

Symbol	Test Conditions	Characteristic Values$\left(\mathrm{T}_{J}=25^{\circ} \mathrm{C}\right. \text {, unless otherwise specified) }$$\begin{array}{l\|l\|l\|} \min . & \text { typ. } & \max . \end{array}$			
$\mathrm{BV}_{\text {ces }}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V}$	600			V
$\mathrm{V}_{\text {GE(th) }}$	$\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{GE}}$	2.5		5	V
$\mathrm{I}_{\text {ces }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=0.8 \cdot \mathrm{~V}_{\mathrm{CES}} \\ & \mathrm{~V}_{\mathrm{GE}}=0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{J}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{J}=125^{\circ} \mathrm{C} \end{aligned}$		400 2	$\mu \mathrm{A}$ mA
$\mathrm{I}_{\text {GES }}$	$\mathrm{V}_{\mathrm{CE}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GE}}= \pm 20 \mathrm{~V}$			± 100	nA
$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C90}}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}$			2.7	V

$$
\begin{array}{ll}
\mathrm{G}=\text { Gate } & \mathrm{C}=\text { Collector } \\
\mathrm{E}=\text { Emitter } & \mathrm{TAB}=\text { Collector }
\end{array}
$$

Features

- International standard package JEDEC TO-264 AA
- Two mached dice connected in parallel
- Low $\mathrm{V}_{\mathrm{CE}(\text { sat })}$
- for minimum on-state conduction losses
- MOS Gate turn-on
- drive simplicity

Applications

- AC motor speed control
- DC servo and robot drives
- DC choppers
- Uninterruptible power supplies (UPS)
- Switch-mode and resonant-mode power supplies

Advantages

- Easy to mount with 1 screw (isolated mounting screw hole)
- Reduces assembly time and cost
- High power density

Symbol	Test Conditions (T)	Characteristic Values ($\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified)	
		typ.	max.
$\mathrm{g}_{\text {is }}$	$I_{C}=40 \mathrm{~A} ; \mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$, Pulse test, $\mathrm{t} \leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$	50	S
$\left.\begin{array}{l} \mathbf{Q}_{\mathrm{g}} \\ \mathbf{Q}_{\mathrm{ge}} \\ \mathbf{Q}_{\mathrm{gc}} \end{array}\right\}$	$\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\text {C90 }}, \mathrm{V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~V}_{\text {CE }}=0.5 \mathrm{~V}_{\text {CES }}$	400 70 160	nC nC nC
$\left.\begin{array}{l} \mathrm{C}_{\text {ies }} \\ \mathrm{C}_{\text {oes }} \\ \mathrm{c}_{\text {res }} \end{array}\right\}$	$\mathrm{V}_{\text {CE }}=25 \mathrm{~V}, \mathrm{~V}_{\text {GE }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$	$\begin{array}{\|r\|} \hline 8000 \\ 860 \\ 200 \\ \hline \end{array}$	pF pF pF
$\left.\begin{array}{l} \mathbf{t}_{\mathrm{d}(0 \mathrm{n})} \\ \mathbf{t}_{\mathrm{ti}} \\ \mathbf{t}_{\mathrm{d}(\mathrm{fft})} \\ \mathbf{t}_{\mathrm{ti}} \\ \mathrm{E}_{\mathrm{off}} \end{array}\right\}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ $\begin{aligned} & I_{C}=I_{\text {c90 }}, V_{G E}=15 \mathrm{~V}, L=100 \mu \mathrm{H}, \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CES}}, R_{G}=R_{\text {off }}=2.7 \Omega \end{aligned}$ Remarks: Switching times may increase for $\mathrm{V}_{\text {CE }}($ Clamp $)>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}	50 210 300 350 10	
$\left.\begin{array}{l}\mathbf{t}_{\mathrm{d}_{\text {(on) }}} \\ \mathbf{t}_{\mathrm{r}} \\ \mathrm{E}_{\mathrm{on}} \\ \mathbf{t}_{\mathrm{doff})} \\ \mathbf{t}_{\mathrm{ti}} \\ E_{\mathrm{off}}\end{array}\right\}$	Inductive load, $\mathrm{T}_{\mathrm{J}}=\mathbf{1 2 5}^{\circ} \mathrm{C}$ $\begin{aligned} & \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{C} 90}, \mathrm{~V}_{\mathrm{GE}}=15 \mathrm{~V}, \mathrm{~L}=100 \mu \mathrm{H} \\ & \mathrm{~V}_{\mathrm{CE}}=0.8 \mathrm{~V}_{\mathrm{CEE}}, \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{off}}=2.7 \Omega \end{aligned}$ Remarks: Switching times may increase for V_{CE} (Clamp) $>0.8 \cdot \mathrm{~V}_{\text {CES }}$, higher T_{J} or increased R_{G}	50 240 3 400 600 15	ns ns mJ ns ns mJ
$\begin{aligned} & \mathbf{R}_{\mathrm{truc}} \\ & \mathbf{R}_{\mathrm{trck}} \end{aligned}$		0.15	$\begin{array}{r}0.25 \mathrm{~K} / \mathrm{W} \\ \mathrm{K} / \mathrm{W} \\ \hline\end{array}$

TO-264 AA Outline

SYM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	.185	.209	4.70	5.31
A 1	.102	.118	2.59	3.00
b	.037	.055	0.94	1.40
b 1	.087	.102	2.21	2.59
b 2	.110	.126	2.79	3.20
C	.017	.029	0.43	0.74
D	1.007	1.047	25.58	26.59
E	.760	.799	19.30	20.29
e	.215 BSC		5.46 BSC	
J	.000	.010	0.00	0.25
K	.000	.010	0.00	0.25
L	.779	.842	19.79	21.39
L 1	.087	.102	2.21	2.59
$\varnothing \mathrm{P}$.122	.138	3.10	3.51
Q	.240	.256	6.10	6.50
Q 1	.330	.346	8.38	8.79
$\varnothing \mathrm{R}$.155	.187	3.94	4.75
$\varnothing \mathrm{R} 1$.085	.093	2.16	2.36
S	.243	.253	6.17	6.43

```
1 - GATE
2,4 - DRAIN (COLLECTOR)
    3, - SOURCE (EMITER)
```

