FEATURES:

- Enhanced N channel FET with no inherent diode to Vcc
- 2.5Ω bidirectional switches connect inputs to outputs
- Zero propagation delay, zero ground bounce
- Undershoot clamp diodes on all switch and control pins
- Active Low and High enable controls
- Available in 48-pin QVSOP Package

APPLICATIONS

- Hot-swapping and hot-docking (low Ron resistance for PCl and Compact PCI applications)
- Voltage translation (5V to 3.3 V)
- Power conservation
- Capacitance reduction and isolation
- Applications requiring Low resistance and active High enabling
- Bus isolation
- Clock gating

DESCRIPTION:

The QS32XR862 provides two sets of ten high-speed CMOS, TTLcompatible, active high, low resistance bus switches. The very low ON resistance (2.5 Ω) of the QS32XR862 allows inputs to be connected to outputs without adding propagation delay and without generating additional ground bounce noise. The switches are controlled by independent active Low Enable ($\overline{\mathrm{BE}}$) and active High Enable (BE) controls for each set.

The QS32XR862 is ideal for switching digital buses as well as for hot plug buffering and 5 V to 3.3 V conversion. The low ON resistance of the QS32XR862 makes it ideal for PCI hot-docking applications.

The QS32XR862 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

BE 1

QVSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIN	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
Pmax	Maximum Power Dissipation	.5	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc Terminals.
3. All terminals except Vcc.

CAPACITANCE

($\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{VIN}=0 \mathrm{~V}$, VOUT $=0 \mathrm{~V}$)

Pins	Typ.	Max. ${ }^{(1)}$	Unit
Control Inputs	3	4	pF
Quickswitch Channels (Switch OFF)	5	6	pF

NOTE:

1. This parameter is guaranteed but not production tested.

PIN DESCRIPTION

Pin Names	I / O	Description
$\overline{\mathrm{BE}}$	I	Active LOW Bus Enable
BE	I	Active HIGH Bus Enable
$\mathrm{A} 0-\mathrm{A} 19$	I / O	Bus A
$\mathrm{B} 0-\mathrm{B} 19$	I / O	Bus B

FUNCTION TABLE(1)

BE_{1}	$\overline{\mathrm{BE}}$	$\mathrm{A}_{1}-\mathrm{A}_{9}$	Function
L	L	$\mathrm{Hi}-\mathrm{Z}$	Disconnect
L	H	$\mathrm{Hi}-\mathrm{Z}$	Disconnect
H	L	$\mathrm{~B} 0-\mathrm{B} 9$	Connect
H	H	$\mathrm{Hi}-\mathrm{Z}$	Disconnect

BE_{2}	$\overline{\mathrm{BE}_{2}}$	$\mathrm{~A}_{10}-\mathrm{A}_{19}$	Function
L	L	$\mathrm{Hi}-\mathrm{Z}$	Disconnect
L	H	$\mathrm{Hi}-\mathrm{Z}$	Disconnect
H	L	$\mathrm{~B}_{10}-\mathrm{B} 19$	Connect
H	H	$\mathrm{Hi}-\mathrm{Z}$	Disconnect

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
Z = High-Impedence

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	Input LOW Voltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
lin	Input Leakage Current (Control Inputs)	$\mathrm{OV} \leq \mathrm{BEn}, \overline{\mathrm{BE}} \mathrm{n} \leq \mathrm{Vcc}$	-	± 0.01	± 1	$\mu \mathrm{A}$
Ioz	Off-State Current (Hi-Z)	$\mathrm{OV} \leq$ Vout $\leq \mathrm{Vcc}$, Switches OFF	-	± 0.01	± 1	$\mu \mathrm{A}$
Ron	Switch ON Resistance	$\mathrm{Vcc}=\mathrm{Min}$., VIN $=0 \mathrm{~V}$, ION $=30 \mathrm{~mA}$	-	2.5	5	Ω
Ron	Switch ON Resistance	$\mathrm{VcC}=$ Min., VIN $=2.4 \mathrm{~V}$, ION $=15 \mathrm{~mA}$	-	4	8.5	Ω
V_{P}	Pass Voltage ${ }^{(2)}$	$\mathrm{VIN}=\mathrm{Vcc}=5 \mathrm{~V}$, lout $=-5 \mu \mathrm{~A}$	3.7	4	4.3	V

NOTES:

1. Typical values are at $\mathrm{VCC}=5.0 \mathrm{~V}, \mathrm{TA}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
2. Pass voltage is guaranteed but not production tested.

TYPICAL ON RESISTANCE vs Vin AT Vcc = 5V

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Typ. ${ }^{(2)}$	Max.	Unit
ICcQ	Quiescent Power Supply Current	Vcc $=$ Max., BEn $=$ GND or Vcc, $f=0$	0.2	6	μA
$\Delta I C C$	Power Supply Current per Control Input $\mathrm{HIGH}^{(3)}$	Vcc $=$ Max., VIN $=3.4 \mathrm{~V}, \mathrm{f}=0$	-	2.5	mA
ICCD	Dynamic Power Supply Current per MHZ ${ }^{(4)}$	VcC $=$ Max., A and B pins open Control Inputs Toggling at 50% Duty Cycle	-	0.25	$\mathrm{~mA} / \mathrm{MHz}$

NOTES:

1. For conditions shown as Min. or Max., use the appropriate values specified under DC Electrical Characteristics.
2. Typical values are at $\mathrm{VcC}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
3. Per TLL driven input (VIN $=3.4 \mathrm{~V}$, control inputs only). A and B pins do not contribute to $\Delta \mathrm{lcc}$.
4. This current applies to the control inputs only and represents the current required to switch internal capacitance at the specified frequency. The A and B inputs generate no significant AC or DC currents as they transition. This parameter is guaranteed but not production tested.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$
CLOAD $=50 \mathrm{pF}$, RLOAD $=500 \Omega$ unless otherwise noted.

Symbol	Parameter	Min. ${ }^{(1)}$	Typ.	Max.	Unit
tPLH tPHL	Data Propagation Delay (2,3) An to/from Bn	-	-	0.12	
tPZL tPZH	Switch Turn-on Delay BEn or BEn to An/Bn	1.5	ns		
tPLZ tPHZ	Switch Turn-off Delay (2) BEn to An/Bn	1.5	5.6		

NOTES:

1. Minimums are guaranteed but not production tested.
2. This parameter is guaranteed but not production tested.
3. The bus switch contributes no propagation delay other than the RC delay of the ON resistance of the switch and the load capacitance. The time constant for the switch alone is of the order of 0.12 ns for $\mathrm{CL}=50 \mathrm{pF}$. Since this time constant is much smaller than the rise and fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

ORDERING INFORMATION

CORPORATE HEADQUARTERS
2975 StenderWay
Santa Clara, CA 95054

[^0]
[^0]: *To search for sales office near you, please click the sales button found on our home page or dial the 800\# above and press 2. The IDT logo, QuickSwitch, and SynchroSwitch are registered trademarks of Integrated Device Technology, Inc.

