Preliminary
EAIRCHILD
SEMICONDUCTOR
FSUSB20
Low Voltage Ultra Low Power
USB High Speed (480 Mbps) Dual DPDT Switch
(Preliminary)

General Description

FSUSB20 is a low power high bandwidth analog switch specially designed for applications of the switching of high speed USB 2.0 signals in handset and consumer applications such as cell phone, digital camera, and notebook with hubs or controllers of limited USB I/O. The wide bandwidth ($>720 \mathrm{MHz}$) of this switch allows signals to pass with minimum edge and phase distortion. Superior channel-to-channel crosstalk results in minimal interference. It is compatible with high speed USB2.0 standard.

Features

■ -30dB OFF Isolation at 250 MHz
■ - 30 dB non-adjacent channel crosstalk at 250 MHz

- 4.5Ω typical On Resistance (R_{ON})

■ -3dB bandwidth: $>720 \mathrm{MHz}$
■ Low power consumption (1uA max)

- Control input: LVTTL compatible
- Bidirectional operation

■ USB high speed and full speed signaling capability
Applications

- Cell phone, PDA, digital camera, and notebook

Ordering Code:

Order Number	Package Number	Package Description
FSUSB20L10X (Preliminary)	MAC010A	Pb-Free 10-Lead MicroPak, $1.6 \mathrm{~mm} \times 2.1 \mathrm{~mm}$
FSUSB20BQX	MLP014A	Pb-Free 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, $2.5 \times 3.0 \mathrm{~mm}$

Pb-Free package per JEDEC J-STD-020B.

MicroPak ${ }^{T M}$ is a trademark of Fairchild Semiconductor Corporation

Pin Descriptions

Pin Name	Description
$\overline{\mathrm{OE}}$	Bus Switch Enable
S	Select Input
A	Bus A
$\mathrm{B}_{1}-\mathrm{B}_{2}$	Bus B

Truth Table

\mathbf{S}	$\overline{\mathbf{O E}}$	Function
X	H	Disconnect
L	L	$A=B_{1}$
H	L	$A=B_{2}$

Connection Diagrams

Pad Assignments for MicroPak

(Top View)
Pad Assignments for DQFN

(Top Through View)

Absolute Maximum Ratings(Note 1)

Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	-0.5 V to +4.6 V
DC Switch Voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.05 \mathrm{~V}$
DC Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)($ Note 2)	-0.5 V to +4.6 V
DC Input Diode Current $\left(\mathrm{l}_{\mathrm{IK}}\right) \mathrm{V}_{\mathrm{IN}}<0 \mathrm{~V}$	-50 mA
DC Output (louT) Sink Current	50 mA
DC $\mathrm{V}_{\mathrm{CC}} / \mathrm{GND}$ Current $\left(\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{GND}}\right)$	$\pm 100 \mathrm{~mA}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{STG}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$
ESD	

Human Body Model
All Pins
I/O to GND

Recommended Operating Conditions (Note 3)

Power Supply Operating (V_{CC})
3.0 V to 3.6 V

Input Voltage ($\mathrm{V}_{\text {IN }}$) OV to V_{CC}
Output Voltage ($\mathrm{V}_{\text {OUT }}$) OV to V_{CC}
Input Rise and Fall Time ($\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$)
Switch Control Input
$0 \mathrm{~ns} / \mathrm{V}$ to $5 \mathrm{~ns} / \mathrm{V}$
Switch I/O
$0 \mathrm{~ns} / \mathrm{V}$ to DC
Free Air Operating Temperature $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Note 1: The Absolute Maximum Ratings are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum rating. The Recommended Operating Conditions tables will define the conditions for actual device operation

Note 2: The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
Note 3: Unused control inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions
			Min	Typ (Note 4)	Max		
$\mathrm{V}_{\text {IK }}$	Clamp Diode Voltage	3.0			-1.2	V	$\mathrm{I}_{\mathrm{IN}}=-18 \mathrm{~mA}$
V_{IH}	HIGH Level Input Voltage	3.0-3.6	2.0			V	
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	3.0-3.6			0.8	V	
I_{1}	Input Leakage Current	3.6			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq 3.6 \mathrm{~V}$
IOFF	OFF-STATE Leakage Current	3.6			± 1.0	$\mu \mathrm{A}$	$0 \leq \mathrm{A}, \mathrm{B} \leq \mathrm{V}_{\mathrm{CC}}$
R_{ON}	Switch On Resistance (Note 5)	3.0		5.0	7.0	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \end{aligned}$
		3.0		4.5	6.5	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA} \end{aligned}$
$\Delta \mathrm{R}_{\mathrm{ON}}$	Delta R ${ }_{\text {ON }}$	3.0		0.3		Ω	$\mathrm{V}_{\mathrm{IN}}=0.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V}-1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{ON}}=8 \mathrm{~mA}$
$\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$	On Resistance Flatness (Note 6)	3.0		1.0	1.3	Ω	$\mathrm{l}_{\text {OUT }}=8 \mathrm{~mA}$
I_{CC}	Quiescent Supply Current	3.6			1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND, $\mathrm{I}_{\text {OUT }}=0$

Note 4: Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$
Note 5: Measured by the voltage drop between A and B pins at the indicated current through the switch. On Resistance is determined by the lower of the voltages on the two (A or B) pins.
Note 6: Flatness is defined as the difference between the maximum and minimum value On Resistance over the specified range of conditions.

			$\mathrm{T}_{\text {A }}=$	$-40^{\circ} \mathrm{C}$ to +	$5^{\circ} \mathrm{C}$			
Symbol	Parameter	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \mathrm{~V}) \end{aligned}$	Min	$\begin{array}{\|c\|} \hline \text { Typ } \\ \text { (Note 7) } \end{array}$	Max	Units	Conditions	$\begin{aligned} & \text { Figure } \\ & \text { Number } \end{aligned}$
ton	Turn ON Time S-to-Bus B	3.0 to 3.6		4.8	7.0	ns	$\mathrm{V}_{\mathrm{B}}=0.8 \mathrm{~V}$	$\begin{gathered} \hline \text { Figures } \\ 5,6 \end{gathered}$
$\mathrm{t}_{\text {OFF }}$	Turn OFF Time S-to-Bus B	3.0 to 3.6		2.2	4.0	ns	$\mathrm{V}_{\mathrm{B}}=0.8 \mathrm{~V}$	$\begin{gathered} \hline \text { Figures } \\ 5,6 \end{gathered}$
$t_{\text {PD }}$	Propagation Delay	3.0 to 3.6		0.25		ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	Figure 10
$\overline{\mathrm{O}_{\text {IRR }}}$	Non-Adjacent OFF-Isolation	3.0 to 3.6		-28.0		dB	$\mathrm{f}=250 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 7
$\mathrm{X}_{\text {TALK }}$	Non-Adjacent Channel Crosstalk	3.0 to 3.6		-30.0		dB	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{f}=250 \mathrm{MHz}$	Figure 8
BW	-3dB Bandwidth	3.0 to 3.6		750		MHz	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	Figure 9

USB Related AC Electrical Characteristics (Note 8)

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Units	Conditions	Figure Number
			Min	Typ	Max			
$\mathrm{t}_{\text {SK(O) }}$	Channel-to-Channel Skew	3.0 to 3.6		0.051		ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	$\begin{gathered} \hline \text { Figures } \\ 10,11 \end{gathered}$
$t_{\text {SK(P) }}$	Skew of Opposite Transition of the Same Output	3.0 to 3.6		0.020		ns	$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$	Figures $10,11$
T_{J}	Total Jitter	3.0 to 3.6		0.210		ns	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \\ & \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=750 \mathrm{ps} \text { at } 480 \mathrm{Mbps} \end{aligned}$	

Capacitance (Note 9)

Symbol	Parameter	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
		Typ		
$\mathrm{C}_{\text {IN }}$	Control Pin Input Capacitance	2.5	pF	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$
$\mathrm{Con}^{\text {a }}$	A/B ON Capacitance	12.0	pF	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \overline{\mathrm{OE}}=0 \mathrm{~V}$
C OFF	Port B OFF Capacitance	4.0	pF	V_{CC} and $\overline{\mathrm{OE}}=3.3 \mathrm{~V}$

Note 9: Typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

FIGURE 1. Gain vs. Frequency

Preliminary

REEL DIMENSIONS inches (millimeters)

Physical Dimensions inches (millimeters) unless otherwise noted

LAND PATTERN RECOMENDATION

BOTTOM VIEW
NOTES:
A. PACKAGE CONFORMS TO JEDEC MO255, VARIATION UABD
B. DIMENSIONS ARE IN MLLLIMETERS.
C. DIMENSIONS AND TOLERANCES CONFORMS TO ASME Y14.5M, 1994.

MAC010ARevB

Pb-Free 10-Lead MicroPak, $1.6 \mathrm{~mm} \times 2.1 \mathrm{~mm}$

 Package Number MAC010APhysical Dimensions inches (millimeters) unless otherwise noted (Continued)

BOTTOM VIEW

NOTES:
A. CONFORMS TO JEDEC REGISTRATION

MO-241, VARIATION AA
B. DIMENSIONS ARE IN MILIMETERS.
C. DIMENSIONS AND TOLERANCES PER

ASME Y14.5M, 1994

MLP014ArevA
Pb-Free 14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, $2.5 \times 3.0 \mathrm{~mm}$ Package Number MLP014A

Technology Description

The Fairchild Switch family derives from and embodies Fairchild's proven switch technology used for several years in its 74LVX3L384 (FST3384) bus switch product.

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
