

DP7310/DP8310/DP7311/DP8311 Octal Latched **Peripheral Drivers**

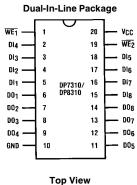
General Description

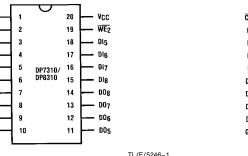
The DP7310/8310, DP7311/8311 Octal Latched Peripheral Drivers provide the function of latching eight bits of data with open collector outputs, each driving up to 100 mA DC with an operating voltage range of 30V. Both devices are designed for low input currents, high input/output voltages, and feature a power up clear (outputs off) function.

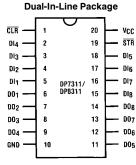
The DP7310/8310 are positive edge latching. Two active low write/enable inputs are available for convenient data bussing without external gating.

The DP7311/8311 are positive edge latches. The active low strobe input latches data or allows fall through operation when held at logic "0". The latches are cleared (outputs off) with a logic "0" on the clear pin.

Features


- High current, high voltage open collector outputs
- Low current, high voltage inputs


- All outputs simultaneously sink rated current "DC" with no thermal derating at maximum rated temperature
- Parallel latching or buffering
- Separate active low enables for easy data bussing
- Internal "glitch free" power up clear
- 10% V_{CC} tolerance


Applications

- High current high voltage drivers
- Relay drivers
- Lamp drivers
- LED drivers
- TRIAC drivers
- Solenoid drivers
- Stepper motor drivers
- Level translators
- Fiber-optic LED drivers

Connection Diagrams

Top View

TL/F/5246-2

Order Number DP7310J, DP7311J, DP8310N or DP8311N See NS Package Number J20A or N20A

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Input Voltage 35V 35V Output Voltage Maximum Power Dissipation* at 25°C

Cavity Package DP8310/DP8311 1821 mW 2005 mW -65°C to $+150^{\circ}\text{C}$ Storage Temperature Range Lead Temperature (Soldering, 4 sec.) 260°C

*Derate cavity package 12.1 mW/°C above 25°C; derate molded package 16.0 mW/°C above 25°C.

Operating Conditions					
	Min	Max	Units		
Supply Voltage (V _{CC})	4.5	5.5	V		
Temperature					
DP7310/DP7311	-55	+ 125	°C		
DP8310/DP8311	0	+70	°C		
Input Voltage		30	V		
Output Voltage		30	V		

DC Electrical Characteristics DP7310/DP8310, DP7311/DP8311 (Notes 2 and 3)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{IH}	Logical "1" Input Voltage		2.0			V
V _{IL}	Logical "0" Input Voltage				0.8	V
V _{OL}	Logical "0" Output Voltage	Data outputs latched to logical "0", V _{CC} = Min.				
	DP7310/DP7311	I _{OL} = 75 mA			0.4	V
	DP8310/DP8311	I _{OL} = 100 mA		0.35	0.5	V
I _{OH}	Logical "1" Output Current	Data outputs latched to logical "1", V _{CC} = Min.				
	DP7310/DP7311	$V_{OH} = 25V$			500	μΑ
	DP8310/DP8311	V _{OH} = 30V		2.5	250	μΑ
I _{IH}	Logical "1" Input Current	$V_{IH} = 2.7V, V_{CC} = Max$		0.1	25	μΑ
lı	Input Current at Maximum Input Voltage	$V_{IN} = 30V, V_{CC} = Max$		1	250	μΑ
I _{IL}	Logical "0" Input Current	$V_{IN} = 0.4V, V_{CC} = Max$		-215	-300	μΑ
V _{clamp}	Input Clamp Voltage	I _{IN} = 12 mA		-0.8	-1.5	V
Icco	Supply Current, Outputs On	Data outputs latched to a logical "0". All Inputs are at logical "1", V _{CC} = Max.				
	DP7310	, , , , , , , , , , , , , , , , , , , ,		100	125	mA
	DP8310			100	152	mA
	DP7311			88	117	mA
	DP8311			88	125	mA
I _{CC1}	Supply Current, Outputs Off	Data outputs latched to a logic "1". Other conditions same as I _{CC0} .				
	DP7310			40	47	mA
	DP8310			40	57	mA
	DP7311			25	34	mA
	DP8311			25	36	mA

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0}	High to Low Propagation Delay Write Enable Input to Output	(Figure 1)		40	120	ns
t _{pd1}	Low to High Propagation Delay Write Enable Input to Output	(Figure 1)		70	150	ns
t _{SETUP}	Minimum Set-Up Time Data in to Write Enable Input	t _{HOLD} = 0 ns (Figure 1)	45	20		ns
t _{pWH} , t _{pWL}	Minimum Write Enable Pulse Width	(Figure 1)	60	25		ns
t _{THL}	High to Low Output Transition Time	(Figure 1)		16	35	ns
t _{TLH}	Low to High Output Transition Time	(Figure 1)		38	70	ns

15

pF

AC Electrical Characteristics <code>DP7311/DP8311:VCC = 5V, TA = 25°C</code>

"N" Package (Note 4)

 C_{IN}

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{pd0}	High to Low Propagation Delay Data In to Output	(Figure 2)		30	60	ns
t _{pd1}	Low to High Propagation Delay Data to Output	(Figure 2)		70	100	ns
t _{SETUP}	Minimum Set-Up Time Data in to Strobe Input	t _{HOLD} = 0 ns (Figure 2)	0	-25		ns
t _{pWL}	Minimum Strobe Enable Pulse Width	(Figure 2)	60	35		ns
t _{pdC}	Propagation Delay Clear to Data Output	(Figure 2)		70	135	ns
t _{pWC}	Minimum Clear Input Pulse Width	(Figure 2)	60	25		ns
t _{THL}	High to Low Output Transition Time	(Figure 2)		20	35	ns
t _{TLH}	Low to High Output Transition Time	(Figure 2)		38	60	ns
C _{IN}	Input Capacitance—Any Input	(Note 4)		5	15	pF

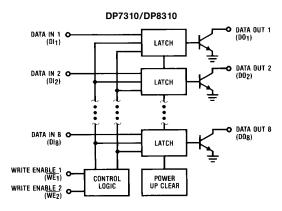
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

. Note 2: Unless otherwise specified min/max limits apply across the -55° C to $+125^{\circ}$ C temperature range for the DP7310/DP7311 and across the 0° C to $+70^{\circ}$ C for the DP8310/DP8311. All typical values are for T_A $=25^{\circ}$ C, V_{CC} =5V.

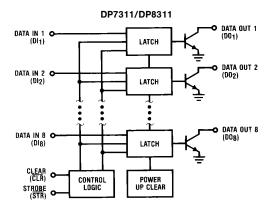
Note 3: All currents into device pins shown as positive, out of device pins as negative, all voltages referenced to ground unless otherwise noted.

Note 4: Input capacitance is guaranteed by periodic testing. $f_{TEST}=10$ kHz at 300 mV, $T_{A}=25^{\circ}C$.

Logic Table

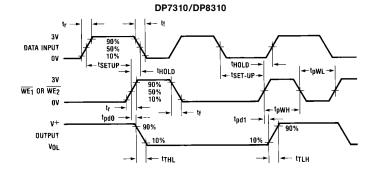

DP7310/DP8310					
Write Enable 1 WE 1	Write Enable 2 WE ₂	Data Input DI ₁₋₈	Data Output DO ₁₋₈		
0	0	Х	Q		
0	√	0	1		
0	√	1	0		
ℐ	0	0	1		
ℐ	0	1	0		
0	1	X	Q		
1	0	X	Q		
1	1	X	Q		

DP7311/DP8311					
Clear CLR	Strobe STR	Data Input DI ₁₋₈	Data Output DO ₁₋₈		
1	1	X	Q		
1	0	0	1		
1	0	1	0		
0	Х	Х	1		

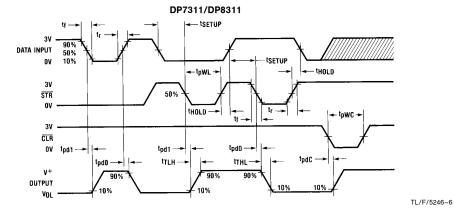

X = Don't Care
1 = Outputs Off
0 = Outputs On
Q = Pre-existing Output

✓ = Positive Edge Transition

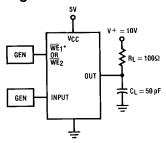
Block Diagrams



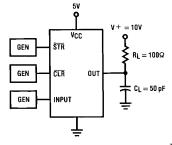
TL/F/5246-3



TL/F/5246-4


Switching Time Waveforms

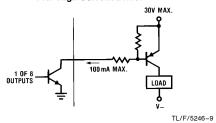
TL/F/5246-5



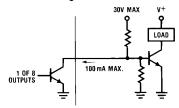
Switching Time Test Circuits

TL/F/5246-7

* \overline{WE}_1 = 0V When the Input = \overline{WE}_2 FIGURE 1. DP7310/DP8310

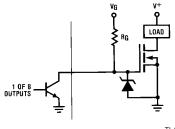

TL/F/5246-8

Pulse Generator Characteristics: $Z_O = 50 \Omega, \, t_r = t_f = 5 \; \text{ns} \label{eq:ZO}$

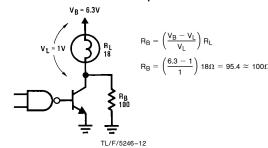

FIGURE 2. DP7311/DP8311

Typical Applications DP8310/11 Buffering High Current Device (Notes 1 and 2)

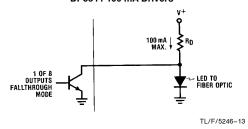
PNP High Current Driver



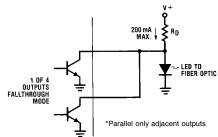
NPN High Current Driver


TL/F/5246-10

VMOS High Current Driver

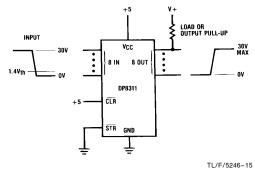

TL/F/5246-11

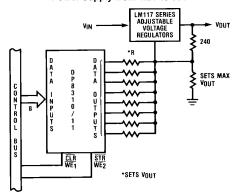
Circuit Used to Reduce Peak Transient Lamp Current



Eight Output/Four Output Fiber Optic LED Driver

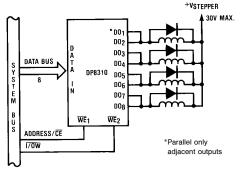
DP8311 100 mA Drivers


DP8311 Parallel Outputs (200 mA) Drivers*

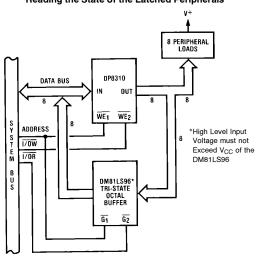

TL/F/5246-14

Typical Applications (Continued)

8-Bit Level Translator-Driver

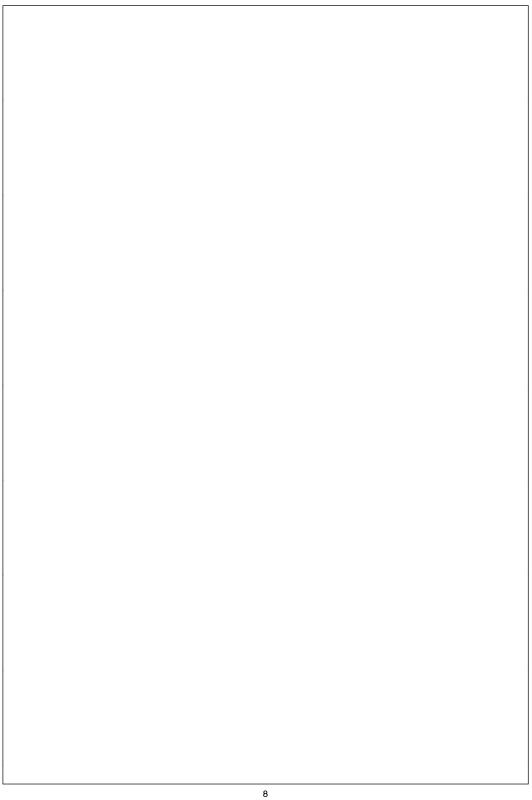


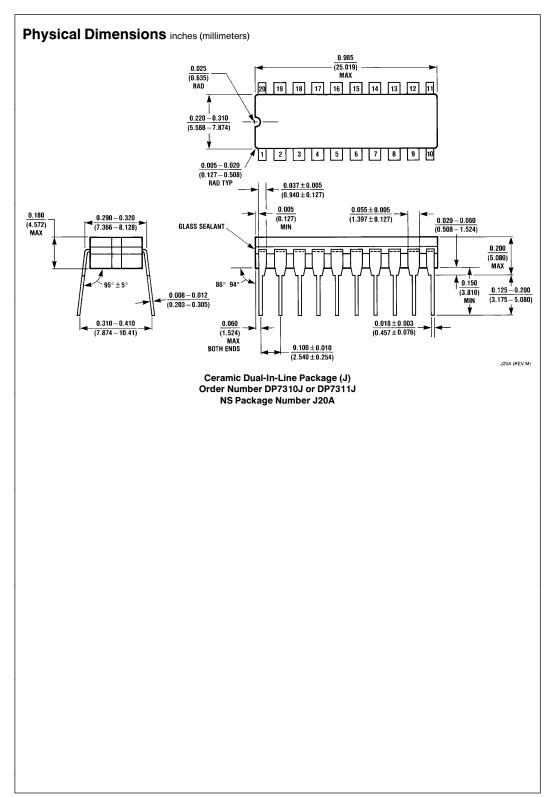
Digital Controlled 256 Level Power Supply from 1.2V to 30V

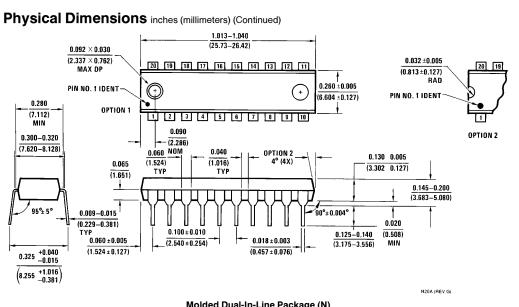

TL/F/5246-16

200 mA Drive for a 4 Phase Bifilar Stepper Motor

TL/F/5246-17


Reading the State of the Latched Peripherals




TL/F/5246-18

Note 1: Always use good V_{CC} bypass and ground techniques to suppress transients caused by peripheral loads.

Note 2: Printed circuit board mounting is required if these devices are operated at maximum rated temperature and current (all outputs on DC).

Molded Dual-In-Line Package (N) Order Number DP8310N or DP8311N NS Package Number N20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor National Semiconducto Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018

National Semiconductor Europe

Fax: (+49) 0-180-530 85 86 Fax: (+49) U-18U-35U oo oo Email: onjwege tevm2.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tei: (+49) 0-180-532 78 32 Français Tei: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 **National Semiconductor** Hong Kong Ltd.
13th Floor, Straight Block,
Ocean Centre, 5 Canton Rd.

Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960

National Semiconductor Japan Ltd.
Tel: 81-043-299-2309
Fax: 81-043-299-2408