HI5860

12-Bit, 125+MSPS, CommLink ${ }^{\text {TM }}$ High Speed D/A Converter

The HI5860 is a 12 -bit, $125+$ MSPS (Mega Samples Per Second), high speed, low power, D/A converter which is implemented in an advanced CMOS process. Operating from a single +3 V to +5 V supply, the converter provides 20 mA of full scale output current and includes edge-triggered CMOS input data latches. Low glitch energy and excellent frequency domain performance are achieved using a segmented current source architecture.

This device complements the CommLink HI5x60 and HI5x28 family of high speed converters, which includes $8,10,12$, and 14-bit devices.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.	CLOCK SPEED
HI5860IB	-40 to 85	28 Ld SOIC	M28.3	125 MHz
HI5860IA \dagger	-40 to 85	28 Ld TSSOP	M28.173A	125 MHz
HI5860SOICEVAL1	25	Evaluation Platform		125 MHz

\dagger TSSOP Samples Available November 1999.

Pinout

	HI5860 (SOIC) TOP VIEW	
D11 (MSB) 1	\checkmark	28 CLK
D10 2		27 DV DD
D9 3		26 DCOM
D8 4		25 ACOM
D7 5		24 AV DD
D6 6		23 COMP2
D5 7		22 IOUTA
D4 8		21 IOUTB
D3 9		20 АСом
D2 10		19 COMP1
D1 11		18 FSADJ
D0 (LSB) 12		17 REFIO
NC 13		16 REFLO
NC 14		15 SLEEP

Features

- Throughput Rate \qquad
- Low Power . . . 175mW at 5V, 32mW at 3V (At 100MSPS)
- Integral Linearity Error (Typical)
± 0.5 LSB
- Adjustable Full Scale Output Current 2 mA to 20 mA
- Internal 1.2V Bandgap Voltage Reference
- Single Power Supply from +5 V to +3 V
- Power Down Mode
- CMOS Compatible Inputs
- Excellent Spurious Free Dynamic Range $\left(76 \mathrm{dBc}, \mathrm{f}_{\mathrm{S}}=50 \mathrm{MSPS}, \mathrm{f}_{\mathrm{OUT}}=2.51 \mathrm{MHz}\right)$
- Excellent Multitone Intermodulation Distortion

Applications

- Basestations (Cellular, WLL)
- Medical/Test Instrumentation
- Wireless Communications Systems
- Direct Digital Frequency Synthesis
- Signal Reconstruction
- High Resolution Imaging Systems
- Arbitrary Waveform Generators

Typical Applications Circuit

Functional Block Diagram

Pin Descriptions

PIN NO.	PIN NAME	
$1-12$	D11 (MSB) Through D0 (LSB)	Digital Data Bit 11, (Most Significant Bit) through Digital Data Bit 0, (Least Significant Bit).
13,14	NC	No Connect. (Available as 2 additional LSBs on the HI5960, 14 bit device).
15	REFEP	Control Pin for Power-Down Mode. Sleep Mode is active high; connect to ground for Normal Mode. Sleep pin has internal 20
16	REFIO active pulldown current.	

Absolute Maximum Ratings

Digital Supply Voltage DV ${ }_{\text {DD }}$ to DCOM +5.5 V
Analog Supply Voltage AV ${ }_{\text {DD }}$ to ACOM +5.5 V
Grounds, ACOM TO DCOM. -0.3 V to +0.3 V
Digital Input Voltages (D11-D0, CLK, SLEEP) DV ${ }_{\text {DD }}+0.3 \mathrm{~V}$
Reference Input Voltage Range. AV $\mathrm{AD}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog Output Current (IOUT) . 24mA
Operating Conditions
Temperature Range
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
SOIC Package	75
TSSOP Package	100
Maximum Junction Temperature	. $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range.	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only)	$.300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. $\theta_{J A}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad A V_{D D}=D V_{D D}=+5 \mathrm{~V}$ (except where otherwise noted), $\mathrm{V}_{\mathrm{REF}}=$ Internal $1.2 \mathrm{~V}, I \mathrm{IOUTFS}=20 \mathrm{~mA}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for All Typical Value

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \mathrm{TO} 85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	
SYSTEM PERFORMANCE					
Resolution		12	-	-	Bits
Integral Linearity Error, INL	"Best Fit" Straight Line (Note 8)	-2.0	± 0.5	+2.0	LSB
Differential Linearity Error, DNL	(Note 8)	-1.0	± 0.5	+1.0	LSB
Offset Error, IOS	(Note 8)	-0.025	-	+0.025	\% FSR
Offset Drift Coefficient	(Note 8)	-	0.1	-	$\begin{gathered} \mathrm{ppm} \\ \mathrm{FSR} /{ }^{\circ} \mathrm{C} \end{gathered}$
Full Scale Gain Error, FSE	With External Reference (Notes 2, 8)	-10	± 2	+10	\% FSR
	With Internal Reference (Notes 2, 8)	-10	± 1	+10	\% FSR
Full Scale Gain Drift	With External Reference (Note 8)	-	± 50	-	$\begin{gathered} \mathrm{ppm} \\ \mathrm{FSR} /{ }^{\circ} \mathrm{C} \end{gathered}$
	With Internal Reference (Note 8)	-	± 100	-	$\begin{gathered} \mathrm{ppm} \\ \mathrm{FSR} /{ }^{\circ} \mathrm{C} \end{gathered}$
Full Scale Output Current, $\mathrm{I}_{\text {FS }}$		2	-	20	mA
Output Voltage Compliance Range	(Note 3, 8)	-0.3	-	1.25	V
DYNAMIC CHARACTERISTICS					
Maximum Clock Rate, fCLK	(Note 3)	125	-	-	MHz
Output Settling Time, (tSETT)	$\pm 0.05 \%$ (± 2 LSB) (Note 8)	-	35	-	ns
Singlet Glitch Area (Peak Glitch)	$\mathrm{R}_{\mathrm{L}}=25 \Omega$ (Note 8)	-	5	-	$\mathrm{pV} \cdot \mathrm{s}$
Output Rise Time	Full Scale Step	-	2.5	-	ns
Output Fall Time	Full Scale Step	-	2.5	-	ns
Output Capacitance		-	10	-	pF
Output Noise	IOUTFS $=20 \mathrm{~mA}$	-	50	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	IOUTFS $=2 \mathrm{~mA}$	-	30	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
AC CHARACTERISTICS					
+5V Power Supply Spurious Free Dynamic Range, SFDR Within a Window	${ }^{\mathrm{f}} \mathrm{CLK}=100 \mathrm{MSPS}, \mathrm{f}_{\text {OUT }}=20.2 \mathrm{MHz}, 10 \mathrm{MHz}$ Span (Notes 4, 8)	-	77	-	dBc
	$\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{MSPS}, \mathrm{f}$ OUT $=5.04 \mathrm{MHz}, 4 \mathrm{MHz}$ Span (Notes 4, 8)	-	95	-	dBc
	$\mathrm{f}_{\mathrm{CLK}}=50 \mathrm{MSPS}, \mathrm{f}_{\mathrm{OUT}}=5.02 \mathrm{MHz}, 2 \mathrm{MHz} \mathrm{Span}$ (Notes 4, 8)	-	95	-	dBc

Electrical Specifications $\quad A V_{D D}=D V_{D D}=+5 \mathrm{~V}$ (except where otherwise noted), $\mathrm{V}_{\text {REF }}=\operatorname{Internal} 1.2 \mathrm{~V}, \operatorname{IOUTFS}=20 \mathrm{~mA}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for All Typical Value (Continued)

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	
+5V Power Supply Total Harmonic Distortion (THD) to Nyquist	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}, \mathrm{fOUT}=4.0 \mathrm{MHz}($ Notes 4, 8)	-	-71	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}$, fout $=2.0 \mathrm{MHz}$ (Notes 4, 8)	-	-75	-	dBc
	$\mathrm{f}_{\text {CLK }}=25 \mathrm{MSPS}$, fout $=1.0 \mathrm{MHz}$ (Notes 4, 8)	-	-76	-	dBc
+5V Power Supply Spurious Free Dynamic Range, SFDR to Nyquist (fclk/2)	$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}$, fout $=40.4 \mathrm{MHz}$ (Notes 4, 8)	-	55	-	dBc
	$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}, \mathrm{f}$ OUT $=10.1 \mathrm{MHz}($ Notes 4,8$)$	-	66	-	dBc
	$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}, \mathrm{f}$ OUT $=5.02 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$ (Notes 4, 8)	68	74	-	dBc
	$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}, \mathrm{f}$ OUT $=5.02 \mathrm{MHz}, \mathrm{T}=\mathrm{Min}$ to Max (Notes 4, 8)	66	-	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, fout $=40.4 \mathrm{MHz}($ Notes 4, 8)	-	54	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}, \mathrm{f}$ OUT $=20.2 \mathrm{MHz}($ Notes 4,8$)$	-	62	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}, \mathrm{f}$ OUT $=5.04 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$ (Notes 4, 8)	68	74	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, fout $=5.04 \mathrm{MHz}$, T $=$ Min to Max (Notes 4, 8)	66	-		dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, fout $=2.51 \mathrm{MHz}($ Notes 4,8$)$	-	75	-	dBc
	$\mathrm{f}^{\text {CLK }}=50 \mathrm{MSPS}, \mathrm{fOUT}=20.2 \mathrm{MHz}($ Notes 4, 8)	-	64	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}, \mathrm{f}$ OUT $=5.02 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$ (Notes 4, 8)	68	74	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}$, fout $=5.02 \mathrm{MHz}, \mathrm{T}=$ Min to Max (Notes 4, 8)	66	-	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}, \mathrm{f}$ OUT $=2.51 \mathrm{MHz}($ Notes 4, 8)	-	76	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}$, fout $=1.00 \mathrm{MHz}$ (Notes 4, 8)	-	78	-	dBc
	$\mathrm{f}_{\text {CLK }}=25 \mathrm{MSPS}, \mathrm{fOUT}=1.0 \mathrm{MHz}($ Notes 4, 8)	-	78	-	dBc
+5V Power Supply Multitone Power Ratio	$\mathrm{f}_{\mathrm{CLK}}=20 \mathrm{MSPS}, \mathrm{f}_{\mathrm{OUT}}=2.0 \mathrm{MHz}$ to $2.99 \mathrm{MHz}, 8$ Tones at 110 kHz Spacing (Notes 4, 8)	-	76	-	dBc
	$\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{MSPS}, \mathrm{fOUT}=10 \mathrm{MHz}$ to $14.95 \mathrm{MHz}, 8$ Tones at 530 kHz Spacing (Notes 4, 8)	-	76	-	dBc
+3V Power Supply Spurious Free Dynamic Range, SFDR Within a Window	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, fout $=20.2 \mathrm{MHz}, 30 \mathrm{MHz} \mathrm{Span} \mathrm{(Notes} \mathrm{4}, \mathrm{8)}$	-	73	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, fout $=5.04 \mathrm{MHz}, 8 \mathrm{MHz}$ Span (Notes 4, 8)	-	92	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}, \mathrm{fOUT}=5.02 \mathrm{MHz}, 8 \mathrm{MHz}$ Span (Notes 4, 8)	-	92	-	dBc
+3V Power Supply Total Harmonic Distortion (THD) to Nyquist	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}, \mathrm{fOUT}=4.0 \mathrm{MHz}($ Notes 4, 8)	-	-71	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}$, fout $=2.0 \mathrm{MHz}$ (Notes 4, 8)	-	-75	-	dBc
	$\mathrm{f}_{\text {CLK }}=25 \mathrm{MSPS}$, fout $=1.0 \mathrm{MHz}$ (Notes 4, 8)	-	-75	-	dBc

Electrical Specifications $\quad A V_{D D}=D V_{D D}=+5 \mathrm{~V}$ (except where otherwise noted), $\mathrm{V}_{\text {REF }}=\operatorname{Internal} 1.2 \mathrm{~V}, \operatorname{IOUTFS}=20 \mathrm{~mA}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for All Typical Value (Continued)

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	
+3V Power Supply Spurious Free Dynamic Range, SFDR to Nyquist (fCLK/2)	$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}$, fout $=40.4 \mathrm{MHz}$ (Notes 4, 8)	-	47	-	dBc
	$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}$, fout $=10.1 \mathrm{MHz}$ (Notes 4, 8)	-	66	-	dBc
	$\mathrm{f}_{\text {CLK }}=125 \mathrm{MSPS}, \mathrm{f}_{\text {OUT }}=5.02 \mathrm{MHz}($ Notes 4, 8)	-	73	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, $\mathrm{f}_{\text {OUT }}=40.4 \mathrm{MHz}$ (Notes 4, 8)	-	48	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, fout $=20.2 \mathrm{MHz}$ (Notes 4, 8)	-	58	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}$, fout $=5.04 \mathrm{MHz}($ Notes 4, 8)	-	72	-	dBc
	$\mathrm{f}_{\text {CLK }}=100 \mathrm{MSPS}, \mathrm{f}_{\text {OUT }}=2.51 \mathrm{MHz}($ Notes 4, 8)	-	76	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}, \mathrm{fOUT}=20.2 \mathrm{MHz}($ Notes 4, 8)	-	53	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}$, fout $=5.02 \mathrm{MHz}, \mathrm{T}=25^{\circ} \mathrm{C}$ (Notes 4, 8)	68	73	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}$, fout $=5.02 \mathrm{MHz}, \mathrm{T}=$ Min to Max (Notes 4, 8)	66	-	-	dBc
	$\mathrm{f}_{\text {cLK }}=50 \mathrm{MSPS}, \mathrm{fOUT}=2.51 \mathrm{MHz}$ (Notes 4, 8)	-	76	-	dBc
	$\mathrm{f}_{\text {CLK }}=50 \mathrm{MSPS}$, fout $=1.00 \mathrm{MHz}$ (((etes 4, 8)	-	76	-	dBc
	$\mathrm{f}_{\text {CLK }}=25 \mathrm{MSPS}, \mathrm{f}_{\text {OUT }}=1.0 \mathrm{MHz}$ (Notes 4, 8)	-	76	-	dBc
+3V Power Supply Multitone Power Ratio	$\mathrm{f}_{\mathrm{CLK}}=20 \mathrm{MSPS}, \mathrm{f}_{\mathrm{OUT}}=2.0 \mathrm{MHz}$ to $2.99 \mathrm{MHz}, 8$ Tones at 110 kHz Spacing (Notes 4, 8)	-	75	-	dBc
	$\mathrm{f}_{\mathrm{CLK}}=100 \mathrm{MSPS}$, fout $=10 \mathrm{MHz}$ to 14.95 MHz , 8 Tones at 530 kHz Spacing (Notes 4, 8)	-	75	-	dBc
VOLTAGE REFERENCE					
Internal Reference Voltage, $\mathrm{V}_{\text {FSADJ }}$	Pin 18 Voltage with Internal Reference	1.13	1.2	1.28	V
Internal Reference Voltage Drift		-	± 60	-	ppm $/{ }^{\circ} \mathrm{C}$
Internal Reference Output Current Sink/Source Capability		-	± 50	-	$\mu \mathrm{A}$
Reference Input Impedance		-	1	-	$\mathrm{M} \Omega$
Reference Input Multiplying Bandwidth	(Note 8)	-	1.4	-	MHz
DIGITAL INPUTS D11-D0, CLK					
Input Logic High Voltage with 5V Supply, V_{IH}	(Note 3)	3.5	5	-	V
Input Logic High Voltage with 3V Supply, V_{IH}	(Note 3)	2.1	3	-	V
Input Logic Low Voltage with 5V Supply, VIL	(Note 3)	-	0	1.3	V
Input Logic Low Voltage with 3V Supply, VIL	(Note 3)	-	0	0.9	V
Sleep Input Current, I_{IH}		-25	-	+25	$\mu \mathrm{A}$
Input Logic Current, I_{IH}		-20	-	+20	$\mu \mathrm{A}$
Input Logic Current, $\mathrm{I}_{\text {IL }}$		-10	-	+10	$\mu \mathrm{A}$
Digital Input Capacitance, $\mathrm{C}_{\text {IN }}$		-	5	-	pF
TIMING CHARACTERISTICS					
Data Setup Time, tsu	See Figure 4 (Note 3)	-	1.5	-	ns
Data Hold Time, $\mathrm{t}_{\text {HLD }}$	See Figure 4 (Note 3)	-	1.2	-	ns
Propagation Delay Time, tPD	See Figure 4	-	2.5	-	ns
CLK Pulse Width, tPW , tPW2	See Figure 4 (Note 3)	4	-	-	ns

Electrical Specifications $\quad A V_{D D}=D V_{D D}=+5 V$ (except where otherwise noted), $V_{R E F}=$ Internal $1.2 \mathrm{~V}, \operatorname{IOUTFS}=20 \mathrm{~mA}$, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ for All Typical Value (Continued)

PARAMETER	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$			UNITS
		MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS					
AV ${ }_{\text {DD }}$ Power Supply	(Notes 9)	2.7	5.0	5.5	V
DV ${ }_{\text {DD }}$ Power Supply	(Notes 9)	2.7	5.0	5.5	V
Analog Supply Current (IAVDD)	5 V or 3 V , IOUTFS $=20 \mathrm{~mA}$	-	23	-	mA
	5 V or 3 V , IOUTFS $=2 \mathrm{~mA}$	-	5	-	mA
Digital Supply Current (ldvDD)	5 V (Note 5)	-	7	-	mA
	5 V (Note 6)	-	12	-	mA
	5 V (Note 7)	-	13	-	mA
	3V (Note 5)	-	2.4	-	mA
	3V (Note 6)	-	6	-	mA
	3V (Note 7)	-	5	-	mA
Supply Current (lavdi) Sleep Mode	5 V or 3V, IOUTFS = Don't Care	-	2.7	-	mA
Power Dissipation	5 V , IOUTFS $=20 \mathrm{~mA}$ (Note 5)	-	150	-	mW
	5 V , IOUTFS $=20 \mathrm{~mA}$ (Note 6)	-	175	200	mW
	5 V , IOUTFS $=20 \mathrm{~mA}$ (Note 7)	-	180	-	mW
	5 V , IOUTFS $=2 \mathrm{~mA}$ (Note 6)	-	80	-	mW
	3 V , IOUTFS $=20 \mathrm{~mA}$ (Note 5)	-	76	-	mW
	3 V , IOUTFS $=20 \mathrm{~mA}$ (Note 6)	-	87	100	mW
	3 V , IOUTFS $=20 \mathrm{~mA}$ (Note 7)	-	84	-	mW
	3V, IOUTFS = 2mA (Note 6)	-	32	-	mW
Power Supply Rejection	Single Supply (Note 8)	-0.2	-	+0.2	\% FSR/V

NOTES:
2. Gain Error measured as the error in the ratio between the full scale output current and the current through $\mathrm{R}_{\text {SET }}$ (typically $625 \mu \mathrm{~A}$). Ideally the ratio should be 32 .
3. Parameter guaranteed by design or characterization and not production tested.
4. Spectral measurements made with differential transformer coupled output and no external filtering.
5. Measured with the clock at 50MSPS and the output frequency at 10 MHz .
6. Measured with the clock at 100 MSPS and the output frequency at 40 MHz .
7. Measured with the clock at 125 MSPS and the output frequency at 10 MHz .
8. See "Definition of Specifications".
9. It is recommended that the output current be reduced to 12 mA or less to maintain optimum performance for operation below 3 V . DV DD and $A V_{D D}$ do not have to be equal.

Definition of Specifications

Differential Linearity Error, DNL, is the measure of the step size output deviation from code to code. Ideally the step size should be 1 LSB. A DNL specification of 1 LSB or less guarantees monotonicity.

Full Scale Gain Drift, is measured by setting the data inputs to be all logic high (all 1s) and measuring the output voltage through a known resistance as the temperature is varied from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. It is defined as the maximum deviation from the value measured at room temperature to the value measured at either $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$. The units are ppm of FSR (full scale range) per ${ }^{\circ} \mathrm{C}$.

Full Scale Gain Error, is the error from an ideal ratio of 32 between the output current and the full scale adjust current (through R ${ }_{\text {SET }}$).

Integral Linearity Error, INL, is the measure of the worst case point that deviates from a best fit straight line of data values along the transfer curve.

Internal Reference Voltage Drift, is defined as the maximum deviation from the value measured at room temperature to the value measured at either $\mathrm{T}_{\text {MIN }}$ or $\mathrm{T}_{\text {MAX }}$. The units are ppm per ${ }^{\circ} \mathrm{C}$.

Offset Drift, is measured by setting the data inputs to all logic low (all 0 s) and measuring the output voltage through a known resistance as the temperature is varied from $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$. It is defined as the maximum deviation from the value measured at room temperature to the value measured at either $\mathrm{T}_{\mathrm{MIN}}$ or $\mathrm{T}_{\mathrm{MAX}}$. The units are ppm of FSR (full scale range) per degree ${ }^{\circ} \mathrm{C}$.
Offset Error, is measured by setting the data inputs to all logic low (all 0 s) and measuring the output voltage through a known resistance. Offset error is defined as the maximum deviation of the output current from a value of 0 mA .

Output Settling Time, is the time required for the output voltage to settle to within a specified error band measured from the beginning of the output transition. The measurement is done by switching quarter scale. Termination impedance was 25Ω due to the parallel resistance of the 50Ω loading on the output and the oscilloscope's 50Ω input. This also aids the ability to resolve the specified error band without overdriving the oscilloscope.

Output Voltage Compliance Range, is the voltage limit imposed on the output. The output impedance should be chosen such that the voltage developed does not violate the compliance range.

Power Supply Rejection, is measured using a single power supply. The supply's nominal +5 V is varied $\pm 10 \%$ and the change in the DAC full scale output is noted.

Reference Input Multiplying Bandwidth, is defined as the 3 dB bandwidth of the voltage reference input. It is measured
by using a sinusoidal waveform as the external reference with the digital inputs set to all 1 s . The frequency is increased until the amplitude of the output waveform is 0.707 $(-3 d B)$ of its original value.

Singlet Glitch Area, is the switching transient appearing on the output during a code transition. It is measured as the area under the overshoot portion of the curve and is expressed as a Volt-Time specification. This is tested using a single code transition across a major current source.
Spurious Free Dynamic Range, SFDR, is the amplitude difference from the fundamental signal to the largest harmonically or non-harmonically related spur within the specified frequency window.

Total Harmonic Distortion, THD, is the ratio of the RMS value of the fundamental output signal to the RMS sum of the first five harmonic components.

Detailed Description

The HI5860 is an 12-bit, current out, CMOS, digital to analog converter. Its maximum update rate is $125+$ MSPS and can be powered by either single or dual power supplies in the recommended range of +3 V to +5 V . Operation with clock rates higher than 125MSPS is possible; please contact the factory for more information. It consumes less than 180 mW of power when using a +5 V supply with the data switching at 125MSPS. The architecture is based on a segmented current source arrangement that reduces glitch by reducing the amount of current switching at any one time. In previous architectures that contained all binary weighted current sources or a binary weighted resistor ladder, the converter might have a substantially larger amount of current turning on and off at certain, worst-case transition points such as midscale and quarter scale transitions. By greatly reducing the amount of current switching at certain "major" transitions, the overall glitch of the converter is dramatically reduced, improving settling time, transient problems, and accuracy.

Digital Inputs and Termination

The HI5860 digital inputs are guaranteed to CMOS levels. However, TTL compatibility can be achieved by lowering the supply voltage to 3 V due to the digital threshold of the input buffer being approximately half of the supply voltage. The internal register is updated on the rising edge of the clock. To minimize reflections, proper termination should be implemented. If the lines driving the clock and the digital inputs are long 50Ω lines, then 50Ω termination resistors should be placed as close to the converter inputs as possible connected to the digital ground plane (if separate grounds are used). These termination resistors are not likely needed as long as the digital waveform source is within a few inches of the DAC.

Ground Planes

Separate digital and analog ground planes should be used. All of the digital functions of the device and their
corresponding components should be located over the digital ground plane and terminated to the digital ground plane. The same is true for the analog components and the analog ground plane. Consult Application Note 9853.

Noise Reduction

To minimize power supply noise, $0.1 \mu \mathrm{~F}$ capacitors should be placed as close as possible to the converter's power supply pins, $A V_{D D}$ and $D V_{D D}$. Also, the layout should be designed using separate digital and analog ground planes and these capacitors should be terminated to the digital ground for $D V_{D D}$ and to the analog ground for $A V_{D D}$. Additional filtering of the power supplies on the board is recommended.

Voltage Reference

The internal voltage reference of the device has a nominal value of +1.2 V with a $\pm 60 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ drift coefficient over the full temperature range of the converter. It is recommended that a $0.1 \mu \mathrm{~F}$ capacitor be placed as close as possible to the REFIO pin, connected to the analog ground. The REFLO pin (16) selects the reference. The internal reference can be selected if pin 16 is tied low (ground). If an external reference is desired, then pin 16 should be tied high (the analog supply voltage) and the external reference driven into REFIO, pin 17. The full scale output current of the converter is a function of the voltage reference used and the value of $\mathrm{R}_{\text {SET }}$. IOUT should be within the 2 mA to 20 mA range, though operation below 2 mA is possible, with performance degradation.

If the internal reference is used, $\mathrm{V}_{\text {FSADJ }}$ will equal approximately 1.2 V (pin 18). If an external reference is used, $\mathrm{V}_{\text {FSADJ }}$ will equal the external reference. The calculation for IOUT (Full Scale) is:
lout (Full Scale) $=\left(\mathrm{V}_{\text {FSADJ }} /\right.$ RSET X 32.
If the full scale output current is set to 20 mA by using the internal voltage reference (1.2 V) and a $1.91 \mathrm{k} \Omega$ RSET resistor, then the input coding to output current will resemble the following:

TABLE 1. INPUT CODING vs OUTPUT CURRENT

INPUT CODE (D11-D0)	IOUTA (mA)	IOUTB (mA)
111111111111	20	0
100000000000	10	10
000000000000	0	20

Outputs

IOUTA and IOUTB are complementary current outputs. The sum of the two currents is always equal to the full scale output current minus one LSB. If single ended use is desired, a load resistor can be used to convert the output current to a voltage. It is recommended that the unused output be either grounded or equally terminated. The voltage developed at the output must not violate the output voltage compliance range of -0.3 V to 1.25 V . R ROAD (the impedance loading each current output) should be chosen so that the desired output voltage is produced in conjunction with the output full scale current. If a known line impedance is to be driven, then the output load resistor should be chosen to match this impedance. The output voltage equation is:
$V_{\text {OUT }}=I_{\text {OUT }} \times$ R $_{\text {LOAD }}$.
These outputs can be used in a differential-to-single-ended arrangement to achieve better harmonic rejection. The SFDR measurements in this data sheet were performed with a 1:1 transformer on the output of the DAC (see Figure 1). With the center tap grounded, the output swing of pins 21 and 22 will be biased at zero volts. The loading as shown in Figure 1 will result in a 500 mV signal at the output of the transformer if the full scale output current of the DAC is set to 20 mA .

FIGURE 1.
$\mathrm{V}_{\text {OUT }}=2 \times \mathrm{l}_{\text {OUT }} \times \mathrm{R}_{\text {EQ }}$, where $\mathrm{R}_{\text {EQ }}$ is $\sim 12.5 \Omega$. Allowing the center tap to float will result in identical transformer output, however the output pins of the DAC will have positive DC offset. Since the DAC's output voltage compliance range is 0.3 V to +1.25 V , the center tap may need to be left floating or DC offset in order to increase the amount of signal swing available. The 50Ω load on the output of the transformer represents the spectrum analyzer's input impedance.

Timing Diagrams

FIGURE 2. OUTPUT SETTLING TIME DIAGRAM

FIGURE 3. PEAK GLITCH AREA (SINGLET) MEASUREMENT METHOD

FIGURE 4. PROPAGATION DELAY, SETUP TIME, HOLD TIME AND MINIMUM PULSE WIDTH DIAGRAM

Thin Shrink Small Outline Plastic Packages (TSSOP)

NOTES:

1. These package dimensions are within allowable dimensions of JEDEC MO-153-AE, Issue E.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E1" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.15 mm (0.006 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. Dimension "b" does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm (0.003 inch) total in excess of "b" dimension at maximum material condition. Minimum space between protrusion and adjacent lead is 0.07 mm (0.0027 inch).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact. (Angles in degrees)

M28.173
28 LEAD THIN SHRINK SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.047	-	1.20	-
A1	0.002	0.006	0.05	0.15	-
A2	0.031	0.051	0.80	1.05	-
b	0.0075	0.0118	0.19	0.30	9
c	0.0035	0.0079	0.09	0.20	-
D	0.378	0.386	9.60	9.80	3
E1	0.169	0.177	4.30	4.50	4
e	0.026 BSC		0.65 BSC		-
E	0.246	0.256	6.25	6.50	-
L	0.0177	0.0295	0.45	0.75	6
N	28		28		7
α	0°	8°	0°	8°	-

Small Outline Plastic Packages (SOIC)

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " D " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm (0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed $0.25 \mathrm{~mm}(0.010$ inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " L " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " B ", as measured 0.36 mm (0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm (0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see web site www.intersil.com

Sales Office Headquarters

Intersil Corporation
P. O. Box 883, Mail Stop 53-204

Melbourne, FL 32902
TEL: (321) 724-7000
FAX: (321) 724-7240

EUROPE

Intersil SA
Mercure Center
100, Rue de la Fusee 1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

ASIA

Intersil (Taiwan) Ltd.
7F-6, No. 101 Fu Hsing North Road
Taipei, Taiwan
Republic of China
TEL: (886) 227169310
FAX: (886) 227153029

