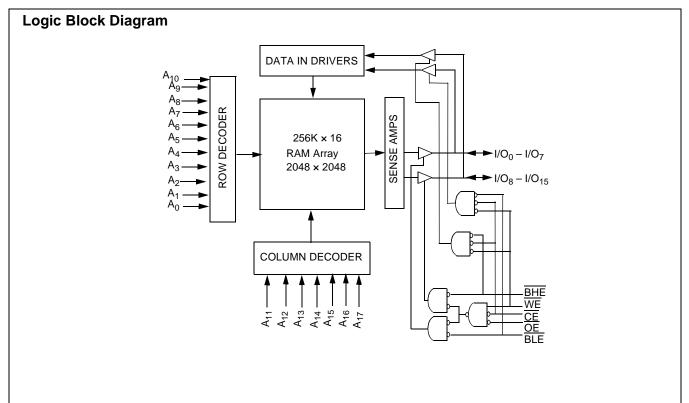


256K x 16 Static RAM

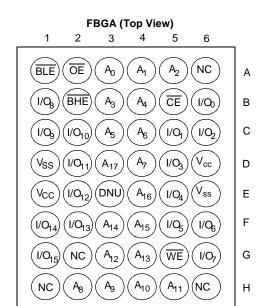
Features

- · High speed:
 - 55 ns and 70 ns availability
- Voltage range:
 - CY62146CV30: 2.7V 3.3V
- Pin compatible with CY62146V
- Ultra-low active power
 - Typical active current: 1.5 mA @ f = 1 MHz
 - Typical active current: 7 mA @ f = f_{max} (70 ns speed)
- Low standby power
- Easy memory expansion with CE and OE features
- · Automatic power-down when deselected
- CMOS for optimum speed/power

Functional Description


The CY62146CV30 is a high-performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life™ (MoBL™) in portable applications such as cellular telephones. The device also has an automatic power-down feature that significantly

reduces power consumption by 80% when addresses are not toggling. The device can also be put into standby mode reducing power consumption by 99% when deselected (CE HIGH). The input/output pins $(I/O_0 - I/O_{15})$ are placed in a high-impedance state when: deselected (CE HIGH), outputs are disabled (OE HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a Write operation (CE LOW and WE LOW).


Writing to the device is accomplished by taking Chip Enable (CE) and Write Enable (WE) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from I/O pins $(I/O_0 - I/O_7)$, is written into the location specified on the address pins $(A_0 - A_{17})$. If Byte High Enable (BHE) is LOW, then data from I/O pins $(I/O_8 - I/O_{15})$ is written into the location specified on the address pins (A₀ – A₁₇).

Reading from the device is accomplished by taking Chip Enable (CE) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on $I/O_0 - I/O_7$. If Byte High Enable (\overline{BHE}) is LOW, then data from memory will appear on I/O₈ to I/O₁₅. See the Truth Table on page 9 for a complete description of Read and Write modes.

The CY62146CV30 is available in 48-ball FBGA packaging.

Product Portfolio

						Power Dissipation (Industrial)						
Product	V _{CC} Range		V _{CC} Range		V _{CC} Range		Operating, I _{CC}				- Standby (I _{SB2})	
Fioduct				Speeu	f = 1 MHz		f = f _{max}		Ctanaby (ISB2)			
	V _{CC(min.)}	V _{CC(typ.)} ^[3]	V _{CC(max.)}		Typ. ^[3]	Max.	Typ. ^[3]	Max.	Typ . ^[3]	Max.		
CY62146CV30	2.7V	3.0V	3.3V	55 ns	1.5 mA	3 mA	12 mA	25 mA	7 uA	15 μΑ		
01021400730	Z.7 V	3.00 3.30		70 ns	1.5 mA	3 mA	7 mA	15 mA	7 μΑ	15 μΑ		

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature-65°C to +150°C

Ambient Temperature with

Power Applied......–55°C to +125°C

Supply Voltage to Ground Potential...-0.5V to $V_{ccmax} + 0.5V$

DC Input Voltage ^[4]	-0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200 mA

Operating Range

Device	Range	Ambient Temperature	V _{CC}
CY62146CV30	Industrial	-40°C to +85°C	2.7V to 3.3V

Notes:

- NC pins are not connected to the die.
 E3 (DNU) can be left as NC or V_{SS} to ensure proper application.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ.)}, T_A = 25°C.
- 4. $V_{IL(min.)} = -2.0V$ for pulse durations less than 20 ns.

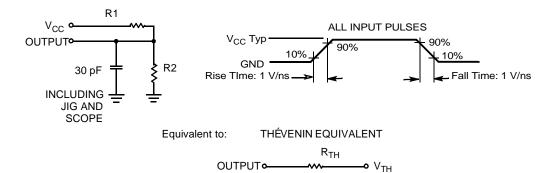
Electrical Characteristics Over the Operating Range

Parame-					-55			-70		
ter	Description	Test Con	ditions	Min.	Typ. ^[3]	Max.	Min.	Typ. [3]	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -1.0 \text{ mA}$	V _{CC} = 2.7V	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1mA	V _{CC} = 2.7V			0.4			0.4	V
V _{IH}	Input HIGH Voltage			2.2		V _{CC} + 0.3V	1.8		V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage			-0.3		0.8	-0.3		0.8	V
I _{IX}	Input Leakage Current	$GND \le V_1 \le V_{CC}$		-1		+1	-1		+1	μΑ
I _{OZ}	Output Leakage Cur- rent	$GND \leq V_O \leq V_CC,$	$GND \le V_O \le V_{CC}$, Output Disabled			+1	– 1		+1	μΑ
	V _{CC} Operating Supply	$f = f_{MAX} = 1/t_{RC}$	$V_{CC} = 3.3V$		12	25		7	15	
Icc	Current	f = 1 MHz	I _{OUT} = 0 mA CMOS Levels		1.5	3		1.5	3	mA
I _{SB1}	Automatic CE Pow- er-Down Current— CMOS Inputs	$\overline{CE} \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$, $V_{$			7	15		7	15	μА
I _{SB2}	Automatic CE Pow- er-Down Current— CMOS Inputs	$\overline{\text{CE}} \ge V_{\text{CC}} - 0.2V$ $V_{\text{IN}} \ge V_{\text{CC}} - 0.2V$ $f = 0, V_{\text{CC}} = 3.3V$	$\overline{CE} \ge V_{CC} - 0.2V$ $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$,							-

Capacitance^[5]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz},$	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = V_{CC(typ.)}$	8	pF

Thermal Resistance


Description	Test Conditions	Symbol	BGA	Units
Thermal Resistance (Junction to Ambient) ^[5]	Still Air, soldered on a 4.25 × 1.125 inch, four-layer printed circuit board	Θ_{JA}	55	°C/W
Thermal Resistance (Junction to Case) ^[5]		$\Theta_{\sf JC}$	16	°C/W

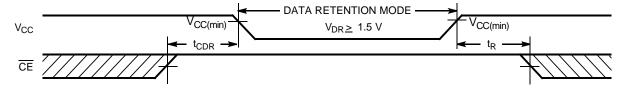
Note:

^{5.} Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Parameters	3.0V	Unit
R1	1.105	KOhms
R2	1.550	KOhms
R _{TH}	0.645	KOhms
V _{TH}	1.75V	Volts

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	Conditions	Min.	Typ. ^[3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention		1.5		V _{ccmax}	V
I _{CCDR}	Data Retention Current	V_{CC} = 1.5V $CE \ge V_{CC} - 0.2V$, $V_{IN} \ge V_{CC} - 0.2V$ or $V_{IN} \le 0.2V$		3	10	μΑ
t _{CDR} ^[5]	Chip Deselect to Data Retention Time		0			ns
t _R ^[6]	Operation Recovery Time		t _{RC}			ns

Note:

^{6.} Full device AC operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min.)} > 100 \mu s$ or stable at $V_{CC(min.)} > 100 \mu s$.

Data Retention Waveform

Switching Characteristics Over the Operating Range^[7]

			55	-7		
Parameter	Description	Min	Max	Min	Max	Unit
READ CYCLE	•	1		•	•	•
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE LOW to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[8]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[8,10]		20		25	ns
t _{LZCE}	CE LOW to Low Z ^[8]	10		10		ns
t _{HZCE}	CE HIGH to High Z ^[8, 10]		20		25	ns
t _{PU}	CE LOW to Power-Up	0		0		ns
t _{PD}	CE HIGH to Power-Down		55		70	ns
t _{DBE}	BHE / BLE LOW to Data Valid		25		35	ns
t _{LZBE} [9]	BHE / BLE LOW to Low Z	5		5		ns
t _{HZBE}	BHE / BLE HIGH to High Z		20		25	ns
WRITE CYCLE ^[11]		1	1			•
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE LOW to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	45		50		ns
t _{BW}	BHE / BLE Pulse Width	50		60		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End					ns
t _{HZWE}	WE LOW to High Z ^[8, 10]		20		25	ns
t _{LZWE}	WE HIGH to Low Z ^[8]	5		5		ns
Notes:	•	1		1		

Test conditions assume signal transition time of 5 ns or less, timing reference levels of V_{CC(typ.)}/2, input pulse levels of 0 to V_{CC(typ.)}, and output loading of the specified I_{OL}/I_{OH} and 30 pF load capacitance.

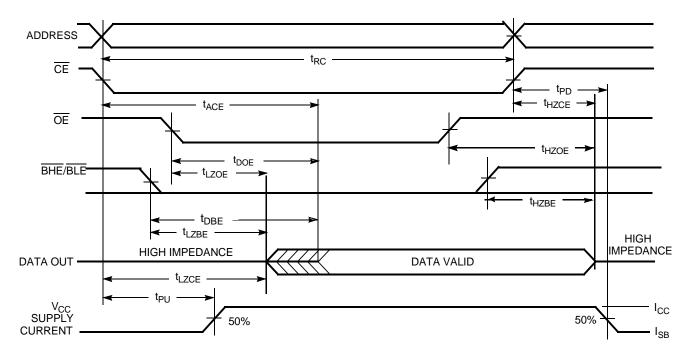
At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZOE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, t_{HZDE} for

any given device.

9. If both byte enables are toggled together, this value is 10 ns.


10. t_{HZOE}, t_{HZDE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a high-impedance state.

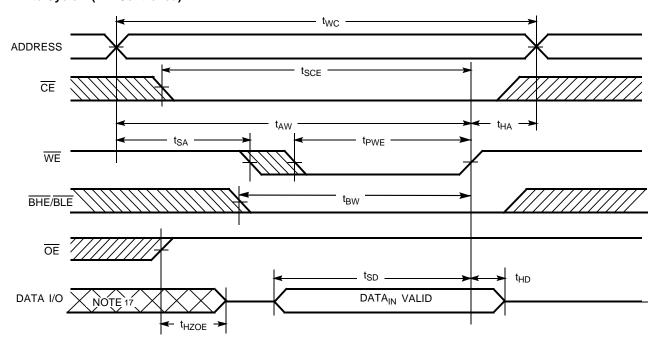
11. The internal Write time of the memory is defined by the overlap of WE, CE = V_{IL}, BHE and/or BLE = V_{IL}. All signals must be ACTIVE to initiate a Write and any of these signals can terminate a Write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the Write.



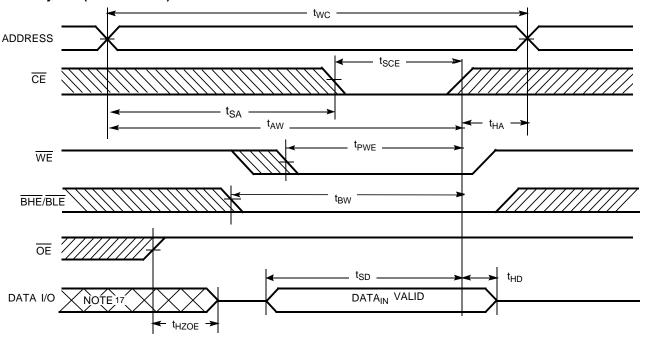
Switching Waveforms

Read Cycle 1 (Address Transition Controlled) $^{[12,\ 13]}$

Read Cycle 2 (OE Controlled) [13, 14]


Notes:

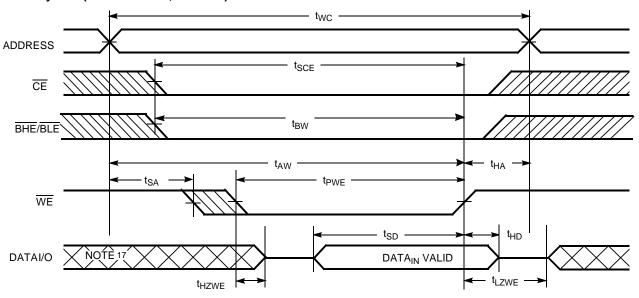
- Device is continuously selected. OE, CE = V_{IL}, BHE, BLE = V_{IL}.
 WE is HIGH for Read cycle.
 Address valid prior to or coincident with CE, BHE, BLE transition LOW.



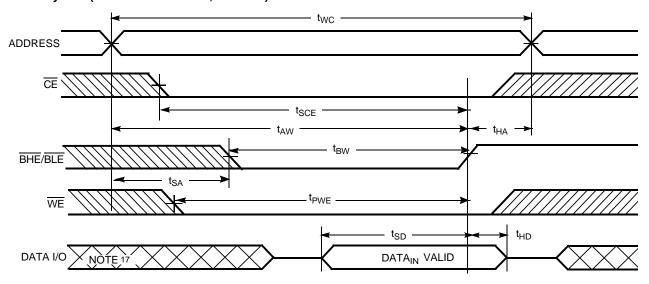
Switching Waveforms (continued)

Write Cycle 1 (WE Controlled) [11, 15, 16]

Write Cycle 2 (CE Controlled) [11, 15, 16]


Notes:

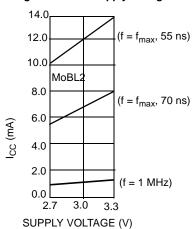
- 15. Data I/O is high-impedance if OE = V_{IH}.
 16. If CE goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
 17. During this period, the I/Os are in output state and input signals should not be applied.

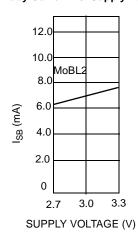


Switching Waveforms (continued)

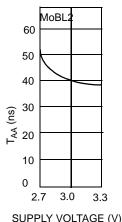
Write Cycle 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [16]

Write Cycle 4 (BHE/BLE Controlled, OE LOW)[16]




Typical DC and AC Parameters

(Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ.)}$, $T_A = 25^{\circ}C$.)


Operating Current vs. Supply Voltage

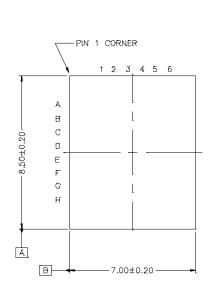
Standby Current vs. Supply Voltage

Access Time vs. Supply Voltage

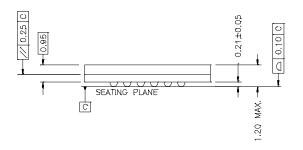
SUPPLY VOLTAGE (V)

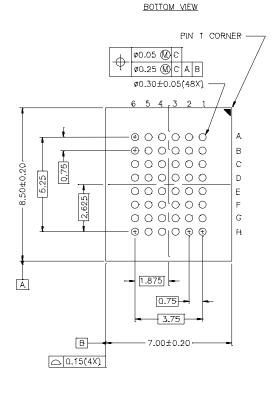
Truth Table

CE	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	L	L	L	Data Out (I/O _O – I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data Out (I/O _O – I/O ₇); I/O ₈ – I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data Out ($I/O_8 - I/O_{15}$); $I/O_0 - I/O_7$ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	L	Х	L	L	Data In (I/O _O - I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data In (I/O _O – I/O ₇); I/O ₈ – I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data In (I/O ₈ – I/O ₁₅); I/O ₀ – I/O ₇ in High Z	Write	Active (I _{CC})



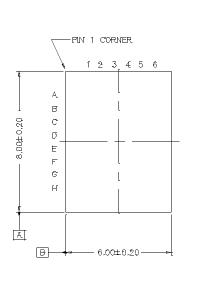
Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62146CV30LL-70BAI	BA48B	48-ball Fine Pitch BGA (7 mm \times 8.5 mm \times 1.2 mm)	Industrial
	CY62146CV30LL-70BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8 mm × 1 mm)	
55	CY62146CV30LL-55BAI	BA48B	48-ball Fine Pitch BGA (7 mm x 8.5 mm x 1.2 mm)	
	CY62146CV30LL-55BVI	BV48A	48-ball Fine Pitch BGA (6 mm × 8 mm × 1 mm)	

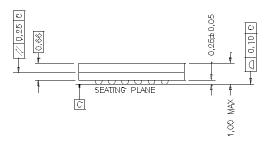

Package Diagrams

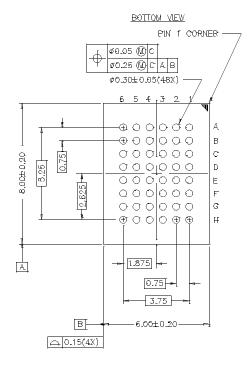
48-Ball (7.00 mm x 8.5 mm x 1.2 mm) Thin BGA BA48B

TOP VIEW


51-85106-*C

Document #: 38-05203 Rev. **




Package Diagrams (continued)

48-ball (6.0 mm × 8.0 mm × 1.0 mm) Fine Pitch BGA BV48A

TOP VIEW

51-85150-**

MoBL, MoBL2 and More Battery Life are trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in this document are the trademarks of their respective holders.

	Document Title: CY62146CV30 MoBL TM 256K x 16 STATIC RAM Document Number: 38-05203								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change					
**	112395	01/18/02	GAV	New Data Sheet					