# FLEx36TM $3.3 \mathrm{~V} 32 \mathrm{~K} / 64 \mathrm{~K} / 128 \mathrm{~K} / 256 \mathrm{~K} / 512 \times 36$ Synchronous Dual-Port RAM 

## Features

- True dual-ported memory cells that allow simultaneous access of the same memory location
- Synchronous pipelined operation
- Family of 1-Mbit, 2-Mbit, 4-Mbit, 9-Mbit and 18-Mbit devices
- Pipelined output mode allows fast operation
- 0.18-micron CMOS for optimum speed and power
- High-speed clock to data access
- 3.3V low power
- Active as low as 225 mA (typ.)
- Standby as low as 55 mA (typ.)
- Mailbox function for message passing
- Global master reset
- Separate byte enables on both ports
- Commercial and industrial temperature ranges
- IEEE 1149.1-compatible JTAG boundary scan
- 256-ball FBGA (1-mm pitch)
- Counter wrap around control
- Internal mask register controls counter wrap-around
- Counter-interrupt flags to indicate wrap-around
- Memory block retransmit operation
- Counter readback on address lines
- Mask register readback on address lines
- Dual Chip Enables on both ports for easy depth expansion
- Seamless migration to next-generation dual-port family


## Functional Description

The FLEx36 family includes 1-Mbit, 2-Mbit, 4-Mbit, 9-Mbit and 18-Mbit pipelined, synchronous, true dual-port static RAMs that are high-speed, low-power 3.3V CMOS. Two ports are provided, permitting independent, simultaneous access to any location in memory. A particular port can write to a certain location while another port is reading that location. The result of writing to the same location by more than one port at the same time is undefined. Registers on control, address, and data lines allow for minimal set-up and hold time.
During a Read operation, data is registered for decreased cycle time. Each port contains a burst counter on the input address register. After externally loading the counter with the initial address, the counter will increment the address internally (more details to follow). The internal Write pulse width is independent of the duration of the R/W input signal. The internal Write pulse is self-timed to allow the shortest possible cycle times.
A HIGH on $\overline{C E 0}$ or LOW on CE1 for one clock cycle will power down the internal circuitry to reduce the static power consumption. One cycle with chip enables asserted is required to reactivate the outputs.
Additional features include: readback of burst-counter internal address value on address lines, counter-mask registers to control the counter wrap-around, counter interrupt (CNTINT) flags, readback of mask register value on address lines, retransmit functionality, interrupt flags for message passing, JTAG for boundary scan, and asynchronous Master Reset (MRST).
The CYD18S36V devices in this family has limited features. Please see Address Counter and Mask Register Operations ${ }^{[8]}$ on page 5 for details.

Seamless Migration to Next-Generation Dual-Port Family Cypress offers a migration path for all devices in this family to the next-generation devices in the Dual-Port family with a compatible footprint. Please contact Cypress Sales for more details.

Table 1. Product Selection Guide

| Density | $\begin{gathered} 1 \mathrm{Mbit} \\ (32 \mathrm{~K} \mathrm{x} \mathrm{36}) \end{gathered}$ | $\begin{gathered} 2 \mathrm{Mbit} \\ (64 \mathrm{~K} \mathrm{x} \mathrm{36)} \end{gathered}$ | $\begin{gathered} \hline 4 \text { Mbit } \\ \text { (128K x 36) } \end{gathered}$ | $\begin{gathered} 9 \text { Mbit } \\ (256 \mathrm{~K} \mathrm{x} \mathrm{36)} \end{gathered}$ | $\begin{gathered} 18 \mathrm{Mbit} \\ (512 \mathrm{~K} \mathrm{x} \mathrm{36}) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Part Number | CYD01S36V | CYD02S36V | CYD04S36V | CYD09S36V | CYD18S36V |
| Max. Speed (MHz) | 167 | 167 | 167 | 167 | 133 |
| Max. Access Time - Clock to Data (ns) | 4.0 | 4.0 | 4.0 | 4.0 | 5.0 |
| Typical Operating Current (mA) | 225 | 225 | 225 | 270 | 315 |
| Package | $\begin{gathered} 256 \text { FBGA } \\ (17 \mathrm{~mm} \mathrm{x} 17 \mathrm{~mm}) \\ \hline \end{gathered}$ | $\begin{array}{c\|} \hline 256 \text { FBGA } \\ (17 \mathrm{~mm} \times 17 \mathrm{~mm}) \end{array}$ | $\begin{gathered} 256 \text { FBGA } \\ (17 \mathrm{~mm} \times 17 \mathrm{~mm}) \end{gathered}$ | $\begin{array}{c\|} \hline 256 \text { FBGA } \\ (17 \mathrm{~mm} \times 17 \mathrm{~mm}) \\ \hline \end{array}$ | $\begin{gathered} 256 \text { FBGA } \\ (23 \mathrm{~mm} \times 23 \mathrm{~mm}) \end{gathered}$ |



Note:

1. 18-Mbit device has 19 address bits, 9 -Mbit device has 18 address bits, 4-Mbit device has 17 address bits, 2-Mbit device has 16 address bits, and 1-Mbit device has 15 address bits.

## Pin Configurations


#### Abstract

256-ball FBGA (Top View) CYD01S36V/CYD02S36V/CYD04S36V/CYD09S36V/CYD18S36V




## Notes:

2. This ball will represent a next generation Dual-Port feature. For more information about this feature, contact Cypress Sales.
3. Connect this ball to VDDIO. For more information about this next generation Dual-Port feature contact Cypress Sales.
4. Connect this ball to VSS. For more information about this next generation Dual-Port feature, contact Cypress Sales.
5. Leave this ball unconnected. For more information about this feature, contact Cypress Sales.
6. Leave this ball unconnected for $32 \mathrm{~K} \times 36$ configuration.
7. Leave this ball unconnected for a $64 \mathrm{~K} \times 36,32 \mathrm{~K} \times 36$ configurations.
8. Leave this ball unconnected for a $128 \mathrm{~K} \times 36,64 \mathrm{~K} \times 36$ and $32 \mathrm{~K} \times 36$ configurations.
9. Leave this ball unconnected for a $256 \mathrm{~K} \times 36,128 \mathrm{~K} \times 36,64 \mathrm{~K} \times 36$, and $32 \mathrm{~K} \times 36$ configurations.
10. These balls are not applicable for CYD18S36V device. They need to be tied to VDDIO.
11. These balls are not applicable for CYD18S36V device. They need to be tied to VSS.
12. These balls are not applicable for CYD18S36V device. They need to be no connected.

## Pin Definitions

| Left Port | Right Port | Description |
| :---: | :---: | :---: |
| $\mathrm{A}_{0 \mathrm{~L}}-\mathrm{A}_{18 \mathrm{~L}}$ | $\mathrm{A}_{0 \mathrm{R}}-\mathrm{A}_{18 \mathrm{R}}$ | Address Inputs. |
| $\overline{B E}_{0 L}-\overline{B E}_{3 L}$ | $\overline{B E}_{0 R}-\overline{B E}_{3 R}$ | Byte Enable Inputs. Asserting these signals enables Read and Write operations to the corresponding bytes of the memory array. |
| BUSYL ${ }^{[2,5]}$ | $\operatorname{BUSY}_{\mathrm{R}}{ }^{[2,5]}$ | Port Busy Output. When the collision is detected, a BUSY is asserted. |
| $\mathrm{C}_{\mathrm{L}}$ | $\mathrm{C}_{\mathrm{R}}$ | Input Clock Signal. |
| $\overline{\mathrm{CEO}}{ }^{[11]}$ | $\overline{\mathrm{CEO}} \overline{\mathrm{R}}^{[11]}$ | Active Low Chip Enable Input. |
| CE1L ${ }^{\text {[10] }}$ | CE1 ${ }^{[10]}$ | Active High Chip Enable Input. |
| $\mathrm{DQ}_{0 \mathrm{~L}}-\mathrm{DQ}_{35}$ | $D Q_{0 R}-\mathrm{DQ}_{35 \mathrm{R}}$ | Data Bus Input/Output. |
| $\overline{\mathrm{OE}}$ | $\overline{\mathrm{OE}}_{\mathrm{R}}$ | Output Enable Input. This asynchronous signal must be asserted LOW to enable the DQ data pins during Read operations. |
| $\mathrm{INT}_{\mathrm{L}}$ | $\mathrm{INT}_{\mathrm{R}}$ | Mailbox Interrupt Flag Output. The mailbox permits communications between ports. The upper two memory locations can be used for message passing. $\mathbb{I N T}_{L}$ is asserted LOW when the right port writes to the mailbox location of the left port, and vice versa. An interrupt to a port is deasserted HIGH when it reads the contents of its mailbox. |
| $\overline{\text { LowSPD }}$ L 2,4$]$ | $\overline{\text { LowSPD }}^{\text {R }}$ [2,4] | Port Low Speed Select Input. |
| PORTSTD[1:0]L ${ }^{[2,4]}$ | PORTSTD[1:0] ${ }_{R}{ }^{[2,4]}$ | Port Address/Control/Data I/O Standard Select Inputs. |
| R/ $\bar{W}_{\text {L }}$ | $\mathrm{R} / \bar{W}_{R}$ | Read/Write Enable Input. Assert this pin LOW to write to, or HIGH to Read from the dual port memory array. |
| $\overline{\operatorname{READY}}{ }^{[2,5]}$ | $\overline{\operatorname{READY}} \mathrm{R}^{[2,5]}$ | Port Ready Output. This signal will be asserted when a port is ready for normal operation. |
| CNT/MSKL ${ }^{[10]}$ | CNT/MSK ${ }^{[10]}$ | Port Counter/Mask Select Input. Counter control input. |
| $\overline{\mathrm{ADS}}{ }^{[11]}$ | $\overline{\mathrm{ADS}}_{\mathrm{R}}{ }^{[1]}$ | Port Counter Address Load Strobe Input. Counter control input. |
| CNTEN ${ }^{[11]}$ | $\mathrm{CNTEN}_{\mathrm{R}}{ }^{[1]}$ | Port Counter Enable Input. Counter control input. |
| $\mathrm{CNTRST}_{\mathrm{L}}{ }^{[10]}$ | $\mathrm{CNTRST}_{\mathrm{R}}{ }^{[10]}$ | Port Counter Reset Input. Counter control input. |
| $\mathrm{CNTINT}_{\mathrm{L}}{ }^{[12]}$ | $\mathrm{CNTINT}_{\mathrm{R}}{ }^{[12]}$ | Port Counter Interrupt Output. This pin is asserted LOW when the unmasked portion of the counter is incremented to all " 1 s ". |
| $\overline{W R P}{ }^{[2,3]}$ | $\mathrm{WRP}_{\mathrm{R}}{ }^{[2,3]}$ | Port Counter Wrap Input. The burst counter wrap control input. |
| $\overline{R E T}^{[2,3]}$ | $\mathrm{RET}_{\mathrm{R}}{ }^{[2,3]}$ | Port Counter Retransmit Input. Counter control input. |
| FTSEL ${ }_{\text {L }}{ }^{[2,3]}$ | FTSEL ${ }_{\mathrm{R}}{ }^{[2,3]}$ | Flow-Through Select. Use this pin to select Flow-Through mode. When is de-asserted, the device is in pipelined mode. |
| VREF ${ }_{\mathrm{L}}{ }^{[2,4]}$ | $\mathrm{VREF}_{\mathrm{R}}{ }^{[2,4]}$ | Port External High-Speed IO Reference Input. |
| $V_{\text {DDIOL }}$ | $V_{\text {DIIOR }}$ | Port IO Power Supply. |
| REVL ${ }^{[2,3,4]}$ | $\mathrm{REV}_{\mathrm{R}}{ }^{[2,3,4]}$ | Reserved pins for future features. |
| $\overline{\text { MRST }}$ |  | Master Reset Input. $\overline{\text { MRST }}$ is an asynchronous input signal and affects both ports. A maser reset operation is required at power-up. |
| TRST ${ }^{[2,5]}$ |  | JTAG Reset Input. |
| TMS |  | JTAG Test Mode Select Input. It controls the advance of JTAG TAP state machine. State machine transitions occur on the rising edge of TCK. |
| TDI |  | JTAG Test Data Input. Data on the TDI input will be shifted serially into selected registers. |

Pin Definitions (continued)

| Left Port | Right Port | Description |
| :---: | :--- | :--- |
| TCK | JTAG Test Clock Input. |  |
| TDO | JTAG Test Data Output. TDO transitions occur on the falling edge of TCK. TDO <br> is normally three-stated except when captured data is shifted out of the JTAG TAP. |  |
| $\mathrm{V}_{\text {SS }}$ | Ground Inputs. |  |
| $\mathrm{V}_{\text {CORE }}$ | Core Power Supply. |  |
| $\mathrm{V}_{\text {TTL }}$ | LVTTL Power Supply for JTAG IOs |  |

## Master Reset

The FLEx 36 family devices undergo a complete reset by taking its MRST input LOW. The MRST input can switch asynchronously to the clocks. An MRST initializes the internal burst counters to zero, and the counter mask registers to all ones (completely unmasked). MRST also forces the Mailbox Interrupt (INT) flags and the Counter Interrupt (CNTINT) flags HIGH. MRST must be performed on the FLEx36 family devices after power-up.

## Mailbox Interrupts

The upper two memory locations may be used for message passing and permit communications between ports. Table 2 shows the interrupt operation for both ports of CYD18S36V. The highest memory location, 7FFFF is the mailbox for the right port and 7FFFE is the mailbox for the left port. Table 2
shows that in order to set the $\overline{\mathrm{NT}}_{\mathrm{R}}$ flag, a Write operation by the left port to address 7FFFF will assert $\overline{N T}_{R}$ LOW. At least one byte has to be active for a Write to generate an interrupt. A valid Read of the 7FFFF location by the right port will reset $\mathrm{INT}_{\mathrm{R}}$ HIGH. At least one byte has to be active in order for a Read to reset the interrupt. When one port Writes to the other port's mailbox, the INT of the port that the mailbox belongs to is asserted LOW. The INT is reset when the owner (port) of the mailbox Reads the contents of the mailbox. The interrupt flag is set in a flow-thru mode (i.e., it follows the clock edge of the writing port). Also, the flag is reset in a flow-thru mode (i.e., it follows the clock edge of the reading port).
Each port can read the other port's mailbox without resetting the interrupt. And each port can write to its own mailbox without setting the interrupt. If an application does not require message passing, $\overline{\text { INT }}$ pins should be left open.

Table 2. Interrupt Operation Example ${ }^{[1,13,14,15,16,17]}$

| Function | Left Port |  |  |  | Right Port |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{R} / \bar{W}_{\mathrm{L}}$ | $\overline{\mathrm{CE}}_{\mathrm{L}}$ | $\mathrm{A}_{0 \mathrm{~L}-18 \mathrm{~L}}$ | $\overline{\mathbf{I N T}}_{\mathrm{L}}$ | $\mathrm{R} / \bar{W}_{\mathrm{R}}$ | $\overline{C E}_{R}$ | A0R-18R | $\overline{\mathbf{I N T}}_{\text {R }}$ |
| Set Right $\mathrm{INT}_{\mathrm{R}}$ Flag | L | L | 7FFFF | X | X | X | X | L |
| Reset Right $\overline{\mathrm{INT}}_{\mathrm{R}}$ Flag | X | X | X | X | H | L | 7FFFF | H |
| Set Left $\overline{N T}_{L}$ Flag | X | X | X | L | L | L | 7FFFE | X |
| Reset Left $\mathrm{INT}_{\text {L }}$ Flag | H | L | 7FFFE | H | X | X | X | X |

## Address Counter and Mask Register Operations ${ }^{[18]}$

This section describes the features only apply to $1 \mathrm{Mbit}, 2$ Mbit, 4 Mbit and 9 Mbit devices. It does not apply to 18Mbit device. Each port of these devices has a programmable burst address counter. The burst counter contains three registers: a counter register, a mask register, and a mirror register.
The counter register contains the address used to access the RAM array. It is changed only by the Counter Load, Increment, Counter Reset, and by master reset (MRST) operations.
The mask register value affects the Increment and Counter Reset operations by preventing the corresponding bits of the counter register from changing. It also affects the counter
interrupt output ( $\overline{\mathrm{CNTINT}})$. The mask register is changed only by the Mask Load and Mask Reset operations, and by the MRST. The mask register defines the counting range of the counter register. It divides the counter register into two regions: zero or more "Os" in the most significant bits define the masked region, one or more " 1 s " in the least significant bits define the unmasked region. Bit 0 may also be " 0 ," masking the least significant counter bit and causing the counter to increment by two instead of one.
The mirror register is used to reload the counter register on increment operations (see "retransmit," below). It always contains the value last loaded into the counter register, and is changed only by the Counter Load, and Counter Reset operations, and by the MRST.

## Notes:

13. $\overline{C E}$ is internal signal. $\overline{C E}=L O W$ if $\overline{C E}_{0}=L O W$ and $C E_{1}=H I G H$. For a single Read operation, CE only needs to be asserted once at the rising edge of the CLK and can be deasserted after that. Data will be out after the following CLK edge and will be three-stated after the next CLK edge.
14. $\overline{\mathrm{OE}}$ is "Don't Care" for mailbox operation.
15. At least one of $\overline{\mathrm{BE} 0}, \overline{\mathrm{BE}}, \overline{\mathrm{BE} 2}$, or $\overline{\mathrm{BE3}}$ must be LOW.
16. A17x is a NC for CYD04S36V, therefore the Interrupt Addresses are 1FFFF and 1FFFE. A17x and A16x are NC for CYD02S36V, therefore the Interrupt Addresses are FFFF and FFFE; A17x, A16x and A15x are NC for CYD01S36V, therefore the Interrupt Addresses are 7FFF and 7FFE.
17. "X" = "Don't Care," "H" = HIGH, "L" = LOW.

Table 3 summarizes the operation of these registers and the required input control signals. The MRST control signal is asynchronous. All the other control signals in Table 3 (CNT/MSK, $\overline{\mathrm{CNTRST}}, \overline{\mathrm{ADS}}, \overline{\mathrm{CNTEN}}$ ) are synchronized to the port's CLK. All these counter and mask operations are independent of the port's chip enable inputs (CE0 and CE1).
Counter enable ( $\overline{\mathrm{CNTEN}}$ ) inputs are provided to stall the operation of the address input and utilize the internal address generated by the internal counter for fast, interleaved memory applications. A port's burst counter is loaded when the port's address strobe ( $\overline{\mathrm{ADS}}$ ) and $\overline{\text { CNTEN }}$ signals are LOW. When the port's CNTEN is asserted and the ADS is deasserted, the address counter will increment on each LOW to HIGH transition of that port's clock signal. This will Read/Write one word from/into each successive address location until CNTEN
is deasserted. The counter can address the entire memory array, and will loop back to the start. Counter reset (CNTRST) is used to reset the unmasked portion of the burst counter to Os. A counter-mask register is used to control the counter wrap.

## Counter Reset Operation

All unmasked bits of the counter and mirror registers are reset to " 0. ." All masked bits remain unchanged. A Mask Reset followed by a Counter Reset will reset the counter and mirror registers to 00000, as will master reset (MRST).

## Counter Load Operation

The address counter and mirror registers are both loaded with the address value presented at the address lines.

Table 3. Address Counter and Counter-Mask Register Control Operation (Any Port) ${ }^{[17,19]}$

| CLK | MRST | CNT/MSK | CNTRST | ADS | CNTEN | Operation | Description |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | L | X | X | X | X | Master Reset | Reset address counter to all 0s and mask register to all 1s. |
| - | H | H | L | X | X | Counter Reset | Reset counter unmasked portion to all 0s. |
| - | H | H | H | L | L | Counter Load | Load counter with external address value presented on address lines. |
| - | H | H | H | L | H | Counter Readback | Read out counter internal value on address lines. |
| - | H | H | H | H | L | Counter Increment | Internally increment address counter value. |
| $\square$ | H | H | H | H | H | Counter Hold | Constantly hold the address value for multiple clock cycles. |
| - | H | L | L | X | X | Mask Reset | Reset mask register to all 1s. |
| - | H | L | H | L | L | Mask Load | Load mask register with value presented on the address lines. |
| $\square$ | H | L | H | L | H | Mask Readback | Read out mask register value on address lines. |
| - | H | L | H | H | X | Reserved | Operation undefined |

## Notes:

18. This section describes the CYD09S36V, CYD04S36V, CYD02S36V, and CYD01S36V which have $18,17,16$ and 15 address bits.
19. Counter operation and mask register operation is independent of chip enables.

## Counter Increment Operation

Once the address counter register is initially loaded with an external address, the counter can internally increment the address value, potentially addressing the entire memory array. Only the unmasked bits of the counter register are incremented. The corresponding bit in the mask register must be a " 1 " for a counter bit to change. The counter register is incremented by 1 if the least significant bit is unmasked, and by 2 if it is masked. If all unmasked bits are " 1 ," the next increment will wrap the counter back to the initially loaded value. If an Increment results in all the unmasked bits of the counter being "1s," a counter interrupt flag ( $\overline{\mathrm{CNTINT}}$ ) is asserted. The next Increment will return the counter register to its initial value, which was stored in the mirror register. The counter address can instead be forced to loop to 00000 by externally connecting CNTINT to CNTRST. ${ }^{[20]}$ An increment that results in one or more of the unmasked bits of the counter being " 0 " will de-assert the counter interrupt flag. The example in Figure 2 shows the counter mask register loaded with a mask value of 0003Fh unmasking the first 6 bits with bit " 0 " as the LSB and bit " 16 " as the MSB. The maximum value the mask register can be loaded with is 3FFFFh. Setting the mask register to this value allows the counter to access the entire memory space. The address counter is then loaded with an initial value of 8 h . The base address bits (in this case, the 6th address through the 16th address) are loaded with an address value but do not increment once the counter is configured for increment operation. The counter address will start at address 8 h . The counter will increment its internal address value till it reaches the mask register value of 3Fh. The counter wraps around the memory block to location 8 h at the next count. CNTINT is issued when the counter reaches its maximum value.

## Counter Hold Operation

The value of all three registers can be constantly maintained unchanged for an unlimited number of clock cycles. Such operation is useful in applications where wait states are needed, or when address is available a few cycles ahead of data in a shared bus interface.

## Counter Interrupt

The counter interrupt ( $\overline{\mathrm{CNTINT}})$ is asserted LOW when an increment operation results in the unmasked portion of the counter register being all "1s." It is deasserted HIGH when an Increment operation results in any other value. It is also de-asserted by Counter Reset, Counter Load, Mask Reset and Mask Load operations, and by MRST.

## Counter Readback Operation

The internal value of the counter register can be read out on the address lines. Readback is pipelined; the address will be
valid $t_{\text {CA2 }}$ after the next rising edge of the port's clock. If address readback occurs while the port is enabled (CE0 LOW and CE1 HIGH), the data lines (DQs) will be three-stated. Figure 1 shows a block diagram of the operation.

## Retransmit

Retransmit is a feature that allows the Read of a block of memory more than once without the need to reload the initial address. This eliminates the need for external logic to store and route data. It also reduces the complexity of the system design and saves board space. An internal "mirror register" is used to store the initially loaded address counter value. When the counter unmasked portion reaches its maximum value set by the mask register, it wraps back to the initial value stored in this "mirror register." If the counter is continuously configured in increment mode, it increments again to its maximum value and wraps back to the value initially stored into the "mirror register." Thus, the repeated access of the same data is allowed without the need for any external logic.

## Mask Reset Operation

The mask register is reset to all " 1 s ," which unmasks every bit of the counter. Master reset (MRST) also resets the mask register to all "1s."

## Mask Load Operation

The mask register is loaded with the address value presented at the address lines. Not all values permit correct increment operations. Permitted values are of the form $2^{n}-1$ or $2^{n}-2$. From the most significant bit to the least significant bit, permitted values have zero or more "0s," one or more "1s," or one " 0 ." Thus 7 FFFF, $003 F E$, and 00001 are permitted values, but 7F0FF, 003FC, and 00000 are not.

## Mask Readback Operation

The internal value of the mask register can be read out on the address lines. Readback is pipelined; the address will be valid $\mathrm{t}_{\mathrm{CM} 2}$ after the next rising edge of the port's clock. If mask readback occurs while the port is enabled (CE0 LOW and CE1 HIGH), the data lines (DQs) will be three-stated. Figure 1 shows a block diagram of the operation.

## Counting by Two

When the least significant bit of the mask register is " 0 ," the counter increments by two. This may be used to connect the x36 devices as a 72-bit single port SRAM in which the counter of one port counts even addresses and the counter of the other port counts odd addresses. This even-odd address scheme stores one half of the 72-bit data in even memory locations, and the other half in odd memory locations.

[^0]

Figure 1. Counter, Mask, and Mirror Logic Block Diagram ${ }^{[1]}$


Figure 2. Programmable Counter-Mask Register Operation ${ }^{[1,21]}$

## IEEE 1149.1 Serial Boundary Scan (JTAG) ${ }^{[22]}$

The FLEx36 family devices incorporate an IEEE 1149.1 serial boundary scan test access port (TAP). The TAP controller functions in a manner that does not conflict with the operation of other devices using 1149.1-compliant TAPs. The TAP operates using JEDEC-standard 3.3 V I/O logic levels. It is composed of three input connections and one output connection required by the test logic defined by the standard.

## Performing a TAP Reset

A reset is performed by forcing TMS HIGH ( $V_{D D}$ ) for five rising edges of TCK. This reset does not affect the operation of the devices, and may be performed while the device is operating. An MRST must be performed on the devices after power-up.

## Performing a Pause/Restart

When a SHIFT-DR PAUSE-DR SHIFT-DR is performed the scan chain will output the next bit in the chain twice. For example, if the value expected from the chain is 1010101, the device will output a 11010101. This extra bit will cause some testers to report an erroneous failure for the devices in a scan test. Therefore the tester should be configured to never enter the PAUSE-DR state.

Boundary Scan Hierarchy for 9-Mbit and 18-Mbit Devices Internally, the devices have multiple DIEs. Each DIE contains all the circuitry required to support boundary scan testing. The circuitry includes the TAP, TAP controller, instruction register, and data registers. The circuity and operation of the DIE boundary scan are described in detail below.
The scan chain for 9-Mbit and 18-Mbit devices uses a hierarchical approach as shown in Figure 3 and Figure 4. TMS and TCK are connected in parallel to each DIE to drive all 2- or 4-TAP controllers in unison. In many cases, each DIE will be supplied with the same instruction. In other cases, it might be useful to supply different instructions to each DIE. One example would be testing the device ID of one DIE while bypassing the rest.
Each pin of the devices is typically connected to multiple DIEs. For connectivity testing with the EXTEST instruction, it is desirable to check the internal connections between DIEs as well as the external connections to the package. This can be accomplished by merging the netlist of the devices with the netlist of the user's circuit board. To facilitate boundary scan testing of the devices, Cypress provides the BSDL file for each DIE, the internal netlist of the device, and a description of the device scan chain. The user can use these materials to easily integrate the devices into the board's boundary scan environment. Further information can be found in the Cypress application note Using JTAG Boundary Scan For System in a Package (SIP) Dual-Port SRAMs.

Notes:
21. The " $X$ " in this diagram represents the counter upper bits.
22. Boundary scan is IEEE 1149.1-compatible. See "Performing a Pause/Restart" for deviation from strict 1149.1 compliance.


Figure 3. Scan Chain for 18-Mbit Device


Figure 4. Scan Chain for 9-Mbit Device
Table 4. Identification Register Definitions

| Instruction Field | Value | Description |
| :--- | :--- | :--- |
| Revision Number (31:28) | Oh | Reserved for version number. |
| Cypress Device ID (27:12) | C002h | Defines Cypress part number for CYD04S36V, CYD09S36V and CYD18S36V |
|  | C001h | Defines Cypress part number for CYD02S36V |
|  | C092h | Defines Cypress part number for CYD01S36V |
| Cypress JEDEC ID (11:1) | 034 h | Allows unique identification of the DP family device vendor. |
| ID Register Presence (0) | 1 | Indicates the presence of an ID register. |

Table 5. Scan Register Sizes

| Register Name | Bit Size |
| :---: | :---: |
| Instruction | 4 |
| Bypass | 1 |
| Identification | 32 |
| Boundary Scan | $\mathrm{n}^{[23]}$ |

Note:
23. See details in the device BSDL files.

Table 6. Instruction Identification Codes

| Instruction | Code |  |
| :--- | :--- | :--- |
| EXTEST | 0000 | Captures the Input/Output ring contents. Places the BSR between the TDI and TDO. |
| BYPASS | 1111 | Places the BYR between TDI and TDO. |
| IDCODE | 1011 | Loads the IDR with the vendor ID code and places the register between TDI and TDO. |
| HIGHZ | 0111 | Places BYR between TDI and TDO. Forces all device output drivers to a High-Z state. |
| CLAMP | 0100 | Controls boundary to 1/0. Places BYR between TDI and TDO. |
| SAMPLE/PRELOAD | 1000 | Captures the input/output ring contents. Places BSR between TDI and TDO. |
| NBSRST | 1100 | Resets the non-boundary scan logic. Places BYR between TDI and TDO. |
| RESERVED | All other codes | Other combinations are reserved. Do not use other than the above. |

Maximum Ratings ${ }^{[24]}$
(Above which the useful life may be impaired. For user guide-
lines, not tested.)
Storage Temperature ................................ $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied........................................ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential ............... -0.5 V to +4.6 V
DC Voltage Applied to
Outputs in High-Z State........................... -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$

DC Input Voltage $\qquad$ -0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}^{[25]}$
Output Current into Outputs (LOW)............................. 20 mA
Static Discharge Voltage........................................... > 2000V
(JEDEC JESD22-A114-2000B)
Latch-up Current.....................................................> 200 mA
Operating Range

| Range | Ambient <br> Temperature | $\mathbf{V}_{\text {DDIO/VTTL }}$ | V $_{\text {CORE }}$ |
| :--- | :---: | :---: | :---: |
| Commercial | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $3.3 \mathrm{~V} \pm 165 \mathrm{mV}$ | $1.8 \mathrm{~V} \pm 100 \mathrm{mV}$ |
| Industrial | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $3.3 \mathrm{~V} \pm 165 \mathrm{mV}$ | $1.8 \mathrm{~V} \pm 100 \mathrm{mV}$ |

Electrical Characteristics Over the Operating Range

| $\begin{gathered} \mathrm{Pa-} \\ \text { rame- } \end{gathered}$ter | Description |  | -167 |  |  | -133 |  |  | -100 |  |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min. | Typ. | Max. | Min. | Typ. | Max. | Min. | Typ. | Max. |  |
| $\mathrm{V}_{\mathrm{OH}}$ | Output HIGH Voltage ( $\mathrm{V}_{\mathrm{DD}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$ ) |  | 2.4 |  |  | 2.4 |  |  | 2.4 |  |  | V |
| $\mathrm{V}_{\mathrm{OL}}$ | Output LOW Voltage ( $\mathrm{V}_{\mathrm{DD}}=$ Min., $\left.\mathrm{I}_{\mathrm{OL}}=+4.0 \mathrm{~mA}\right)$ |  |  |  | 0.4 |  |  | 0.4 |  |  | 0.4 | V |
| $\mathrm{V}_{\mathrm{IH}}$ | Input HIGH Voltage |  | 2.0 |  |  | 2.0 |  |  | 2.0 |  |  | V |
| $\mathrm{V}_{\text {IL }}$ | Input LOW Voltage |  |  |  | 0.8 |  |  | 0.8 |  |  | 0.8 | V |
| $\mathrm{l}_{\mathrm{OZ}}$ | Output Leakage Current |  | -10 |  | 10 | -10 |  | 10 | -10 |  | 10 | uA |
| IIX1 | Input Leakage Current Except TDI, TMS, MRST |  | -10 |  | 10 | -10 |  | 10 | -10 |  | 10 | uA |
| IIX2 | Input Leakage Current TDI, TMS, $\overline{\mathrm{MRST}}$ |  | -1.0 |  | 0.1 | -1.0 |  | 0.1 | -1.0 |  | 0.1 | mA |
| ICC | Operating Current for $\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}\right)$, Outputs Disabled | CYD01S36V CYD02S36V/ CYD04S36V |  | 225 | 300 |  | 225 | 300 |  |  |  | mA |
|  |  | CYD09S36V |  | 450 | 600 |  | 370 | 540 |  |  |  |  |
|  |  | CYD18S36V |  |  |  |  | 410 | 580 |  | 315 | 450 |  |
| $\mathrm{ISB1}^{[26]}$ | Standby Current (Both Ports TTL Level) $C E_{L}$ and $C E_{R} \check{S} V_{I H}, f=f_{M A X}$ |  |  | 90 | 115 |  | 90 | 115 |  |  |  | mA |
| $\mathrm{I}_{\text {SB2 }}{ }^{[26]}$ | Standby Current (One Port TTL Level)$C E_{L} \mid C E_{R} S V_{I H}, f=f_{M A X}$ |  |  | 160 | 210 |  | 160 | 210 |  |  |  | mA |
| $\mathrm{I}_{\text {SB3 }}{ }^{[26]}$ | Standby Current (Both Ports CMOS Level) $\mathrm{CE}_{\mathrm{L}}$ and $\mathrm{CE}_{\mathrm{R}} \mathrm{S} \mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}, \mathrm{f}=0$ |  |  | 55 | 75 |  | 55 | 75 |  |  |  | mA |
| $\mathrm{I}_{\text {SB4 }}{ }^{[26]}$ | StandbyCurrent (One Port CMOS Level)$\mathrm{CE}_{\mathrm{L}} \mid \mathrm{CE}_{\mathrm{R}} S \mathrm{~V}_{I H}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$ |  |  | 160 | 210 |  | 160 | 210 |  |  |  | mA |
| $\mathrm{I}_{\text {SB5 }}$ | Operating Current (VDDIO =Max, lout $=0 m A, f=0$ ) Outputs Disabled | CYD18S36V |  |  |  |  |  | 75 |  |  | 75 | mA |
| ICORE | Core Operating Current for ( $\mathrm{V}_{\mathrm{DD}}=$ Max. Outputs Disabled | $\text { ., } \mathrm{IOUT}=0 \mathrm{~mA}),$ |  | 0 | 0 |  | 0 | 0 |  | 0 | 0 | mA |

Capacitance ${ }^{[27]}$

| Part Number | Parameter | Description | Test Conditions | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CYD01S36/ CYD02S36V/ CYD04S36V | $\mathrm{C}_{\text {IN }}$ | Input Capacitance | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V} \end{aligned}$ | 13 | pF |
|  | $\mathrm{C}_{\text {OUT }}$ | Output Capacitance |  | 10 | pF |
| CYD09S36V | $\mathrm{C}_{\text {IN }}$ | Input Capacitance |  | 22 | pF |
|  | $\mathrm{C}_{\text {OUT }}$ | Output Capacitance |  | $10^{[28]}$ | pF |

Note:
24. The voltage on any input or I/O pin can not exceed the power pin during power-up.
25. Pulse width < 20 ns .
26. $I_{S B 1}, I_{S B 2}, I_{S B 3}$ and $I_{S B 4}$ are not applicable for CYD18S36V because it cannot be powered down by using chip enable pins.
27. Cout also references $\mathrm{C}_{\text {/O }}$.
28. Except INT and CNTINT which are 20 pF .

Capacitance ${ }^{[27]}$

| Part Number | Parameter | Description | Test Conditions | Max. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CYD18S36V | $\mathrm{C}_{\text {IN }}$ | Input Capacitance |  | 40 | pF |
|  | $\mathrm{C}_{\text {OUT }}$ | Output Capacitance |  | 20 | pF |

## AC Test Load and Waveforms



ALL INPUT PULSES
(b) Three-state Delay (Load 2)


## Switching Characteristics Over the Operating Range

| Parameter | Description |  |  | -133 |  |  |  | -100 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CYD01S36V CYD02S36V CYD04S36V CYD09S36V |  | CYD01S36V <br> CYD02S36V <br> CYD04S36V <br> CYD09S36V |  | CYD18S36V |  | CYD18S36V |  |  |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. |  |
| $\mathrm{f}_{\text {MAX2 }}$ | Maximum Operating Frequency |  | 167 |  | 133 |  | 133 |  | 100 | MHz |
| $\mathrm{t}_{\mathrm{CYC} 2}$ | Clock Cycle Time | 6.0 |  | 7.5 |  | 7.5 |  | 10.0 |  | ns |
| $\mathrm{t}_{\mathrm{CH} 2}$ | Clock HIGH Time | 2.7 |  | 3.0 |  | 3.4 |  | 4.5 |  | ns |
| $\mathrm{t}_{\mathrm{CL2} 2}$ | Clock LOW Time | 2.7 |  | 3.0 |  | 3.4 |  | 4.5 |  | ns |
| $\mathrm{t}^{[29]}$ | Clock Rise Time |  | 2.0 |  | 2.0 |  | 2.0 |  | 3.0 | ns |
| $\mathrm{tF}_{\mathrm{F}}{ }^{[29]}$ | Clock Fall Time |  | 2.0 |  | 2.0 |  | 2.0 |  | 3.0 | ns |
| $\mathrm{t}_{\text {SA }}$ | Address Set-up Time | 2.3 |  | 2.5 |  | 2.2 |  | 2.7 |  | ns |
| $\mathrm{t}_{\mathrm{HA}}$ | Address Hold Time | 0.6 |  | 0.6 |  | 1.0 |  | 1.0 |  | ns |
| $\mathrm{t}_{\text {SB }}$ | Byte Select Set-up Time | 2.3 |  | 2.5 |  | 2.2 |  | 2.7 |  | ns |
| $\mathrm{t}_{\mathrm{HB}}$ | Byte Select Hold Time | 0.6 |  | 0.6 |  | 1.0 |  | 1.0 |  | ns |
| $\mathrm{t}_{\text {SC }}$ | Chip Enable Set-up Time | 2.3 |  | 2.5 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\mathrm{HC}}$ | Chip Enable Hold Time | 0.6 |  | 0.6 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\text {SW }}$ | R/W్W Set-up Time | 2.3 |  | 2.5 |  | 2.2 |  | 2.7 |  | ns |
| $\mathrm{t}_{\mathrm{HW}}$ | R/W Hold Time | 0.6 |  | 0.6 |  | 1.0 |  | 1.0 |  | ns |
| $\mathrm{t}_{\text {SD }}$ | Input Data Set-up Time | 2.3 |  | 2.5 |  | 2.2 |  | 2.7 |  | ns |
| $\mathrm{t}_{\mathrm{HD}}$ | Input Data Hold Time | 0.6 |  | 0.6 |  | 1.0 |  | 1.0 |  | ns |
| $\mathrm{t}_{\text {SAD }}$ | $\overline{\text { ADS Set-up Time }}$ | 2.3 |  | 2.5 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\text {HAD }}$ | $\overline{\text { ADS Hold Time }}$ | 0.6 |  | 0.6 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\text {SCN }}$ | CNTEN Set-up Time | 2.3 |  | 2.5 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\mathrm{HCN}}$ | CNTEN Hold Time | 0.6 |  | 0.6 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\text {SRST }}$ | CNTRST Set-up Time | 2.3 |  | 2.5 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\text {HRST }}$ | CNTRST Hold Time | 0.6 |  | 0.6 |  | NA |  | NA |  | ns |

Switching Characteristics Over the Operating Range (continued)

| Parameter | Description |  |  | -133 |  |  |  | -100 |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | CYD01S36V CYD02S36V CYD04S36V CYD09S36V |  | CYD01S36V CYD02S36V CYD04S36V CYD09S36V |  | CYD18S36V |  | CYD18S36V |  |  |
|  |  | Min. | Max. | Min. | Max. | Min. | Max. | Min. | Max. |  |
| $\mathrm{t}_{\text {scm }}$ | CNT/MSK Set-up Time | 2.3 |  | 2.5 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\mathrm{HCM}}$ | CNT/MSK Hold Time | 0.6 |  | 0.6 |  | NA |  | NA |  | ns |
| $\mathrm{t}_{\text {OE }}$ | Output Enable to Data Valid |  | 4.0 |  | 4.4 |  | 5.5 |  | 5.5 | ns |

Note:
29. Except JTAG signals ( $\mathrm{t}_{\mathrm{r}}$ and $\mathrm{t}_{\mathrm{f}}<10 \mathrm{~ns}$ [max.]).

| $\mathrm{t}_{\mathrm{OLz}}{ }^{[30,31]}$ | $\overline{\mathrm{OE}}$ to Low Z | 0 |  | 0 |  | 0 |  | 0 |  | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\mathrm{OHz}}{ }^{[30,31]}$ | $\overline{O E}$ to High Z | 0 | 4.0 | 0 | 4.4 | 0 | 5.5 | 0 | 5.5 | ns |
| $\mathrm{t}_{\mathrm{CD} 2}$ | Clock to Data Valid |  | 4.0 |  | 4.4 |  | 5.0 |  | 5.2 | ns |
| $\mathrm{t}_{\mathrm{CA} 2}$ | Clock to Counter Address Valid |  | 4.0 |  | 4.4 |  | NA |  | NA | ns |
| $\mathrm{t}_{\text {CM2 }}$ | Clock to Mask Register Readback Valid |  | 4.0 |  | 4.4 |  | NA |  | NA | ns |
| $\mathrm{t}_{\mathrm{DC}}$ | Data Output Hold After Clock HIGH | 1.0 |  | 1.0 |  | 1.0 |  | 1.0 |  | ns |
| $\mathrm{t}_{\mathrm{CKHz}}{ }^{[30,31]}$ | Clock HIGH to Output High Z | 0 | 4.0 | 0 | 4.4 | 0 | 4.7 | 0 | 5.0 | ns |
| $\mathrm{t}_{\mathrm{CKLZ}}{ }^{[30,31]}$ | Clock HIGH to Output Low Z | 1.0 | 4.0 | 1.0 | 4.4 | 1.0 | 4.7 | 1.0 | 5.0 | ns |
| $\mathrm{t}_{\text {SINT }}$ | Clock to INT Set Time | 0.5 | 6.7 | 0.5 | 7.5 | 0.5 | 7.5 | 0.5 | 10.0 | ns |
| $\mathrm{t}_{\text {RINT }}$ | Clock to INT Reset Time | 0.5 | 6.7 | 0.5 | 7.5 | 0.5 | 7.5 | 0.5 | 10.0 | ns |
| $\mathrm{t}_{\text {SCINT }}$ | Clock to CNTINT Set Time | 0.5 | 5.0 | 0.5 | 5.7 | NA | NA | NA | NA | ns |
| $\mathrm{t}_{\text {RCINT }}$ | Clock to CNTINT Reset time | 0.5 | 5.0 | 0.5 | 5.7 | NA | NA | NA | NA | ns |

## Port to Port Delays

| $\mathrm{t}_{\text {ccs }}$ | Clock to Clock Skew | 5.2 |  | 6.0 |  | 5.7 |  | 8.0 |  | ns |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Master Reset Timing |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{t}_{\text {RS }}$ | Master Reset Pulse Width | 5.0 |  | 5.0 |  | 5.0 |  | 5.0 |  | cycles |
| $\mathrm{t}_{\text {RS }}$ | Master Reset Set-up Time | 6.0 |  | 6.0 |  | 6.0 |  | 8.5 |  | ns |
| $\mathrm{t}_{\text {RSR }}$ | Master Reset Recovery Time | 5.0 |  | 5.0 |  | 5.0 |  | 5.0 |  | cycles |
| $\mathrm{t}_{\text {RSF }}$ | Master Reset to Outputs Inactive |  | 10.0 |  | 10.0 |  | 10.0 |  | 10.0 | ns |
| $\mathrm{t}_{\text {RSINT }}$ | Master Reset to Counter and Mailbox Interrupt Flag Reset Time |  | 10.0 |  | 10.0 |  | NA |  | NA | ns |

## JTAG Timing

| Parameter | Description | 167/133/100 |  | Unit |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Min. | Max. |  |
| $\mathrm{f}_{\text {JTAG }}$ | Maximum JTAG TAP Controller Frequency |  | 10 | MHz |
| $\mathrm{t}_{\text {TCYC }}$ | TCK Clock Cycle Time | 100 |  | ns |
| $\mathrm{t}_{\text {TH }}$ | TCK Clock HIGH Time | 40 |  | ns |
| $\mathrm{t}_{\mathrm{T} L}$ | TCK Clock LOW Time | 40 |  | ns |
| $\mathrm{t}_{\text {TMSS }}$ | TMS Set-up to TCK Clock Rise | 10 |  | ns |
| $\mathrm{t}_{\text {TMSH }}$ | TMS Hold After TCK Clock Rise | 10 |  | ns |
| $\mathrm{t}_{\text {TDIS }}$ | TDI Set-up to TCK Clock Rise | 10 |  | ns |
| $\mathrm{t}_{\text {TDIH }}$ | TDI Hold After TCK Clock Rise | 10 |  | ns |
| $\mathrm{t}_{\text {TDOV }}$ | TCK Clock LOW to TDO Valid |  | 30 | ns |
| $\mathrm{t}_{\text {TDOX }}$ | TCK Clock LOW to TDO Invalid | 0 |  | ns |

## JTAG Timing

Notes:
30. This parameter is guaranteed by design, but it is not production tested
31. Test conditions used are Load 2.

## JTAG Switching Waveform



## Switching Waveforms



Switching Waveforms (continued)
Read Cycle ${ }^{[13,32,33,34,35]}$


## Notes:

32. $\overline{\text { OE }}$ is asynchronously controlled; all other inputs (excluding MRST and JTAG) are synchronous to the rising clock edge.
33. $\overline{\mathrm{ADS}}=\mathrm{CNTEN}=\mathrm{LOW}$, and $\mathrm{MRST}=\mathrm{CNTRST}=\mathrm{CNT} / \mathrm{MSK}=\mathrm{HIGH}$.
34. The output is disabled (high-impedance state) by $\overline{C E}=V_{\text {IH }}$ following the next rising edge of the clock.
35. Addresses do not have to be accessed sequentially since $\overline{A D S}=\overline{C N T E N}=V_{I L}$ with $C N T / M S K=V_{I H}$ constantly loads the address on the rising edge of the CLK. Numbers are for reference only.

## Switching Waveforms (continued)

Bank Select Read ${ }^{[36,37]}$


Read-to-Write-to-Read $(\overline{\mathbf{O E}}=\text { LOW })^{[35, ~ 38, ~ 39, ~ 40, ~ 41] ~}$


[^1]Switching Waveforms (continued)
Read-to-Write-to-Read ( $\overline{\mathrm{OE}}$ Controlled) ${ }^{[35,38, ~ 40, ~ 41]}$


Read with Address Counter Advance ${ }^{[40]}$


Switching Waveforms (continued)
Write with Address Counter Advance ${ }^{[41]}$


Switching Waveforms (continued)
Counter Reset ${ }^{[42, ~ 43]}$


## Notes:

42. $\overline{\mathrm{CE}}_{0}=\overline{\mathrm{BEO}}-\overline{\mathrm{BE}}=\mathrm{LOW} ; \mathrm{CE}_{1}=\overline{\mathrm{MRST}}=\mathrm{CNT} / \overline{\mathrm{MSK}}=\mathrm{HIGH}$.
43. No dead cycle exists during counter reset. A Read or Write cycle may be coincidental with the counter reset.

Switching Waveforms (continued)
Readback State of Address Counter or Mask Register ${ }^{[44, ~ 45, ~ 46, ~ 47] ~}$


Notes:
44. $\overline{\mathrm{CE}}_{0}=\overline{\mathrm{OE}}=\overline{\mathrm{BEO}}-\overline{\mathrm{BE} 3}=\mathrm{LOW} ; \mathrm{CE}_{1}=\mathrm{R} / \overline{\mathrm{W}}=\overline{\mathrm{CNTRST}}=\overline{\mathrm{MRST}}=\mathrm{HIGH}$.
45. Address in output mode. Host must not be driving address bus after $\mathrm{t}_{\mathrm{CKLZ}}$ in next clock cycle.
46. Address in input mode. Host can drive address bus after $\mathrm{t}_{\mathrm{CKHZ}}$.
47. An * is the internal value of the address counter (or the mask register depending on the CNT/MSK level) being Read out on the address lines.

Switching Waveforms (continued)
Left_Port (L_Port) Write to Right_Port (R_Port) Read ${ }^{[48,49,50]}$


Notes: $\quad$ 48. $\mathrm{CE}_{0}=\overline{\mathrm{OE}}=\overline{\mathrm{ADS}}=\overline{\mathrm{CNTEN}}=\overline{\mathrm{BEO}}-\overline{\mathrm{BE3}}=\mathrm{LOW} ; \mathrm{CE}_{1}=\overline{\mathrm{CNTRST}}=\overline{\mathrm{MRST}}=\mathrm{CNT} / \overline{\mathrm{MSK}}=\mathrm{HIGH}$.
49. This timing is valid when one port is writing, and other port is reading the same location at the same time. If $\mathrm{t}_{\mathrm{CCS}}$ is violated, indeterminate data will be Read out. 50. If $t_{C C S}^{~<~ m i n i m u m ~ s p e c i f i e d ~ v a l u e, ~ t h e n ~} R$ Port will Read the most recent data (written by $L$ Port) only ( $2{ }^{*} t_{C Y C 2}{ }^{+} t_{C D 2}$ ) after the rising edge of $R$ Port's clock. If $t_{C C S} \geq$ minimum specified value, then $R_{-} \bar{P}$ ort will Read the most recent data (written by $\left.L_{-} \bar{P} o r t\right)\left(t_{C Y C 2}+t_{C D 2}\right)$ after the rising edge of $R$ Port's $c \overline{l o c k}$.

Switching Waveforms (continued)
Counter Interrupt and Retransmit ${ }^{[16,51,52,53,54,55]}$


## Notes:

51. $\overline{\mathrm{CE}_{0}}=\overline{\mathrm{OE}}=\overline{\mathrm{BEO}}-\overline{\mathrm{BE3}}=\mathrm{LOW} ; \mathrm{CE}_{1}=\mathrm{R} / \overline{\mathrm{W}}=\overline{\mathrm{CNTRST}}=\overline{\mathrm{MRST}}=\mathrm{HIGH}$.
52. CNTINT is always driven.
53. CNTINT goes LOW when the unmasked portion of the address counter is incremented to the maximum value.
54. The mask register assumed to have the value of 3FFFFFh.
55. Retransmit happens if the counter remains in increment mode after it wraps to initially loaded value.

## Switching Waveforms (continued)

MailBox Interrupt Timing ${ }^{[56,57,58,59,60]}$


Table 7. Read/Write and Enable Operation (Any Port) ${ }^{[1,17, ~ 61, ~ 62, ~ 63] ~}$

| Inputs |  |  |  |  | Outputs | Operation |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\overline{\mathrm{OE}}$ | CLK | $\overline{\mathrm{CE}}_{0}$ | $\mathrm{CE}_{1}$ | R/W | DQ $\mathrm{Q}_{0}-\mathrm{DQ}_{35}$ |  |
| X | - | H | X | X | High-Z | Deselected |
| X | $\checkmark$ | X | L | X | High-Z | Deselected |
| X | - | L | H | L | $\mathrm{D}_{\mathrm{IN}}$ | Write |
| L | - | L | H | H | Dout | Read |
| H | X | L | H | X | High-Z | Outputs Disabled |

## Notes:

56. $\overline{\mathrm{CE}}_{0}=\overline{\mathrm{OE}}=\overline{\mathrm{ADS}}=\overline{\mathrm{CNTEN}}=\mathrm{LOW} ; \mathrm{CE}_{1}=\overline{\mathrm{CNTRST}}=\overline{\mathrm{MRST}}=\mathrm{CNT} / \overline{\mathrm{MSK}}=\mathrm{HIGH}$.
57. Address "7FFFF" is the mailbox location for R_Port of the 9-Mbit device.
58. L_Port is configured for Write operation, and $\bar{R}$ _Port is configured for Read operation.
59. At least one byte enable ( $\overline{\mathrm{BEO}}-\overline{\mathrm{BE} 3}$ ) is required to be active during interrupt operations.
60. Interrupt flag is set with respect to the rising edge of the Write clock, and is reset with respect to the rising edge of the Read clock.
61. $\overline{O E}$ is an asynchronous input signal.
62. When $\overline{\mathrm{CE}}$ changes state, deselection and Read happen after one cycle of latency.
63. $\overline{\mathrm{CE}}_{0}=\overline{\mathrm{OE}}=\mathrm{LOW} ; \mathrm{CE}_{1}=\mathrm{R} / \overline{\mathrm{W}}=\mathrm{HIGH}$.

## Ordering Information

512K $\times 36$ (18-Mbit) 3.3V Synchronous CYD18S36V Dual-Port SRAM

| Speed( <br> $\mathbf{M H z})$ | Ordering Code | Package <br> Name | Package Type | Operating <br> Range |
| :---: | :---: | :---: | :--- | :--- |
| 133 | CYD18S36V-133BBC | BB256 | 256-ball Grid Array $23 \mathrm{~mm} \times 23 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
| 100 | CYD18S36V-100BBC | BB256 | 256 -ball Grid Array $23 \mathrm{~mm} \times 23 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
|  | CYD18S36V-100BBI | BB256 | 256 -ball Grid Array $23 \mathrm{~mm} \times 23 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Industrial |

256K $\times 36$ (9-Mbit) 3.3V Synchronous CYD09S36V Dual-Port SRAM

| Speed <br> MHz) | Ordering Code | Package <br> Name | Package Type | Operating <br> Range |
| :---: | :---: | :---: | :--- | :--- |
| 167 | CYD09S36V-167BBC | BB256 | 256-ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
| 133 | CYD09S36V-133BBC | BB256 | 256 -ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
|  | CYD09S36V-133BBI | BB256 | 256 -ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Industrial |

128K $\times 36$ (4-Mbit) 3.3V Synchronous CYD04S36V Dual-Port SRAM

| Speed( <br> $\mathbf{M H z})$ | Ordering Code | Package <br> Name | Package Type | Operating <br> Range |
| :---: | :---: | :---: | :--- | :--- |
| 167 | CYD04S36V-167BBC | BB256 | 256-ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) $)$ | Commercial |
| 133 | CYD04S36V-133BBC | BB256 | 256 -ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
|  | CYD04S36V-133BBI | BB256 | 256 -ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Industrial |

64K $\times 36$ (2-Mbit) 3.3V Synchronous CYD02S36V Dual-Port SRAM

| Speed( <br> MHz) | Ordering Code | Package <br> Name | Package Type | Operating <br> Range |
| :---: | :---: | :---: | :--- | :--- |
| 167 | CYD02S36V-167BBC | BB256 | 256-ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
| 133 | CYD02S36V-133BBC | BB256 | 256-ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
|  | CYD02S36V-133BBI | BB256 | 256-ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Industrial |

32K $\times 36$ (1-Mbit) 3.3V Synchronous CYD01S36V Dual-Port SRAM

| Speed( <br> $\mathbf{M H z})$ | Ordering Code | Package <br> Name | Package Type | Operating <br> Range |
| :---: | :---: | :---: | :--- | :--- |
| 167 | CYD01S36V-167BBC | BB256 | 256-ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
| 133 | CYD01S36V-133BBC | BB256 | 256 -ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Commercial |
|  | CYD01S36V-133BBI | BB256 | 256 -ball Grid Array $17 \mathrm{~mm} \times 17 \mathrm{~mm}$ with $1.0-\mathrm{mm}$ pitch (BGA) | Industrial |

## Package Diagrams



Package Diagrams (continued)


FLEx36 is a trademark of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

## Document History Page

| Document Title: FLEx36TM 3.3V 32K/64K/128K/256K/512 $\times 36$ Synchronous Dual-Port RAM <br> Document Number: 38-06076 |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :--- | :---: |
| REV. | ECN NO. | Issue Date | Orig. of <br> Change | Description of Change |  |
| ${ }^{* *}$ | 232012 | See ECN | WWZ | New data sheet |  |
| ${ }^{*}$ A | 244232 | See ECN | WWZ | Changed pinout <br> Changed FTSEL\# to FTSEL in the block diagram |  |
| ${ }^{*}$ B | 313156 | See ECN | YDT | Changed pinout D10 from NC to VSS to reflect test mode pin swap, C10 from <br> rev[2,4] to VSS to reflect SC removal. <br> Changed tRSCNTINT to tRSINT <br> Added tRSINT to the master reset timing diagram <br> Added CYDO1S36V to datasheet <br> Added ISB5 and changed IIX2 |  |


[^0]:    Note:
    20. $\overline{\text { CNTINT }}$ and $\overline{\text { CNTRST }}$ specs are guaranteed by design to operate properly at speed grade operating frequency when tied together.

[^1]:    Notes:
    36. In this depth-expansion example, B1 represents Bank \#1 and B2 is Bank \#2; each bank consists of one Cypress FLEx36 device from this data sheet. ADDRESS ${ }_{(B 1)}$ $=$ ADDRESS $_{(\mathrm{B} 2)}$.
    37. $\overline{\mathrm{ADS}}=\overline{\mathrm{CNTEN}}=\overline{\mathrm{BEO}}-\overline{\mathrm{BE3}}=\overline{\mathrm{OE}}=\mathrm{LOW} ; \overline{\mathrm{MRST}}=\overline{\mathrm{CNTRST}}=\mathrm{CNT} / \overline{\mathrm{MSK}}=\mathrm{HIGH}$.
    38. Output state (HIGH, LOW, or high-impedance) is determined by the previous cycle control signals.
    39. During "No Operation," data in memory at the selected address may be corrupted and should be rewritten to ensure data integrity.
    40. $\overline{\mathrm{CE}}_{0}=\overline{\mathrm{OE}}=\overline{\mathrm{BEO}}-\overline{\mathrm{BE3}}=\mathrm{LOW} ; \mathrm{CE}_{1}=\mathrm{R} / \overline{\mathrm{W}}=\overline{\mathrm{CNTRST}}=\overline{\mathrm{MRST}}=\mathrm{HIGH}$.
    41. $\overline{\mathrm{CE}}_{0}=\overline{\mathrm{BEO}}-\overline{\mathrm{BE3}}=\mathrm{R} / \overline{\mathrm{W}}=\mathrm{LOW} ; \mathrm{CE}_{1}=\overline{\mathrm{CNTRST}}=\overline{\mathrm{MRST}}=\mathrm{CNT} / \overline{\mathrm{MSK}}=\mathrm{HIGH}$. When $\mathrm{R} / \bar{W}$ first switches low, since OE $=\mathrm{LOW}$, the Write operation cannot be completed (labelled as no operation). One clock cycle is required to three-state the I/O for the Write operation on the next rising edge of CLK.

