

2-Mbit (128K x 16) Static RAM

Features

• Temperature Ranges

Commercial: 0°C to 70°C
 Industrial: -40°C to 85°C
 Automotive: -40°C to 125°C
 High speed: 55 ns and 70 ns

• 70-ns speed bin offered in both Industrial and Automotive grades

Wide voltage range: 2.7V-3.6V

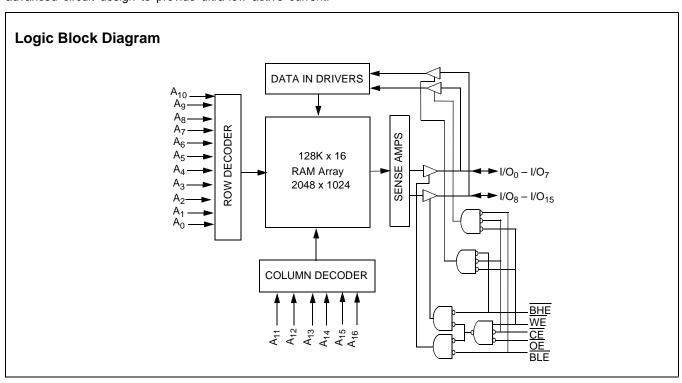
Ultra-low active, standby power
 Easy memory expansion with CE and OE features

• TTL-compatible inputs and outputs

· Automatic power-down when deselected

· CMOS for optimum speed/power

 Package available in a standard 44-pin TSOP Type II (forward pinout) package


Functional Description^[1]

The CY62136V is a high-performance CMOS static RAM organized as 128K words by 16 bits. This device features advanced circuit design to provide ultra-low active current.

This is ideal for providing More Battery LifeTM (MoBL[®]) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly reduces power consumption by 99% when addresses are not toggling. The device can also be put into standby mode when deselected (CE HIGH). The input/output pins (I/O₀ through I/O₁₅) are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), BHE and BLE are disabled (BHE, BLE HIGH), or during a write operation (CE LOW, and WE LOW).

Writing to the device is accomplished by taking Chip Enable ($\overline{\text{CE}}$) and Write Enable ($\overline{\text{WE}}$) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O $_0$ through I/O $_7$), is written into the location specified on the address pins (A $_0$ through A $_{16}$). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O $_8$ through I/O $_{15}$) is written into the location specified on the address pins (A $_0$ through A $_{16}$).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on I/O $_0$ to I/O $_7$. If Byte High Enable (BHE) is LOW, then data from memory will appear on I/O $_8$ to I/O $_{15}$. See the Truth Table at the back of this data sheet for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Product Portfolio

						Power Dissipation (Industrial)				
	V	_{CC} Range (V)			Operating, I _{CC} (mA)		Stan	dby, I _{SB2} (μA)	
Product	Min	Typ. ^[2]	Max	Speed	Grades	Typ. ^[2]	Maximum	Typ. ^[2]	Maximum	
CY62136VLL	2.7	3.0	3.6	55	Industrial	7	20	1	15	
				70	Industrial	7	15	1	15	
				70	Automotive	7	20	1	20	
CY62136VSL				55	Industrial	7	20	1	5	
				70	Industrial	7	15	1	5	

Pin Configurations[3]

TSOP II (Forward) Top View

A ₄ [1	44	Ь	A ₅
A ₃ [2	43	П	A_6
A_2	3	42	b	A ₇
A ₁ [4	41	Ы	ŌĒ
Ao E	5	40	П	BHE
CĔ	6	39	Ы	BLE
I/O ₀ [7	38	Ы	I/O ₁₅
I/O ₁ [8	37	Б	I/O ₁₄
I/O2 [9	36	Ы	I/O ₁₃
1/O ₃ [10	35	Ы	I/O ₁₂
V _{CC} [11	34	П	V _{SS}
V _{SS} [12	33	П	V _{CC}
I/O₄ [13	32	П	I/O ₁₁
1/O ₅ [14	31	П	I/O ₁₀
1/06 E	15	30		I/O ₉
1 <u>/07</u> [16	29	П	I/O ₈
WĖ	17	28	П	NC
A ₁₆ [18	27	Р	A ₈
A ₁₅ [19	26	Р	A_9
A ₁₄ [20	25	П	A ₁₀
A ₁₃ [21	24	Ц	A_{11}
A ₁₂	22	23	μ	NC

^{2.} Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC} Typ, T_A = 25°C.

3. NC pins are not connected on the die

Maximum Ratings

(Above which the useful life may be impaired. For user guide-lines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied-55°C to +125°C

Supply Voltage to Ground Potential-0.5V to +4.6V

DC Voltage Applied to Outputs
in High-Z State^[4]-0.5V to V_{CC} + 0.5V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Tempera- ture[T _A] ^[6]	V _{cc}
Industrial	–40°C to +85°C	2.7V to 3.6V
Automotive	-40°C to +125°C	

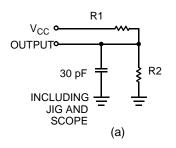
Electrical Characteristics Over the Operating Range

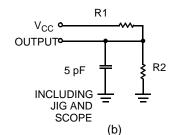
DC Input Voltage^[4].....-0.5V to V_{CC} + 0.5V

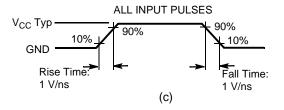
						′62136 \	/-55	CY			
Parameter	Description	Test Conditions			Min.	Typ. ^[2]	Max.	Min.	Typ. [2]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	$V_{CC} = 2.7V$		2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	$V_{CC} = 2.7V$				0.4			0.4	V
V _{IH}	Input HIGH Voltage		$V_{CC} = 3.6V$		2.2		V _{CC} + 0.5V	2.2		V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage		$V_{CC} = 2.7V$		-0.5		8.0	-0.5		0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$		Industrial	-1		+1	-1		+1	μА
				Automotive				-10		+10	μА
l _{OZ}	Output Leakage	$GND \leq V_O \leq V_{CC}$		Industrial	-1		+1	-1		+1	μА
	Current	Output Disabled		Automotive				-10		+10	μА
I _{CC}	V _{CC} Operating	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.6V$,			7	20		7	15	mA
	Supply Current		I _{OUT} = 0 mA, CMOS	Automotive					7	20	mA
	Carrent	f = 1 MHz,	Levels			1	2		1	2	mA
I _{SB1}	Automatic CE Power-down Current— CMOS Inputs	$\label{eq:center_constraints} \begin{split} & CE \geq V_{CC} - 0.3V, \\ & V_{IN} \geq V_{CC} - 0.3V \text{ or } \\ & V_{IN} \leq 0.3V, f = f_{MAX} \end{split}$					100			100	μА
I _{SB2}	Automatic CE	$CE \ge V_{CC} - 0.3V$	$V_{CC} = 3.6V$	Industrial(LL)		1	15		1	15	μА
	Power-down Current— CMOS	$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, $f = 0$		Industrial(SL)		1	5		1	5	μА
	Inputs	V IIV <u>~</u> 0.0 v, 1 = 0		Automotive					1	20	μА

Thermal Resistance

Parameter	Description	Test Conditions	TSOPII	Unit
Θ_{JA}	[6]	Still Air, soldered on a 4.25 x 1.125 inch, 4-layer printed circuit board	60	°C/W
$\Theta_{\sf JC}$	Thermal Resistance (Junction to Case) ^[5]		22	°C/W


Capacitance^[5]

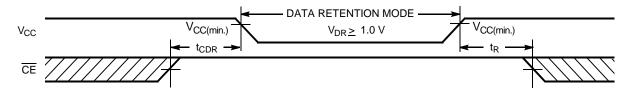

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ)}$	8	pF


- 4. $V_{IL}(min) = -2.0V$ for pulse durations less than 20 ns.
- 5. Tested initially and after any design or process changes that may affect these parameters.
- 6. T_A is the "Instant-On" case temperature.

AC Test Loads and Waveforms

Equivalent to:

THÉVENIN EQUIVALENT



Parameters	3.0V	Unit
R1	1105	Ohms
R2	1550	Ohms
R _{TH}	645	Ohms
V _{TH}	1.75	Volts

Data Retention Characteristics (Over the Operating Range)

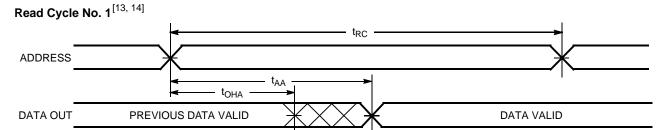
Parameter	Description	Conditions ^[8]		Min.	Typ. ^[2]	Max.	Unit
V_{DR}	V _{CC} for Data Retention			1.0		3.6	V
I _{CCDR}	Data Retention Current	V_{CC} = 1.0V, $\overline{CE} \ge V_{CC} - 0.3V$, $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$, No input may exceed $V_{CC} + 0.3V$	LL SL		0.5	7.5 5	μА
t _{CDR} ^[5]	Chip Deselect to Data Retention Time			0			ns
t _R ^[7]	Operation Recovery Time			70			ns

Data Retention Waveform

Switching Characteristics Over the Operating Range [8]

		55	5 ns	70		
Parameter	Description	Min.	Max.	Min.	Max.	Unit
Read Cycle	•	•	•			
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low-Z ^[9]	5		5		ns

- 7. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100$ ms or stable at $V_{CC(min)} \ge 100$ ms.


 8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to V_{CC} typ., and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZCE} is less than t_{LZCE}, and t_{HZWE} is less than t_{LZWE} for any given device. 10. t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in (b) of AC Test Loads. Transition is measured ±500 mV from steady-state voltage.

Switching Characteristics Over the Operating Range (continued)^[8]

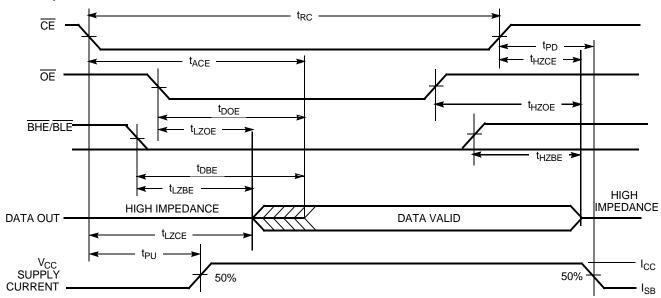
		55	5 ns	70			
Parameter	Description	Min.	Max.	Min.	Max.	Unit	
t _{HZOE}	OE HIGH to High-Z ^[9, 10]		25		25	ns	
t _{LZCE}	CE LOW to Low-Z ^[9]	10		10		ns	
t _{HZCE}	CE HIGH to High-Z ^[9, 10]		25		25	ns	
t _{PU}	CE LOW to Power-up	0		0		ns	
t _{PD}	CE HIGH to Power-down		55		70	ns	
t _{DBE}	BLE / BHE LOW to Data Valid		25		35	ns	
t _{LZBE}	BLE / BHE LOW to Low-Z ^[9, 10]	5		5		ns	
t _{HZBE}	BLE / BHE HIGH to High-Z ^[11]		25		25	ns	
Write Cycle ^[11, 12]		- 1	•	· ·	l .	1	
t _{WC}	Write Cycle Time	55		70		ns	
t _{SCE}	CE LOW to Write End	45		60		ns	
t _{AW}	Address Set-up to Write End	45		60		ns	
t _{HA}	Address Hold from Write End	0		0		ns	
t _{SA}	Address Set-up to Write Start	0		0		ns	
t _{PWE}	WE Pulse Width	40		50		ns	
t _{BW}	BLE / BHE LOW to Write End	50		60		ns	
t _{SD}	Data Set-up to Write End	25		30		ns	
t _{HD}	Data Hold from Write End	0		0		ns	
t _{HZWE}	WE LOW to High-Z ^[9, 10]		20		25	ns	
t _{LZWE}	WE HIGH to Low-Z ^[9]	5		10		ns	

Switching Waveforms

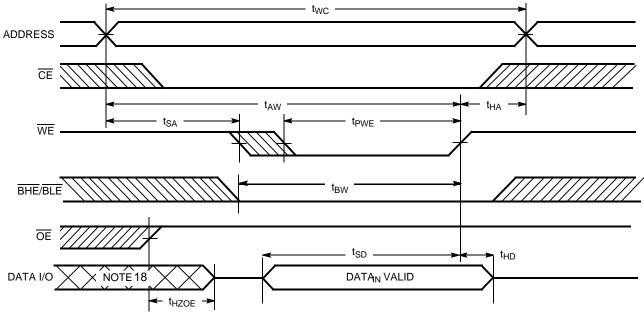
- Notes:

 11. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

 12. The minimum write cycle time for write cycle 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.


 13. Device is continuously selected. OE, CE = V_{IL}.

 14. WE is HIGH for read cycle.



Switching Waveforms (continued)

Read Cycle No. 2 [14, 15]

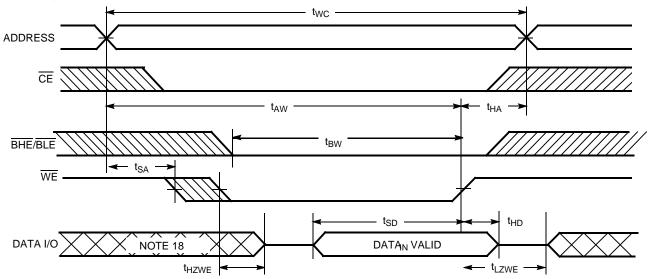
Write Cycle No. 1 (WE Controlled) [11, 16, 17]

- 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.

 16. Data I/O is high impedance if $\overline{\text{OE}} = \text{V}_{\text{IH}}$.

 17. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

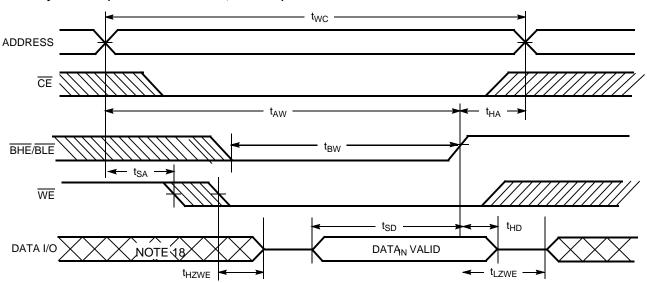
 18. During this period, the I/Os are in output state and input signals should not be applied.

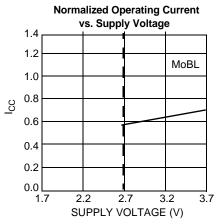

DATA I/O-

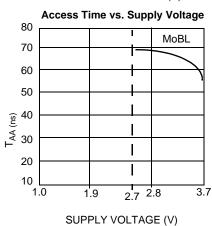
Switching Waveforms (continued)

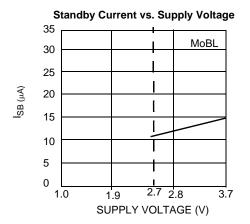
Write Cycle No. 2 (CE Controlled) ADDRESS CE t_{SCE} t_{SCE} t_{BHE/BLE} t_{PWE}

DATAN VALID






Switching Waveforms (continued)


Write Cycle No. 4 (BHE/BLE Controlled, OE LOW)[18]

Typical DC and AC Characteristics

Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Χ	High-Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	L	L	Data Out (I/O _O -I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O -I/O ₇); I/O ₈ -I/O ₁₅ in High-Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Read	Active (I _{CC})
L	Н	L	Н	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High-Z	Deselect/Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O -I/O ₁₅)	Write	Active (I _{CC})
Ĺ	L	Х	Н	L	Data In (I/O _O –I/O ₇); I/O ₈ –I/O ₁₅ in High-Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High-Z	Write	Active (I _{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
55	CY62136VLL-55ZSI	ZS44	44-pin TSOP II	Industrial
	CY62136VSL-55ZSI			Industrial
70	CY62136VLL-70ZSI			Industrial
	CY62136VLL-70ZSE			Automotive
	CY62136VSL-70ZSI			Industrial

Package Diagrams

DIMENSION IN MM (INCH) 44-pin TSOP II ZS44 PIN 1 LD. <u>ÉARRARARARARARAAAA</u> 888888888888888888888 EJECTOR PIN TOP VIEW BOTTOM VIEW 0.800 BSC BASE PLANE 18.517 (0.729) 18.313 (0.721) 0.597 (0.0235) 0.406 (0.0160) SEATING PLANE 51-85087-*A

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the products of their respective holders.

Document History Page

Document Title: CY62136V MoBL [®] 2-Mbit (128K x 16) Static RAM Document Number: 38-05087						
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change		
**	107347	05/25/01	SZV	Changed from Spec #: 38-00728 to 38-05087		
*A	116509	09/04/02	GBI	Added footnote 1 Added SL power bin Deleted fBGA package; replacement fBGA package available in CY62136CV30		
*B	269729	See ECN	SYT	Added Automotive Information for 70-ns Speed Bin. Added Footnotes # 3 and # 6. Corrected Typo in Electrical Characteristics for I _{CC} (Max)-55 ns from 15 to 20 mA. Added SL row for I _{SB2} in the Electrical Characteristics table. Changed Package Name from Z44 to ZS44. Replaced 'Z' with 'ZS' in the Ordering Code.		