Advanced Information

High Voltage EL Lamp Driver

Ordering Information

		Package Options	
Device	Input Voltage	8-Lead SO	Die
HV824	1.0 V to 1.6V	HV824LG	HV824X

Features

Processed with HVCMOS ${ }^{\circledR}$ technology1.0 V to 1.6 V supply voltageDC to AC conversionPermits the use of high-resistance elastomeric lamp connectorsAdjustable output lamp frequency to control lamp color, lamp life, and power consumptionAdjustable converter frequency to eliminate harmonics and optimize power consumptionEnable/disable functionLow current draw under no load condition
Applications

PagersPortable TransceiverPortable InstrumentationCellular Phones
Absolute Maximum Ratings*

Supply Voltage, V_{DD}	-0.5 V to +2.0 V
Output Voltage, V_{Cs}	-0.5 V to +120 V
Operating Temperature Range	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation	400 mW

Note:

*All voltages are referenced to GND.

General Description

The Supertex HV824 is a high voltage driver designed to drive EL lamps with capacitive loads of $2 n F$ to $15 n F$. The input supply voltage range is 1.0 V to1.6V. The device uses a single inductor and a minimum number of passive components. Typical output voltage applied to the EL lamp is 120 V to 150 V peak-to-peak. The HV824 can be enabled/disabled by connecting the R_{SW} resistor to $\mathrm{V}_{\mathrm{DD}} /$ ground. In die form, the device has an enable bar pad which enables the IC when it is at logic low.

The HV824 has two internal oscillators, a switching MOSFET, and a high voltage EL lamp driver. The frequency for the switching MOSFET is set by an external resistor connected between the $R_{\text {sw-osc }}$ pin and the $V_{D D}$ pin. The EL lamp driver frequency is set by an external resistor connected between the $R_{E L-\text { osc }}$ pin and the $V_{D D}$ pin. An external inductor is connected between the L_{x} and $V_{D D}$ pins. A $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ capacitor is connected between C_{s} and GND pins. The EL lamp is connected between V_{A} and V_{B}.

The switching MOSFET charges the external inductor and discharges it into the $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ capacitor at C_{s}. The voltage at C_{S} will start to increase. Once the voltage at C_{s} reaches a nominal value of 75 V , the switching MOSFET is turned OFF to conserve power. The outputs V_{A} and V_{B} are configured as an H -bridge and are switching in opposite states to achieve a maximum voltage of 180V peak-to-peak across the EL lamp.

Pin Configuration

Electrical Characteristics

DC Characteristics (Over recommended operating conditions unless otherwise specified, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Min	Typ	Max	Units	Conditions
$\mathrm{I}_{\text {DDQ }}$	Quiescent V_{DD} supply current		50	100	nA	$\mathrm{R}_{\text {SW-osc }}=$ Low
$I_{\text {DD }}$	Input current going into the V_{DD} pin			450	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$.
$\mathrm{I}_{\text {IN }}$	Input current including inductor current.			70	mA	$V_{D D}=1.5 \mathrm{~V}$. See Figure 1.
$\mathrm{V}_{\text {P-P }}$	Output voltage peak-to-peak	140	150	160	V	$V_{D D}=1.5 \mathrm{~V}$. See Figure 1.
		130				$V_{\text {DD }}=1.0 \mathrm{~V}$. See Figure 1.
f_{EL}	$\mathrm{V}_{\mathrm{A}-\mathrm{B}}$ output drive frequency	300	333		Hz	$\mathrm{V}_{\mathrm{DD}}=1.5 \mathrm{~V}$. See Figure 1.
D	Switching transistor duty cycle		88		\%	
$\mathrm{C}_{\text {LOAD }}$	EL panel capacitance load range	2.0		15	nF	

Recommended Operating Conditions

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{DD}	Supply voltage	1.0		1.6	V	
$\mathrm{~T}_{\mathrm{A}}$	Operating temperature	-25		85	${ }^{\circ} \mathrm{C}$	

Enable/Disable Table

Symbol	Parameter	Min	Typ	Max	Units	Conditions
V_{IL}	Low level input voltage to R_{SW} resistor	0		0.2	V	$\mathrm{~V}_{\mathrm{DD}}=1.0 \mathrm{~V}$ to 1.6 V.
$\mathrm{~V}_{\mathrm{IH}}$	High level input voltage to R_{SW} resistor	$\mathrm{V}_{\mathrm{DD}}-0.5$		$\mathrm{~V}_{\mathrm{DD}}$	V	$\mathrm{V}_{\mathrm{DD}}=1.0 \mathrm{~V}$ to 1.6 V.

Block Diagram

Typical Application

Typical Performance

Lamp Size	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbf{I N}}$	$\mathbf{V}_{\mathbf{C s}}$	\mathbf{f}_{EL}	Brightness
$1.5 \mathrm{in}^{2}$	$1.0 \mathrm{~V}-1.5 \mathrm{~V}$	70 mA	75 V	333 Hz	$5.0 \mathrm{ft}-\mathrm{Im}$

