 \mathrm{~V}$, Іон $=-10 \mu \mathrm{~A}$	4.0			V
			$\mathrm{VDD}=4.5 \mathrm{~V}, \mathrm{loH}=-200 \mu \mathrm{~A}$	2.4			V
Low level output voltage	Vol		$\mathrm{VDD}=4.5 \mathrm{~V}$, $\mathrm{loL}=1.8 \mathrm{~mA}$			0.4	V
			$\mathrm{V} \mathrm{DD}=4.5 \mathrm{~V}, \mathrm{loL}=3.6 \mathrm{~mA}$			0.6	V
Input current	ІІ	EXTAL*2	$\mathrm{V} D \mathrm{D}=5.5 \mathrm{~V}, \mathrm{VIH}=5.5 \mathrm{~V}$	0.5		40	$\mu \mathrm{A}$
	l\|LE		V DD $=5.5 \mathrm{~V}, \mathrm{~V}$ IL $=0.4 \mathrm{~V}$	-0.5		-40	$\mu \mathrm{A}$
	ILLR	$\overline{\mathrm{RST}}{ }^{* 3}$		-1.5		-400	$\mu \mathrm{A}$
	IIL	$\begin{aligned} & \text { PA to PF, } \\ & \text { PX0 to PX2, } \\ & \text { PY0, PY1 } \end{aligned}$				-2.0	mA
High impedance input/output leakage current	IIz	$\begin{aligned} & \text { PX3, PY2, } \\ & \text { PY3, INT1, } \\ & \text { WP } \end{aligned}$	$\mathrm{VDD}=5.5 \mathrm{~V}$			± 10	$\mu \mathrm{A}$
Common output impedance	Rсом	COM0 to COM3	$\begin{aligned} & \mathrm{VDD}=5 \mathrm{~V} \\ & \mathrm{~V} \mathrm{LC} 1=3.75 \mathrm{~V} \end{aligned}$		3	5	$\mathrm{k} \Omega$
Segment output impedance	Rseg	SEG0 to SEG19	$\begin{aligned} & \mathrm{V} \text { LC2 }=2.5 \mathrm{~V} \\ & \mathrm{~V} \text { LC3 }=1.25 \mathrm{~V} \end{aligned}$		5	15	k Ω
Supply current	IDD	VDD	$\mathrm{V} D \mathrm{~F}=5.5 \mathrm{~V}$ external clock, 1 MHz ; all output pins open		2	6	mA
	IDDSP						
	Idos						
Input pin capacitance	Cin	All pins other than VLC1 to VLC3, COM0 to COM3, SEG0 to SEG15, SEG16 to SEG19, Vdd, Vss	Clock 1MHz, OV for pins other than those measured.		10	20	pF

[^1]
AC Characteristics

(1) Clock timing

$$
\left(\mathrm{Ta}=-20 \text { to }+75^{\circ} \mathrm{C}, \mathrm{VDD}=3.5 \text { to } 5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)
$$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
System clock frequency	fc	XTAL EXTAL	Figs. 1, 2	2	2	MHz
System clock input pulse width	$\begin{aligned} & \mathrm{txL} \\ & \mathrm{txH} \end{aligned}$	EXTAL	Figs. 1, 2	90		ns
System clock input rise, fall times	tcR tcF				200	ns
Event count clock input pulse width	tel ten	PY3/EC	Fig. 3	tsys* +0.05		$\mu \mathrm{s}$
Event count clock input rise, fall times	$\begin{aligned} & \text { tER } \\ & \text { tEF } \end{aligned}$	PY3/EC	Fig. 3		20	ms

* tsys = 8/fc

Note) When accurately adjusting the frequency, conditions may differ from those of Fig. 2.

Fig. 1. Clock timing

Fig. 2. Clock applied conditions

Fig. 3. Event count clock timing
(2) Serial transfer
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V} d \mathrm{D}=3.5$ to $\left.5.5 \mathrm{~V}, \mathrm{Vss}=0 \mathrm{~V}\right)$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
Serial transfer clock ($\overline{\mathrm{SC}}$) cycle time	tkcy	$\overline{\mathrm{SC}}$	Input mode	tsys/4 + 1.42		$\mu \mathrm{s}$
			Output mode	tsys		$\mu \mathrm{s}$
Serial transfer clock ($\overline{\mathrm{SC}}$) high-low level width	tKH	$\overline{\mathrm{SC}}$	Input mode	tsys/8+0.7		$\mu \mathrm{s}$
			Output mode	tsys/2-1.6		$\mu \mathrm{s}$
Serial data input set-up time (relative to $\overline{\mathrm{SC}}$)	$\dagger_{\text {KL }}$	SI	$\overline{\mathrm{SC}}$ input mode	0.1		$\mu \mathrm{s}$
			$\overline{\mathrm{SC}}$ output mode	0.2		$\mu \mathrm{s}$
Serial data input hold time (relative to $\overline{\mathrm{SC}}$)	tsik	SI	$\overline{\mathrm{SC}}$ input mode	tsys/8 + 0.5		$\mu \mathrm{s}$
			$\overline{\mathrm{SC}}$ output mode	0.1		$\mu \mathrm{s}$
Time delay from $\overline{\mathrm{SC}}$ falling edge for high data output	$t_{\text {ksı }}$	SOB				$\mu \mathrm{s}$
Delay time from $\overline{\mathrm{SC}}$ falling edge for low data output	tкsob	SOB			tsys/8+0.5	$\mu \mathrm{s}$

Note) tsys=8/fc

Fig. 4. Serial transfer timing
(3) Others
$\left(\mathrm{Ta}=-20\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{VDD}=3.5$ to 5.5 V , $\left.\mathrm{Vss}=0 \mathrm{~V}\right)$

Item	Symbol	Pin	Conditions	Min.	Max.	Unit
External interruption high, low level width	tııH, tıIL	INT1	Edge detection mode	tsys +0.05		$\mu \mathrm{~s}$
Reset input low level width	trSL	RST		2 tsys		$\mu \mathrm{s}$

Note) tsys = 8/fc

Fig. 5. Interruption input timing

Fig. 6. $\overline{\operatorname{RST}}$ input timing

Package Outline

64PIN QFP(PLASTIC)

PACKAGE STRUCTURE

SONY CODE	QFP-64P-L01
EIAJ CODE	*QFP064-P-1420
JEDEC CODE	

PACKAGE MATERIAL	EPOXY RESIN
LEAD TREATMENT	SOLDER/PALLADIUM PLATING
LEAD MATERIAL	COPPER /42 ALLOY
PACKAGE WEIGHT	1.5 g

[^0]: Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

[^1]: *1 Pull-up resistances selected for each of pins PA to PF, PY0 and PY1.
 *2 Crystal or ceramic oscillator circuit selected.
 ${ }^{* 3}$ Pull-up resistance selected for the $\overline{\text { RST }}$ pin.

