# GDELPHI SERIES



# Delphi Series IPM, Non-Isolated, Integrated Point-of-Load Power Modules: 8V~14V input, 0.8~5V and 8A Output Current

The Delphi Series IPM12S non-isolated, fully integrated Point-of-Load (POL) power modules, are the latest offerings from a world leader in power systems technology and manufacturing --Delta Electronics, Inc. This product family provides up to 8A of output current or 40W of output power in an industry standard, compact, IC-like, molded package. It is highly integrated and does not require external components to provide the point-of-load function. A copper pad on the back of the module; in close contact with the internal heat dissipation components; provides excellent thermal performance. The assembly process of the modules is fully automated with no manual assembly involved. These converters possess outstanding electrical and thermal performance, as well as extremely high reliability under highly stressful operating conditions. IPM12S operates from an 8V~14V source and provides a programmable output voltage of 0.8V to 5V. The IPM product family is available in both a SMD or SIP package. IPM family is also available for input 3V~5.5V, please refer to IPM04S datasheet for details.

## FEATURES

- High efficiency: 93% @ 12Vin, 5V/8A out
- Small size and low profile: 17.8x15.0x7.8mm (0.70"x0.59"x0.31")
- Output voltage adjustment: 0.8V~5V
   Monotonic startup into normal and
- pre-biased loads
- Input UVLO, output OCP
- Remote ON/OFF
- Output short circuit protection
- Fixed frequency operation
- Mositure Sensitivity Level (MSL) 3
- Copper pad to provide excellent thermal performance
- ISO 9001, TL 9000, ISO 14001, QS9000, OHSAS18001 certified manufacturing
- UL/cUL 60950 (US & Canada) Recognized, and TUV (EN60950) Certified
- CE mark meets 73/23/EEC and 93/68/EEC directives

## **OPTIONS**

SMD or SIP package

## **APPLICATIONS**

- Telecom/DataCom
- Wireless Networks
- Optical Network Equipment
- Server and Data Storage
- Industrial/Test Equipment



#### DATASHEET IPM12S0A0R/S08\_12182006



# **TECHNICAL SPECIFICATIONS**

 $T_A = 25^{\circ}$ C, airflow rate = 300 LFM,  $V_{in} = 12$ Vdc, nominal Vout unless otherwise noted.

| Refer to figure 34 for measuring point<br>Vin=Vin,min to Vin,max, lo=lo,max<br>P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, lo=lo,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>lo=lo,min to lo,max | Min.<br>0<br>-40<br>-55<br>8<br>8<br>0<br>0<br>0.889<br>0.8                                                                                                                                                                                                                                                  | Typ.<br>12<br>7.9<br>7.6<br>3<br>20<br>TBD<br>0.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Max.<br>15<br>+113<br>+125<br>14<br>4.5<br>85<br>10<br>40<br>40<br>0.911<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Units Vdc °C °C V V V V V A mA mA mA mA vAp-p dB Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vin=Vin,min to Vin,max, Io=Io,max<br>P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25℃<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                            | -40<br>-55<br>8<br>                                                                                                                                                                                                                                                                                          | 12<br>7.9<br>7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +113<br>+125<br>14<br>4.5<br>85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | °C<br>°C<br>V<br>V<br>V<br>A<br>mA<br>mA<br>mA<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vin=Vin,min to Vin,max, Io=Io,max<br>P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25℃<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                            | -40<br>-55<br>8<br>                                                                                                                                                                                                                                                                                          | 7.9<br>7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +113<br>+125<br>14<br>4.5<br>85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | °C<br>°C<br>V<br>V<br>V<br>A<br>mA<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Vin=Vin,min to Vin,max, Io=Io,max<br>P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25℃<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                            | -55<br>8<br>                                                                                                                                                                                                                                                                                                 | 7.9<br>7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +125<br>14<br>4.5<br>85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | °C<br>V<br>V<br>A<br>mA<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                | 0.889                                                                                                                                                                                                                                                                                                        | 7.9<br>7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14<br>4.5<br>85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V<br>V<br>V<br>A<br>mA<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                | 0.889                                                                                                                                                                                                                                                                                                        | 7.9<br>7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14<br>4.5<br>85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | V<br>V<br>A<br>mA<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                | 0.889                                                                                                                                                                                                                                                                                                        | 7.9<br>7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5<br>85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V<br>V<br>A<br>mA<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                | 0.889                                                                                                                                                                                                                                                                                                        | 7.9<br>7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.5<br>85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V<br>V<br>A<br>mA<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                |                                                                                                                                                                                                                                                                                                              | 7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V<br>A<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                |                                                                                                                                                                                                                                                                                                              | 7.6<br>3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V<br>A<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                |                                                                                                                                                                                                                                                                                                              | 3<br>20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A<br>mA<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| P-P 1µH inductor, 5Hz to 20MHz<br>120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                |                                                                                                                                                                                                                                                                                                              | 20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 85<br>10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mA<br>mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                                                  |                                                                                                                                                                                                                                                                                                              | 20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10<br>40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mA<br>mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                                                  |                                                                                                                                                                                                                                                                                                              | 20<br>TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 40<br>0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mAp-p<br>dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 120 Hz<br>Vin=12V, Io=Io,max, Ta=25°C<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                                                  |                                                                                                                                                                                                                                                                                                              | TBD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Vin=12V, Io=Io,max, Ta=25℃<br>Vin=Vin,min to Vin,max<br>Io=Io,min to Io,max                                                                                                                             |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vin=Vin,min to Vin,max<br>lo=lo,min to lo,max                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              | 0.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vdc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vin=Vin,min to Vin,max<br>lo=lo,min to lo,max                                                                                                                                                           |                                                                                                                                                                                                                                                                                                              | 0.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vuc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| o=lo,min to lo,max                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| o=lo,min to lo,max                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| o=lo,min to lo,max                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0/ Ve eet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| , , ,                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                              | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % Vo,set<br>% Vo,set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| To To units to To unous                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %Vo,set/℃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                         | -3.0                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | % Vo,set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mVp-p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Α                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Vin=10V to 14V, Io=0A to 16A, Ta=25℃                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | % Vo,set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | % lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mVpk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100% lo, max to 50% lo, max                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                              | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mVpk                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | μs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| lo=lo.max                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Time for Vo to rise from 10% to 90% of Vo,set,                                                                                                                                                          | 5                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Full load; ESR $\geq 1m\Omega$                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | μF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Vin=12V, Io=Io,max, Ta=25°C                                                                                                                                                                             | 73                                                                                                                                                                                                                                                                                                           | 75.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         | 78                                                                                                                                                                                                                                                                                                           | 80.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         | 31                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | 485                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | -00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | KI IZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Module On                                                                                                                                                                                               | 24                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vin max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                         | -0.2                                                                                                                                                                                                                                                                                                         | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Logic High, von/om=5v                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | μA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10=80% 10,max, 1a=25°C                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M hours<br>grams                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                         | Ta=Ta,min to Ta,max<br>Over sample load, line and temperature<br>SHz to 20MHz bandwidth<br>Full Load, 1µF ceramic, 10µF tantalum<br>Vo≦3.6Vdc<br>Vo>3.6Vdc<br>Vin=10V to 14V, lo=0A to 16A, Ta=25℃<br>10µF Tan & 1µF Ceramic load cap, 2.5A/µs<br>50% lo, max to 100% lo, max<br>100% lo, max to 50% lo, max | Ta=Ta,min to Ta,max-3.0Over sample load, line and temperature-3.0SHz to 20MHz bandwidthFull Load, 1µF ceramic, 10µF tantalumFull Load, 1µF ceramic, 10µF tantalumVo≤3.6Vdc00Vo>3.6Vdc0Vo>3.6Vdc0Vo>3.6Vdc0Vo>3.6Vdc0Vo>3.6Vdc0Vo>3.6Vdc0Vin=10V to 14V, Io=0A to 16A, Ta=25°C10µF Tan & 1µF Ceramic load cap, 2.5A/µs50% Io, max to 100% Io, max100% Io, max to 50% Io, max100% Io, max to 50% Io, max10=Io.maxVin=10x, to 50% Io, max10=lo.maxVin=12V, Io=Io,max, Ta=25°C78Vin=12V, Io=Io,max, Ta=25°C78Vin=12V, Io=Io,max, Ta=25°C80Vin=12V, Io=Io,max, Ta=25°C88Vin=12V, Io=Io,max, Ta=25°C91Module On02.4Module Off0.2Ion/off at Von/off=0Logic High, Von/off=5V | Ta=Ta,min to Ta,max0.01Over sample load, line and temperature-3.05Hz to 20MHz bandwidth40Full Load, 1µF ceramic, 10µF tantalum15Vo≤3.6Vdc0Vo>3.6Vdc0Vo>3.6Vdc0Vo>3.6Vdc0Vostor0Vostor0Vostor0Vostor0Vostor0Vostor0Vostor0Vostor0Vostor0Vostor0Vostor0Vostor100100% lo, max to 100% lo, max100100% lo, max to 50% lo, max100100% load; ESR_≥1mQ17Full load; ESR_≥1mQ17Vin=12V, lo=lo,max, Ta=25°C73Vin=12V, lo=lo,max, Ta=25°C73Vin=12V, lo=lo,max, Ta=25°C86Vin=12V, lo=lo,max, Ta=25°C88Vin=12V, lo=lo,max, Ta=25°C9193.010Vin=12V, lo=lo,max, Ta=25°C9193.010Vin=12V, lo=lo,max, Ta=25°C24Module On2.4Module Off-0.2Ion/off at Von/off=0-0.2Logic High, Von/off=5V0.25 | Ta=Ta,min to Ta,max       0.01       0.025         Over sample load, line and temperature       -3.0       +3.0         SHz to 20MHz bandwidth       40       60         Full Load, 1µF ceramic, 10µF tantalum       40       60         Voc3.6Vdc       0       8         Voc3.6Vdc       0       6         Vin=10V to 14V, lo=0A to 16A, Ta=25°       0       1         10µF Tan & 1µF Ceramic load cap, 2.5A/µs       0       100         50% lo, max to 100% lo, max       100       150         100% lo, max to 50% lo, max       100       150         100% lo, max to 50% lo, max       100       150         10=lo.max       17       25         Time for Vo to rise from 10% to 90% of Vo,set,       5       9       15         Full load; ESR ≥ 10mΩ       150       5000       150         Vin=12V, lo=lo,max, Ta=25°C       78       80.5       5000         Vin=12V, lo=lo,max, Ta=25°C       88       91.0       5000         Vin=12V, lo=lo,max, Ta=25°C       88       91.0       100         Vin=12V, lo=lo,max, Ta=25°C       88       91.0       10         Vin=12V, lo=lo,max, Ta=25°C       88       91.0       10         Vin=12V, |

2



# **ELECTRICAL CHARACTERISTICS CURVES**

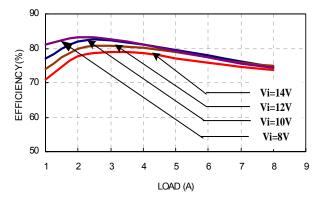



Figure 1: Converter efficiency vs. output current (0.90V output voltage)

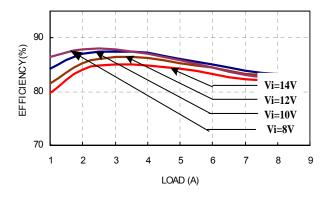



Figure 3: Converter efficiency vs. output current (1.5V output voltage)

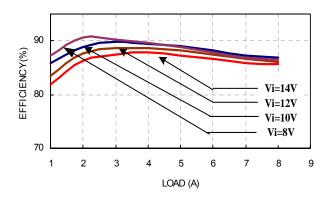



Figure 5: Converter efficiency vs. output current (2.0V Output voltage)



Figure 2: Converter efficiency vs. output current (1.2V output voltage)

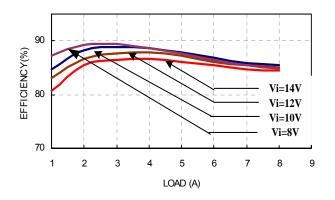



Figure 4: Converter efficiency vs. output current (1.8V output voltage)

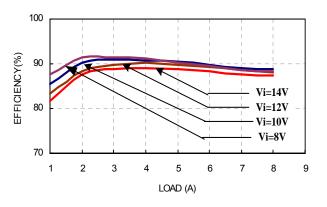
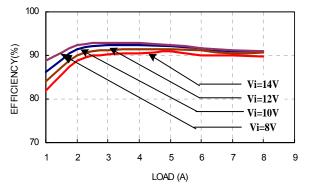
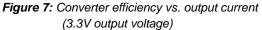





Figure 6: Converter efficiency vs. output current (2.5V output voltage)



# **ELECTRICAL CHARACTERISTICS CURVES**





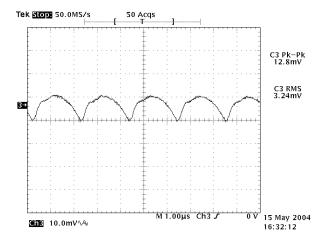



Figure 9: Output ripple & noise at 12 Vin, 0.9 V/8A out

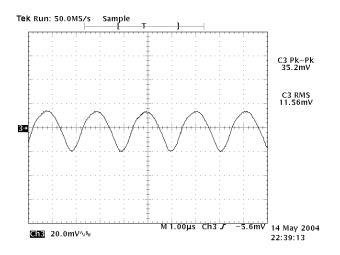



Figure 11: Output ripple & noise at 12 Vin, 3.3 V/8A out

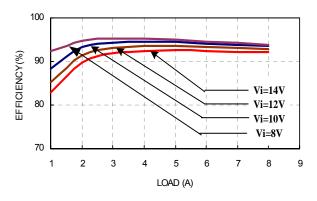



Figure 8: Converter efficiency vs. output current (5.0V output voltage)

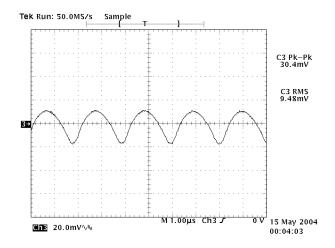



Figure 10: Output ripple & noise at 12 Vin, 2.5 V/8A out

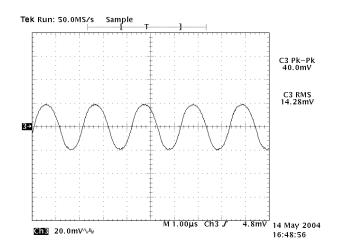
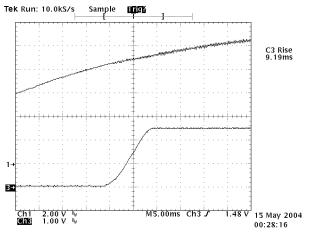
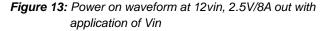





Figure 12: Output ripple & noise at 12 Vin, 5.0V/6A out







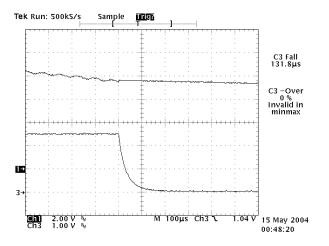



Figure 15: Power off waveform at 12vin, 2.5V/8A out with application of Vin

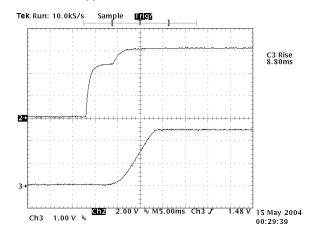



Figure 17: Remote turn on delay time at 12vin, 2.5V/8A out

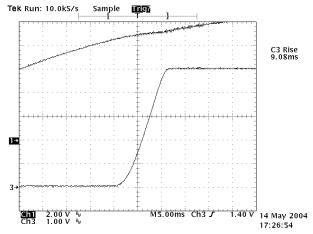



Figure 14: Power on waveform at 12vin, 5.0V/6A out with application of Vin

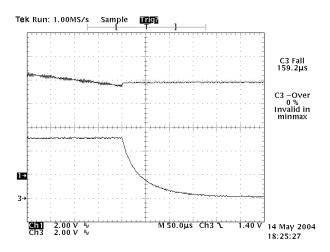
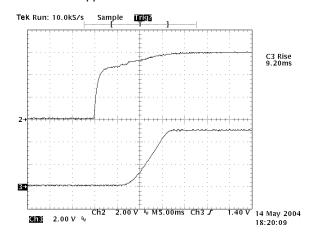
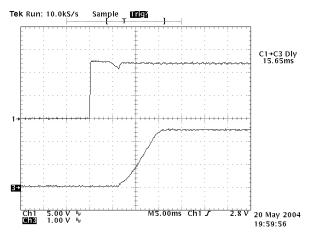
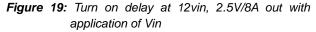
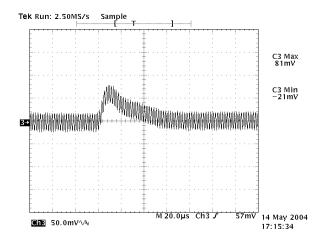



Figure 16: Power off waveform 12vin, 5.0V/8A out with application of Vin



Figure 18: Remote turn on delay time at 12vin, 5.0V/6A out



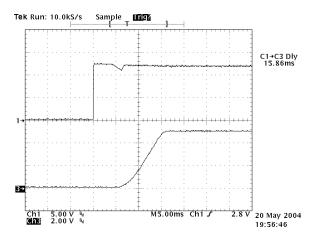
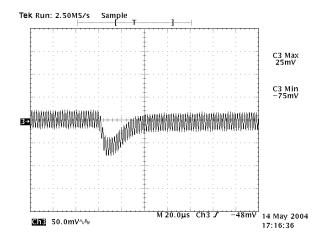
# **ELECTRICAL CHARACTERISTICS CURVES**

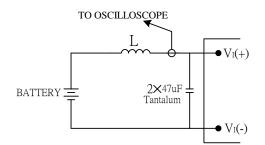






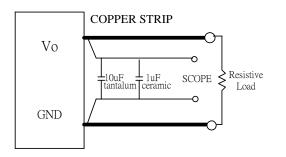
**Figure 21:** Typical transient response to step load change at 2.5A/μS from 100% to 50% of Io, max at 12Vin, 5.0V out (measurement with a 1uF ceramic and a 10μF tantalum

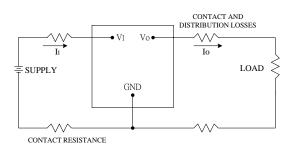


Figure 20: Turn on delay at 12vin, 5.0V/6A out with application of Vin



**Figure 22:** Typical transient response to step load change at 2.5A/ $\mu$ S from 50% to 100% of lo, max at 12Vin, 5.0V out (measurement with a 1uF ceramic and a 10 $\mu$ F tantalu)




# **TEST CONFIGURATIONS**




Note: Input reflected-ripple current is measured with a simulated source inductance. Current is measured at the input of the module.

Figure 23: Input reflected-ripple current test setup

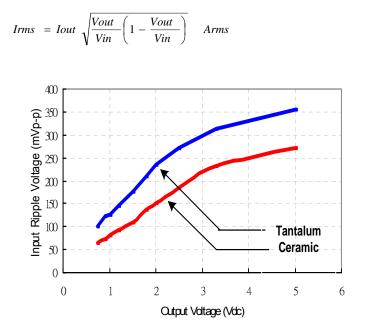


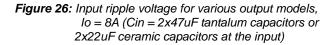
- Note: Use a 10µF tantalum and 1µF capacitor. Scope measurement should be made using a BNC connector.
- Figure 24: Peak-peak output noise and startup transient measurement test setup



- Figure 25: Output voltage and efficiency measurement test setup
- Note: All measurements are taken at the module terminals. When the module is not soldered (via socket), place Kelvin connections at module terminals to avoid measurement errors due to contact resistance.

$$\eta = (\frac{Vo \times Io}{Vi \times Ii}) \times 100 \quad \%$$


DS\_IPM12S0A008\_12182006


## **DESIGN CONSIDERATIONS**

#### Input Source Impedance

To maintain low-noise and ripple at the input voltage, it is critical to use low ESR capacitors at the input to the module. Figure 26 shows the input ripple voltage (mVp-p) for various output models using 2x47 uF low ESR tantalum capacitors (SANYO P/N:16TPB470M, 47uF/16V or equivalent) or 2x22 uF very low ESR ceramic capacitors (TDK P/N:C3225X7S1C226MT, 22uF/16V or equivalent).

The input capacitance should be able to handle an AC ripple current of at least:





The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the module. An input capacitance must be placed close to the modules input pins to filter ripple current and ensure module stability in the presence of inductive traces that supply the input voltage to the module.



## **DESIGN CONSIDERATIONS**

## **Safety Considerations**

For safety-agency approval the power module must be installed in compliance with the spacing and separation requirements of the end-use safety agency standards.

For the converter output to be considered meeting the requirements of safety extra-low voltage (SELV), the input must meet SELV requirements. The power module has extra-low voltage (ELV) outputs when all inputs are ELV.

The input to these units is to be provided with a maximum 10A time-delay fuse in the ungrounded lead.

## Remote On/Off

The IPM series power modules have an On/Off control pin for output voltage remote On/Off operation. The On/Off pin is an open collector/drain logic input signal that is referenced to ground. When On/Off control pin is not used, leave the pin unconnected.

The remote on/off pin is internally connected to +Vin through an internal pull-up resistor. Figure 27 shows the circuit configuration for applying the remote on/off pin. The module will execute a soft start ON when the transistor Q1 is in the off state.

The typical rise for this remote on/off pin at the output voltage of 2.5V and 5.0V are shown in Figure 17 and 18.

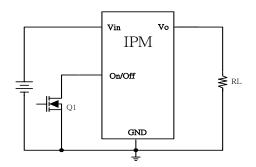



Figure 27: Remote on/off implementation

## FEATURES DESCRIPTIONS

## **Over-Current Protection**

To provide protection in an output over load fault condition, the unit is equipped with internal over-current protection. When the over-current protection is triggered, the unit enters hiccup mode. The units operate normally once the fault condition is removed.

## **Pre-Bias Startup Capability**

The IPM would perform the monotonic startup into the pre-bias loads; so as to avoid a system voltage drop occur upon application. In complex digital systems an external voltage can sometimes be presented at the output of the module during power on. This voltage may be feedback through a multi-supply logic component, such as FPGA or ASIC. Another way might be via a clamp diode as part of a power up sequencing implementation.

# FEATURES DESCRIPTIONS (CON.)

## **Output Voltage Programming**

The output voltage of IPM can be programmed to any voltage between 0.8Vdc and 5Vdc by connecting one resistor (shown as Rtrim in Figure 28, 29) between the TRIM and GND pins of the module to trim up  $(0.9V \sim 5V)$  and between the Trim and +Output to trim down  $(0.8V \sim 0.9V)$ . Without this external resistor, the output voltage of the module is 0.9 Vdc. To calculate the value of the resistor Rtrim for a particular output voltage Vo, please use the following equation:

Trim up

Rtrim = 
$$\frac{3.746}{\text{Vout} - 0.9} - 0.261 (K\Omega)$$

Trim Down

Rtrim = 
$$\frac{1.070}{0.9 - Vout} - 5.612 (K\Omega)$$

Rtrim is the external resistor in  $K\Omega$ Vout is the desired output voltage

For example: to program the output voltage of the IPM module to 3.3Vdc, Rtrim is calculated as follows:

Rtrim = 
$$\frac{3.746}{3.3 - 0.9}$$
 - 0.261 (K $\Omega$ )

IPM can also be programmed by applying a voltage between the TRIM and GND pins (Figure 30). The following equation can be used to determine the value of Vtrim needed for a desired output voltage Vo:

Vtrim = 0.7439 - 0.0488Vo

Vtrim is the external voltage in V Vo is the desired output voltage For example, to program the output voltage of a IPM module to 3.3 Vdc, Vtrim is calculated as follows

Vtrim = 0.7439 - 0.0488 x 3.3

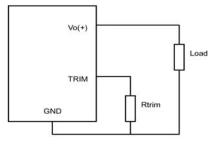



Figure 28: Trim up Circuit configuration for programming output voltage using an external resistor

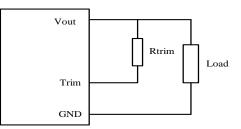



Figure 29: Trim down Circuit configuration for programming output voltage using an external resistor

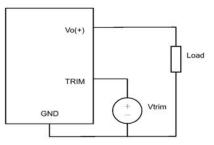



Figure 30: Circuit configuration for programming output voltage using external voltage source



## **FEATURE DESCRIPTIONS (CON.)**

Table 1 provides Rtrim values required for some common output voltages, while Table 2 provides value of external voltage source, Vtrim, for the same common output voltages. By using a 0.5% tolerance resistor, set point tolerance of  $\pm 2\%$  can be achieved as specified in the electrical specification.

Table 1

| VO (V) | Rtrim (Ω) |
|--------|-----------|
| 0.800  | 5.09K     |
| 0.900  | Open      |
| 1.0    | 37.2K     |
| 1.2    | 12.2K     |
| 1.5    | 5.98K     |
| 1.8    | 3.90K     |
| 2.5    | 2.08K     |
| 3.3    | 1.30K     |
| 5.0    | 653       |

#### Table 2

| VO (V) | Vtrim (V) |
|--------|-----------|
| 0.80   | 0.705     |
| 0.90   | 0.700     |
| 1.2    | 0.685     |
| 1.5    | 0.671     |
| 1.8    | 0.656     |
| 2.5    | 0.622     |
| 3.3    | 0.583     |
| 5.0    | 0.500     |

The amount of power delivered by the module is the voltage at the output terminals multiplied by the output current. When using the trim feature, the output voltage of the module can be increased, which at the same output current would increase the power output of the module. Care should be taken to ensure that the maximum output power of the module must not exceed the maximum rated power (Vo.set x lo.max  $\leq$  P max).

## **Voltage Margining**

Output voltage margining can be implemented in the IPM modules by connecting a resistor, R<sub>margin-up</sub>, from the Trim pin to the ground pin for margining-up the output voltage and by connecting a resistor, R<sub>margin-down</sub>, from the Trim pin to the output pin for margining-down. Figure 31 shows the circuit configuration for output voltage margining. If unused, leave the trim pin unconnected.

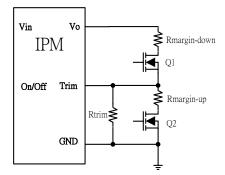



Figure 31: Circuit configuration for output voltage margining



## THERMAL CONSIDERATIONS

Thermal management is an important part of the system design. To ensure proper, reliable operation, sufficient cooling of the power module is needed over the entire temperature range of the module. Convection cooling is usually the dominant mode of heat transfer.

Hence, the choice of equipment to characterize the thermal performance of the power module is a wind tunnel.

## **Thermal Testing Setup**

Delta's DC/DC power modules are characterized in heated vertical wind tunnels that simulate the thermal environments encountered in most electronics equipment. This type of equipment commonly uses vertically mounted circuit cards in cabinet racks in which the power modules are mounted.

The following figure shows the wind tunnel characterization setup. The power module is mounted on a test PWB and is vertically positioned within the wind tunnel. The height of this fan duct is constantly kept at 25.4mm (1").

## **Thermal Derating**

Heat can be removed by increasing airflow over the module. To enhance system reliability, the power module should always be operated below the maximum operating temperature. If the temperature exceeds the maximum module temperature, reliability of the unit may be affected.

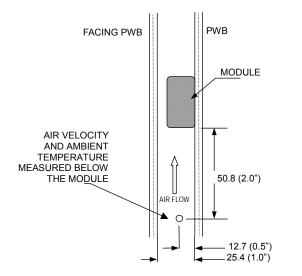
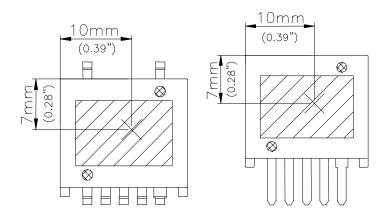




Figure 32: Wind tunnel test setup figure

# THERMAL CURVES



**Figure 33:** Temperature measurement location \* The allowed maximum hot spot temperature is defined at 113 C.

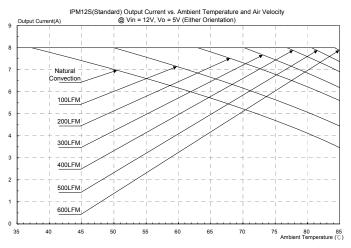



Figure 34: Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=5V

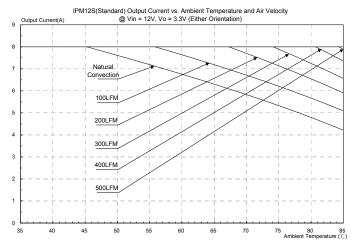



Figure 35: Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=3.3V



# **THERMAL CURVES (CON.)**

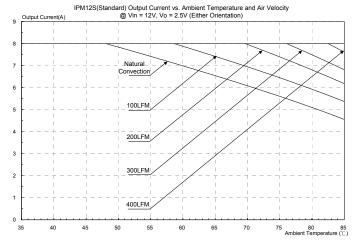



Figure 36: Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=2.5V

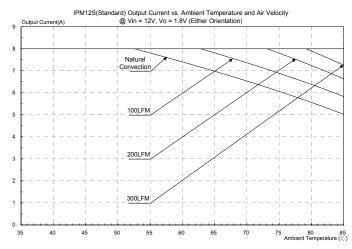
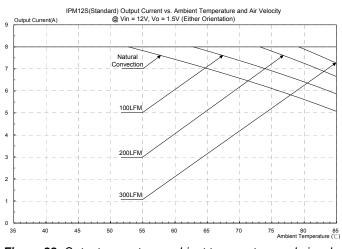
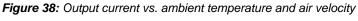





Figure 37: Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=1.8V





@ Vin=12V, Vo=1.5V DS\_IPM12S0A008\_12182006

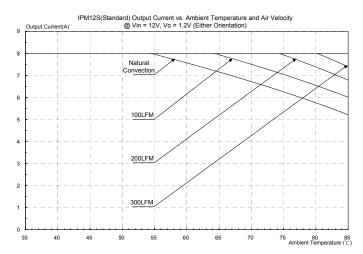



Figure 39: Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=1.2V

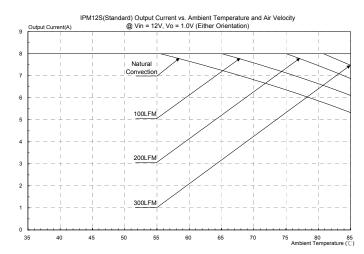
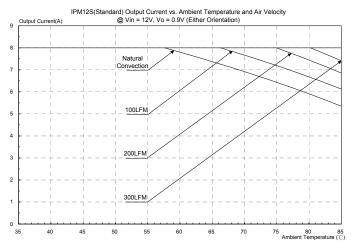
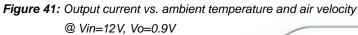
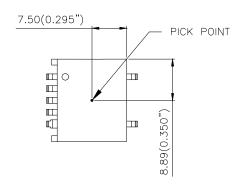
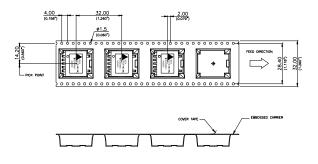





Figure 40: Output current vs. ambient temperature and air velocity @ Vin=12V, Vo=1.0V

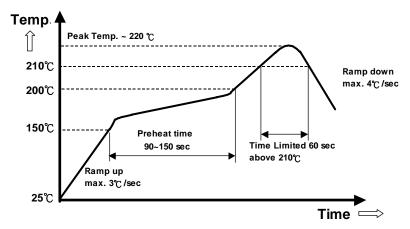




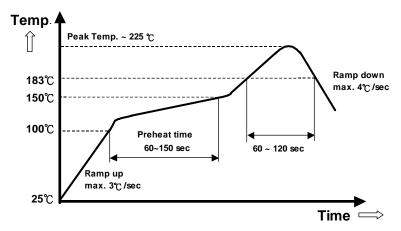

# PICK AND PLACE LOCATION

# SURFACE- MOUNT TAPE & REEL





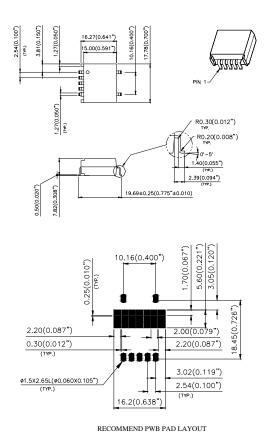

All dimensions are in millimeters (inches)


All dimensions are in millimeters (inches)

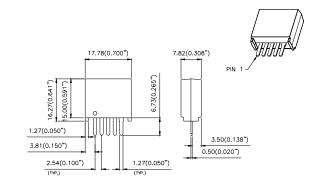
# LEAD FREE PROCESS RECOMMEND TEMP. PROFILE

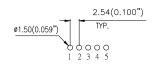


Note: All temperature refers to topside of the package, measured on the package body surface.


## LEADED (Sn/Pb) PROCESS RECOMMEND TEMP. PROFILE




Note: All temperature refers to assembly application board, measured on the land of assembly application board.




# MECHANICAL DRAWING SMD PACKAGE



SIP PACKAGE





RECOMMEND PWB HOLE LAYOUT

#### Note: The copper pad is recommended to connect to the ground.

| 7         | Pin# | Function                |   |     |      |             |
|-----------|------|-------------------------|---|-----|------|-------------|
|           | 1    | Remote on/off           |   |     |      |             |
|           | 2    | +Vin                    |   |     |      |             |
|           | 3    | Ground                  |   | ן ו | Pin# | Function    |
|           | 4    | +Vo                     |   |     | 1    | Remote on/o |
| 0         | 5    | Trim                    |   |     | 2    | +Vin        |
| <u> </u>  | 6    | Remote sense (optional) | 0 |     | 3    | Ground      |
| 1 2 3 4 5 | ~    | No connection           |   |     | 4    | +Vo         |
|           |      | No connection           |   |     | 5    | Trim        |

Note: All dimension are in millimeters (inches) standard dimension tolerance is ± 0.10(0.004")



## PART NUMBERING SYSTEM

| IPM                      | 12                              | S                    | 0A0                          | R                  | 08                  | F                          | A                     |
|--------------------------|---------------------------------|----------------------|------------------------------|--------------------|---------------------|----------------------------|-----------------------|
| Product<br>Family        | Input Voltage                   | Number of<br>Outputs | Output Voltage               | Package            | Output<br>Current   |                            | Option Code           |
| Integrated POL<br>Module | 04 - 3V ~ 5.5V<br>12 - 8V ~ 14V | S - Single           | 0A0 - programmable<br>output | R - SIP<br>S - SMD | 08 - 8A<br>10 - 10A | F- RoHS 6/6<br>(Lead Free) | A - Standard Function |

## **MODEL LIST**

| Model Name     | Packaging | Input Voltage | Output Voltage | Output Current | Efficiency (Typical @<br>full load) |
|----------------|-----------|---------------|----------------|----------------|-------------------------------------|
| IPM12S0A0R08FA | SIP       | 8V ~ 14V      | 0.8V ~ 5V      | 8A             | 93%                                 |
| IPM12S0A0S08FA | SMD       | 8V ~ 14V      | 0.8V ~ 5V      | 8A             | 93%                                 |
| IPM04S0A0R10FA | SIP       | 3V ~ 5.5V     | 0.8V ~ 3.3V    | 10A            | 94%                                 |
| IPM04S0A0S10FA | SMD       | 3V ~ 5.5V     | 0.8V ~ 3.3V    | 10A            | 94%                                 |

## CONTACT: www.delta.com.tw/dcdc

| USA:                       |
|----------------------------|
| Telephone:                 |
| East Coast: (888) 335 8201 |
| West Coast: (888) 335 8208 |
| Fax: (978) 656 3964        |
| Email: DCDC@delta-corp.com |

Europe: Telephone: +41 31 998 53 11 Fax: +41 31 998 53 53 Email: <u>DCDC@delta-es.tw</u> Asia & the rest of world: Telephone: +886 3 4526107 x6220 Fax: +886 3 4513485 Email: DCDC@delta.com.tw

#### WARRANTY

Delta offers a two (2) year limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta.

Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice.