FSUSB20 Low Voltage Ultra Low Power USB High Speed (480 Mbps) Dual DPDT Switch (Preliminary)

FAIRCHILD

SEMICONDUCTOR®

March 2005 Revised April 2005

# FSUSB20 Low Voltage Ultra Low Power USB High Speed (480 Mbps) Dual DPDT Switch (Preliminary)

### **General Description**

FSUSB20 is a low power high bandwidth analog switch specially designed for applications of the switching of high speed USB 2.0 signals in handset and consumer applications such as cell phone, digital camera, and notebook with hubs or controllers of limited USB I/O. The wide bandwidth (>720MHz) of this switch allows signals to pass with minimum edge and phase distortion. Superior channel-to-channel crosstalk results in minimal interference. It is compatible with high speed USB2.0 standard.

### Features

- –30dB OFF Isolation at 250MHz
- –30dB non-adjacent channel crosstalk at 250MHz
- 4.5 $\Omega$  typical On Resistance (R<sub>ON</sub>)
- -3dB bandwidth: >720MHz
- Low power consumption (1uA max)
- Control input: LVTTL compatible
- Bidirectional operation
- USB high speed and full speed signaling capability

#### Applications

• Cell phone, PDA, digital camera, and notebook

#### **Ordering Code:**

| Order Number                 | Package Number | Package Description                                                                                   |
|------------------------------|----------------|-------------------------------------------------------------------------------------------------------|
| FSUSB20L10X<br>(Preliminary) | MAC010A        | Pb-Free 10-Lead MicroPak, 1.6 mm x 2.1mm                                                              |
| FSUSB20BQX                   | MLP014A        | Pb-Free 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN),<br>JEDEC MO-241 2.5 x 3.0mm |

Pb-Free package per JEDEC J-STD-020B

 $\mathsf{MicroPak^{\textsc{m}}}$  is a trademark of Fairchild Semiconductor Corporation.



FSUSB20

#### Absolute Maximum Ratings(Note 1)

| Supply Voltage (V <sub>CC</sub> )                                    | -0.5V to +4.6V                  |
|----------------------------------------------------------------------|---------------------------------|
| DC Switch Voltage (V <sub>S</sub> )                                  | –0.5V to V <sub>CC</sub> +0.05V |
| DC Input Voltage (VIN) (Note 2)                                      | -0.5V to +4.6V                  |
| DC Input Diode Current (I <sub>IK</sub> ) V <sub>IN</sub> < 0V       | –50 mA                          |
| DC Output (I <sub>OUT</sub> ) Sink Current                           | 50 mA                           |
| DC V <sub>CC</sub> /GND Current (I <sub>CC</sub> /I <sub>GND</sub> ) | ±100 mA                         |
| Storage Temperature Range (T <sub>STG</sub> )                        | -65°C to +150 °C                |
| ESD                                                                  |                                 |
| Human Body Model                                                     |                                 |
| All Pins                                                             | 4kV                             |
| I/O to GND                                                           | 5kV                             |

#### Recommended Operating Conditions (Note 3)

| Power Supply Operating ( $V_{CC}$ )              | 3.0V to 3.6V          |
|--------------------------------------------------|-----------------------|
| Input Voltage (V <sub>IN</sub> )                 | 0V to V <sub>CC</sub> |
| Output Voltage (V <sub>OUT</sub> )               | 0V to V <sub>CC</sub> |
| Input Rise and Fall Time $(t_r, t_f)$            |                       |
| Switch Control Input                             | 0 ns/V to 5 ns/V      |
| Switch I/O                                       | 0 ns/V to DC          |
| Free Air Operating Temperature (T <sub>A</sub> ) | –40 °C to +85 °C      |

Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.

Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

#### **DC Electrical Characteristics**

|                       |                                  | V <sub>CC</sub><br>(V) | $T_A = -40 \ ^\circ C \ to \ +85 \ ^\circ C$ |                 |      |       |                                                            |
|-----------------------|----------------------------------|------------------------|----------------------------------------------|-----------------|------|-------|------------------------------------------------------------|
| Symbol                | Parameter                        |                        | Min                                          | Typ<br>(Note 4) | Мах  | Units | Conditions                                                 |
| V <sub>IK</sub>       | Clamp Diode Voltage              | 3.0                    |                                              |                 | -1.2 | V     | I <sub>IN</sub> = -18 mA                                   |
| V <sub>IH</sub>       | HIGH Level Input Voltage         | 3.0 - 3.6              | 2.0                                          |                 |      | V     |                                                            |
| V <sub>IL</sub>       | LOW Level Input Voltage          | 3.0 - 3.6              |                                              |                 | 0.8  | V     |                                                            |
| I <sub>I</sub>        | Input Leakage Current            | 3.6                    |                                              |                 | ±1.0 | μA    | $0 \leq V_{IN} \leq 3.6V$                                  |
| I <sub>OFF</sub>      | OFF-STATE Leakage Current        | 3.6                    |                                              |                 | ±1.0 | μA    | $0 \le A, B \le V_{CC}$                                    |
| R <sub>ON</sub>       | Switch On Resistance<br>(Note 5) | 3.0                    |                                              | 5.0             | 7.0  | Ω     | V <sub>IN</sub> = 0.8V<br>I <sub>ON</sub> = 8 mA           |
|                       |                                  | 3.0                    |                                              | 4.5             | 6.5  | Ω     | V <sub>IN</sub> = 3.0V<br>I <sub>ON</sub> = 8 mA           |
| $\Delta R_{ON}$       | Delta R <sub>ON</sub>            | 3.0                    |                                              | 0.3             |      | Ω     | $V_{IN} = 0.8V, V_{IN} = 0V - 1.5V, I_{ON} = 8 \text{ mA}$ |
| R <sub>FLAT(ON)</sub> | On Resistance Flatness (Note 6)  | 3.0                    |                                              | 1.0             | 1.3  | Ω     | I <sub>OUT</sub> = 8 mA                                    |
| Icc                   | Quiescent Supply Current         | 3.6                    |                                              |                 | 1.0  | μA    | $V_{IN} = V_{CC}$ or GND, $I_{OUT} = 0$                    |

Note 4: Typical values are at  $V_{CC}=3.0V$  and  $T_{A}=+25\,^{\circ}C$ 

Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.

Note 6: Flatness is defined as the difference between the maximum and minimum value On Resistance over the specified range of conditions.

FSUSB20

## AC Electrical Characteristics

|                   | Parameter                      | V <sub>CC</sub><br>(V) | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ |                 |     |       |                              | Figure          |
|-------------------|--------------------------------|------------------------|-----------------------------------------------|-----------------|-----|-------|------------------------------|-----------------|
| Symbol            |                                |                        | Min                                           | Typ<br>(Note 7) | Мах | Units | Conditions                   | Number          |
| t <sub>ON</sub>   | Turn ON Time S-to-Bus B        | 3.0 to 3.6             |                                               | 4.8             | 7.0 | ns    | $V_B = 0.8V$                 | Figures<br>5, 6 |
| t <sub>OFF</sub>  | Turn OFF Time S-to-Bus B       | 3.0 to 3.6             |                                               | 2.2             | 4.0 | ns    | $V_B = 0.8V$                 | Figures<br>5, 6 |
| t <sub>PD</sub>   | Propagation Delay              | 3.0 to 3.6             |                                               | 0.25            |     | ns    | C <sub>L</sub> = 10 pF       | Figure<br>10    |
| O <sub>IRR</sub>  | Non-Adjacent OFF-Isolation     | 3.0 to 3.6             |                                               | -28.0           |     | dB    | $f = 250MHz, R_L = 50\Omega$ | Figure 7        |
| X <sub>TALK</sub> | Non-Adjacent Channel Crosstalk | 3.0 to 3.6             |                                               | -30.0           |     | dB    | $R_L = 50\Omega$ , f= 250MHz | Figure 8        |
| BW                | -3dB Bandwidth                 | 3.0 to 3.6             |                                               | 750             |     | MHz   | $R_L = 50\Omega$             | Figure 9        |

Note 7: Typical values are at  $V_{CC}=3.3V$  and  $T_{A}=+25^{\circ}C$ 

### USB Related AC Electrical Characteristics (Note 8)

| Symbol             | Parameter                                         | V <sub>cc</sub> | $T_A = -40^{\circ}C \text{ to } +85^{\circ}C$ |       |     | Units | Conditions                                                                                      | Figure            |
|--------------------|---------------------------------------------------|-----------------|-----------------------------------------------|-------|-----|-------|-------------------------------------------------------------------------------------------------|-------------------|
| Cymbol             |                                                   | (V)             | Min                                           | Тур   | Max | Onits |                                                                                                 | Number            |
| t <sub>SK(O)</sub> | Channel-to-Channel Skew                           | 3.0 to 3.6      |                                               | 0.051 |     | ns    | С <sub>L</sub> = 10 рF                                                                          | Figures<br>10, 11 |
| t <sub>SK(P)</sub> | Skew of Opposite Transition<br>of the Same Output | 3.0 to 3.6      |                                               | 0.020 |     | ns    | C <sub>L</sub> = 10 pF                                                                          | Figures<br>10, 11 |
| TJ                 | Total Jitter                                      | 3.0 to 3.6      |                                               | 0.210 |     |       | $R_L = 50\Omega$ , $C_L = 10 \text{ pF}$<br>t <sub>R</sub> = t <sub>F</sub> = 750ps at 480 Mbps |                   |

Note 8: Typical values are at V\_{CC} = 3.3V and T\_A = +25 ^{\circ}C

#### Capacitance (Note 9)

| Symbol           | Parameter                     | $\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C} \text{ to }+85^{\circ}\textbf{C}$ | Units | Conditions                          |
|------------------|-------------------------------|----------------------------------------------------------------------------------|-------|-------------------------------------|
| Gymbol           | i a aneter                    | Тур                                                                              | Units |                                     |
| C <sub>IN</sub>  | Control Pin Input Capacitance | 2.5                                                                              | pF    | $V_{CC} = 0V$                       |
| C <sub>ON</sub>  | A/B ON Capacitance            | 12.0                                                                             | pF    | $V_{CC} = 3.3V, \overline{OE} = 0V$ |
| C <sub>OFF</sub> | Port B OFF Capacitance        | 4.0                                                                              | pF    | $V_{CC}$ and $\overline{OE} = 3.3V$ |

Note 9: Typical values are at  $V_{CC}=3.3V$  and  $T_{A}=+25^{\circ}C$ 













www.fairchildsemi.com

8

**FSUSB20** 





