8Mx32 Mobile SDRAM 90FBGA (VDD/VDDQ 3.0V/3.0V or 3.3V/3.3V)

Revision 1.1

December 2002

Rev. 1.1 Dec. 2002

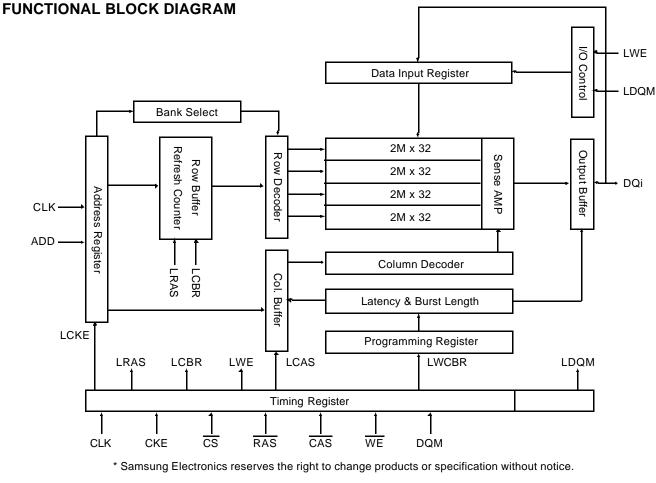
2M x 32Bit x 4 Banks SDRAM in 90FBGA

FEATURES

- 3.0V & 3.3V power supply
- LVCMOS compatible with multiplexed address
- Four banks operation
- MRS cycle with address key programs
 - -. CAS latency (1, 2 & 3)
 - -. Burst length (1, 2, 4, 8 & Full page)
 - -. Burst type (Sequential & Interleave)
- All inputs are sampled at the positive going edge of the system clock
- Burst read single-bit write operation
- DQM for masking
- Auto & self refresh
- 64ms refresh period (4K cycle).
- Extended Temperature Operation (-25°C ~ 85°C).
- Inderstrial Temperature Operation (-40°C ~ 85°C).
- 90Balls DDP FBGA(-MXXX -Pb, -EXXX -Pb Free).

GENERAL DESCRIPTION

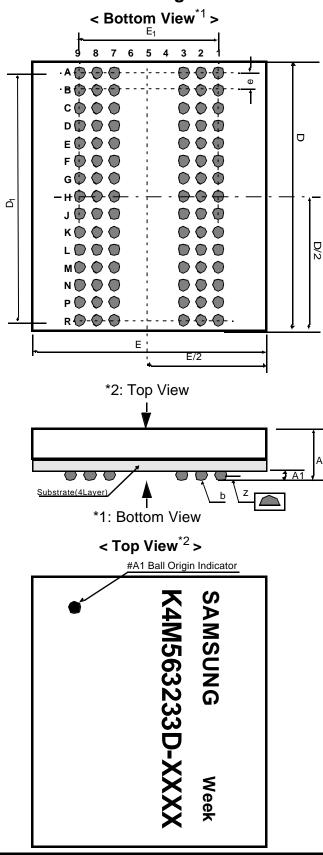
The K4M283233D is 268,435,456 bits synchronous high data rate Dynamic RAM organized as 4 x 2,097,152 words by 32 bits, fabricated with SAMSUNG's high performance CMOS technology. Synchronous design allows precise cycle control with the use of system clock and I/O transactions are possible on every clock cycle. Range of operating frequencies, programmable burst lengths and programmable latencies allow the same device to be useful for a variety of high bandwidth and high performance memory system applications.


ORDERING INFORMATION

Part No.	Max Freq.	Interface	Package
K4M563233D-M(E)E/N/I/P80	105MHz(CL=2)		90 FBGA
K4M563233D-M(E)E/N/I/P1H	105MHz(CL=2)	LVCMOS	Pb (Pb Free)
K4M563233D-M(E)E/N/I/P1L	105MHz(CL=3) ^{*1}		(,

- M(E)E/N ; Normal/Low Power, Temp : -25°C ~ 85°C.

- M(E)I/P ; Noraml/Low Power, Temp : -40°C ~ 85°C.


Note : 1. In case of 40MHz Frequency, CL1 can be supported.

ELECTRONICS

Package Dimension and Pin Configuration

90Ball(6x15) CSP								
	1		、 <i>,</i>		1	1		
	1	2	3	7	8	9		
А	DQ26	DQ24	Vss	Vdd	DQ23	DQ21		
В	DQ28	Vddq	Vssq	Vddq	Vssq	DQ19		
С	Vssq	DQ27	DQ25	DQ22	DQ20	Vddq		
D	Vssq	DQ29	DQ30	DQ17	DQ18	Vddq		
Е	Vddq	DQ31	NC	NC	DQ16	Vssq		
F	Vss	DQM3	A3	A2	DQM2	Vdd		
G	A4	A5	A6	A10	A0	A1		
Н	A7	A8	NC	NC	BA1	A11		
J	CLK	CKE	A9	BA0	CS	RAS		
K	DQM1	NC	NC	CAS	WE	DQM0		
L	Vddq	DQ8	Vss	Vdd	DQ7	Vssq		
М	Vssq	DQ10	DQ9	DQ6	DQ5	Vddq		
Ν	Vssq	DQ12	DQ14	DQ1	DQ3	Vddq		
Р	DQ11	Vddq	Vssq	Vddq	Vssq	DQ4		
R	DQ13	DQ15	Vss	Vdd	DQ0	DQ2		

< Top View^{*2} >

Pin Name	Pin Function
CLK	System Clock
CS	Chip Select
CKE	Clock Enable
A0 ~ A 11	Row Address
A0 ~ A8	Column Address
BA0 ~ BA1	Bank Select Address
RAS	Row Address Strobe
CAS	Column Address Strobe
WE	Write Enable
DQM0 ~DQM3	Data Input/Output Mask
DQ0 ~ 31	Data Input/Output
Vdd/Vss	Power Supply/Ground
Vddq/Vssq	Data Output Power/Ground

[Unit:mm]

Symbol	Min	Тур	Max
А	1.35	1.40	1.45
A ₁	0.30	0.35	0.40
E	-	11.00	-
E ₁	-	6.40	-
D	-	13.00	-
D ₁	-	11.20	-
е	-	0.80	-
b	0.40	0.45	0.50
Z	-	-	0.10

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Voltage on any pin relative to Vss	Vin, Vout	-1.0 ~ 4.6	V
Voltage on VDD supply relative to Vss	Vdd, Vddq	-1.0 ~ 4.6	V
Storage temperature	Тѕтс	-55 ~ +150	°C
Power dissipation	Po	1	W
Short circuit current	los	50	mA

Notes :

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded.

Functional operation should be restricted to recommended operating condition.

Exposure to higher than recommended voltage for extended periods of time could affect device reliability.

DC OPERATING CONDITIONS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = -25 °C to 85 °C for Extended, -40°C to 85 °C for Industrial)

Parameter	Symbol	Min	Тур	Max	Unit	Note	
Supply voltage	Vdd	2.7	3.0	3.6	V		
Supply vollage	Vddq	2.7	3.0	3.6	V		
Input logic high voltage	Viн	2.2	3.0	Vddq+0.3	V	1	
Input logic low voltage	VIL	-0.3	0	0.5	V	2	
Output logic high voltage	Vон	2.4	-	-	V	Іон = -2mA	
Output logic low voltage	Vol	-	-	0.4	V	Iol = 2mA	
Input leakage current	lu I	-10	-	10	uA	3	

Notes:

1. VIH (max) = 5.3V AC. The overshoot voltage duration is \leq 3ns.

2. VL (min) = -2.0V AC. The undershoot voltage duration is \leq 3ns.

3. Any input $0V \le V \le V \ge V$ DDQ.

Input leakage currents include HI-Z output leakage for all bi-directional buffers with tri-state outputs.

4. Dout is disabled, $0V \le V_{OUT} \le V_{DDQ}$.

Pin	Symbol	Min	Max	Unit	Note
Clock	Ссік	3.0	9.0	рF	
RAS, CAS, WE, CS, CKE	Cin	3.0	9.0	рF	
DQM	CIN	1.5	4.5	рF	
Address	CADD	3.0	9.0	рF	
DQ0 ~ DQ31	Соит	3.0	6.5	рF	

CAPACITANCE (VDD = 3.0V & 3.3V, TA = 23°C, f = 1MHz, VREF = 0.9V ± 50 mV)

CMOS SDRAM

DC CHARACTERISTICS

Recommended operating conditions (Voltage referenced to Vss = 0V, TA = -25°C to 85°C for Extended, -40°C to 85°C for Industrial)

Parameter	Symbol	Test Conditio			Version		Unit	Note
Parameter	Symbol	Test Conditio	-80	-1H	-1L	Unit	Note	
Operating Current (One Bank Active)	Icc1	Burst length = 1 $t_{RC} \ge t_{RC}(min)$ $I_{O} = 0 mA$		150 150 140			mA	1
Precharge Standby Current	Icc2P	CKE ≤ V⊩(max), tcc = 10ns	$KE \le VIL(max), tcc = 10ns$				mA	
in power-down mode	Icc2PS	CKE & CLK ≤ VIL (max), tcc = ∞			1.2		mA	
Icc2NCKE \geq VIH(min), $\overline{CS} \geq$ VIH(min), tcc = 10nsPrecharge Standby CurrentInput signals are changed one time during 20ns					20			
in non power-down mode		CKE ≥ Viн(min), CLK ≤ Vi∟(max Input signals are stable		10		mA		
Active Standby Current Icc3P CKE ≤ VIL (max), tcc = 10ns				8		mA		
in power-down mode	Icc3PS	CKE & CLK \leq VIL (max), tcc = ∞			8	mA		
Active Standby Current in non power-down mode	ІссзN	$CKE \ge V_{H}(min), \overline{CS} \ge V_{H}(min),$ Input signals are changed one t		45 40			mA	
(One Bank Active)	Icc3NS	$CKE \ge VH(min), CLK \le VL(max)$ Input signals are stable), tcc = ∞				mA	
Operating Current (Burst Mode)	Icc4	Io = 0 mA Page burst 4Banks Activated tccD = 2CLKs		190	160	160	mA	1
Refresh Current	Icc5	trc≥trc(min)	320	300	290	mA	2	
Self Refresh Current	ICC6	CKE < 0.2V	-M(E)E/I	3			mA	3
	1000		-M(E)N/P	1000			uA	4

Notes :

1. Measured with outputs open.

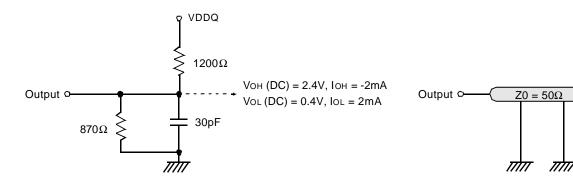
Refresh period is 64ms.
K4M563233D-M(E)E/I**

4. K4M563233D-M(E)N/P**

5. Unless otherwise noted, input swing level is CMOS(VIH /VIL=VDDQ/VSSQ)

CMOS SDRAM

Vtt = 0.5 x VDDQ


50Ω

30pF

 Π

AC OPERATING TEST CONDITIONS (VDD = 2.7V ~ 3.6V, TA = -25 °C to 85 °C for Extended, -40 °C to 85 °C for Industrial)

Parameter	Value	Unit
AC input levels (Vih/Vil)	2.4/0.4	V
Input timing measurement reference level	1.4	V
Input rise and fall time	tr/tf = 1/1	ns
Output timing measurement reference level	1.4	V
Output load condition	See Fig. 2	

(Fig. 2) AC output load circuit

(Fig. 1) DC output load circuit

OPERATING AC PARAMETER

(AC operating conditions unless otherwise noted)

Parameter		Symbol		Version		Unit	Note
i alameter		Symbol	- 80	-1H	-1L	onn	Note
Row active to row active delay		trrd(min)	16	19	19	ns	1
RAS to CAS delay		trcd(min)	19	19	24	ns	1
Row precharge time		tr p(min)	19	19	24	ns	1
Row active time		tras(min)	48	50	60	ns	1
		tras(max)	100			us	
Row cycle time		trc(min)	68	70	84	ns	1
Last data in to row precharge		trdl(min)	2			CLK	2,3
Last data in to Active delay		tdal(min)		tRDL + tRP	-	3	
Last data in to new col. address	delay	tco∟(min)		1		CLK	2
Last data in to burst stop		tBDL(min)		1		CLK	2
Col. address to col. address del	ау	tccd(min)		1		CLK	4
	CAS la	atency=3	2				
Number of valid output data	CAS la	atency=2	1			ea	5
	CAS la	atency=1		-	0	7	

Notes :

1. The minimum number of clock cycles is determined by dividing the minimum time required with clock cycle time

- and then rounding off to the next higher integer.
- 2. Minimum delay is required to complete write.
- 3. Minimum tRDL=2CLK and tDAL(=tRDL + tRP) is required to complete both of last data wite command(tRDL) and precharge command(tRP). tRDL=1CLK can be supported only in the case under 100MHz with manual precharge mode.
- 4. All parts allow every cycle column address change.
- 5. In case of row precharge interrupt, auto precharge and read burst stop.

CMOS SDRAM

Paramete	or.	Symbol	- :	80	-1	н	-1	IL	Unit	Note
Faramete		Symbol	Min	Max	Min	Max	Min	Max	Onit	Note
	CAS latency=3		8		9.5		9.5			
CLK cycle time	CAS latency=2	tcc	9.5	1000	9.5	1000	12	1000	ns	1
	CAS latency=1		-		-		25			
	CAS latency=3			6		7		7		
CLK to valid output delay	CAS latency=2	tsac		7		7		8	ns	1,2
	CAS latency=1			-		-		20		
Output data hold time	CAS latency=3	toн	2.5		2.5		2.5		ns	2
	CAS latency=2		2.5		2.5		2.5			
	CAS latency=1		-		-		2.5			
CLK high pulse width		tсн	2.5		3		3		ns	3
CLK low pulse width		tc∟	2.5		3		3		ns	3
Input setup time		tss	2.0		2.5		2.5		ns	3
Input hold time		tsн	1.0		1.5		1.5		ns	3
CLK to output in Low-Z		ts∟z	1		1		1		ns	2
	CAS latency=3			6		7		7		
CLK to output in Hi-Z	CAS latency=2	tsнz		7		7		8	ns	
	CAS latency=1			-		-		20		

AC CHARACTERISTICS (AC operating conditions unless otherwise noted)

Notes :

1. Parameters depend on programmed CAS latency.

2. If clock rising time is longer than 1ns, (tr/2-0.5)ns should be added to the parameter.

3. Assumed input rise and fall time (tr & tf) = 1ns.

If tr & tf is longer than 1ns, transient time compensation should be considered,

i.e., [(tr + tf)/2-1]ns should be added to the parameter.

Notes :

- This is to advise Samsung customers that, in accordance with certain terms of an agreement, Samsung is prohibited from selling any DRAM products configured in "Multi-Die Plastic" format for use as components in general and scientific computers, such as mainframes, servers, work stations or desk top personal computers (hereinafter "Prohibited Computer Use"). Applications such as mobile, including cell phones, telecom, including televisions and display monitors, or non-desktop computer systems, including laptops, notebook computers, are, however, permissible. "Multi-Die Plastic" is defined as two or more DRAM die encapsulated within a single plastic leaded package.
- Samsung are not designed or manufactured for use in a device or system that is used under circumstance in which human life is potentially at stake. Please contact to the memory marketing team in samsung electronics when considering the use of a product contained herein for any specific purpose, such as medical, aerospace, nuclear, military, vehicular or undersea repeater use.

SIMPLIFIED TRUTH TABLE

CMOS SDRAM

CC	OMMAND		CKEn-1	CKEn	CS	RAS	CAS	WE	DQM	B A 0,1	A10/AP	A11, A9 ~ A 0	Note
Register	Mode Regis	ter Set	Н	Х	L	L	L	L	Х		OP CODE		1, 2
	Auto Refres	h	н	Н				н	х		Х		3
Refresh		Entry	п	L		L	L		^		^		3
Kellesii	Self Refresh	Exit	L	Н	L	Н	Н	Н	х		х		3
			L		Н	Х	Х	Х	^		~		3
Bank Active & Row	w Addr.		Н	Х	L	L	н	н	Х	V	Row A	Address	
Read &	Auto Precha	arge Disable	н	х		н		н	х	V	L	Column Address	4
Column Address	Auto Precha	arge Enable	п	~		н	L	LH		v	Н	Address (Ao~A8)	4, 5
Write &	Auto Precharge Disable			х					V		L	Column Address	4
Column Address	Auto Precharge Enable		Н	^	L	н	L	L	Х	V	Н	(Ao~ As)	4, 5
Burst Stop	•		Н	Х	L	н	н	L	Х		Х		6
Precharge	Bank Select	tion	н	х		L	н	L	х	V	L	х	
Frecharge	All Banks			X	L		п		^	ХН			
		Entry	Н	L	Н	Х	Х	Х	х			•	
Clock Suspend or Active Power Dow		Entry	п		L	V	V	V	^		Х		
		Exit	L	Н	Х	Х	Х	Х	Х				
		Entry	Н	L	Н	Х	Х	Х	х				
Precharge Power	Down Mode	Entry	п		L	Н	Н	Н	^		х		
Frecharge Fower	Down wode	Exit	L	н	Н	Х	Х	Х	х		~		
Exit		L		L	V	V	V	^					
DQM			Н		-	Х	-	-	V		Х		7
No Operation Can	nmand		ц	v	Н	Х	Х	Х	х		Y		
No Operation Con	manu		Н	Х	L	н	н	н	^	X			

Notes :

1. OP Code : Operand Code

Ao ~ A11 & BAo ~ BA1 : Program keys. (@MRS)

2. MRS can be issued only at all banks precharge state.

A new command can be issued after 2 CLK cycles of MRS.

 Auto refresh functions are as same as CBR refresh of DRAM. The automatical precharge without row precharge command is meant by "Auto". Auto/self refresh can be issued only at all banks precharge state.

4. BA0 ~ BA1 : Bank select addresses.

If both BA₀ and BA₁ are "Low" at read, write, row active and precharge, bank A is selected. If BA₀ is "Low" and BA₁ is "High" at read, write, row active and precharge, bank B is selected. If BA₀ is "High" and BA₁ is "Low" at read, write, row active and precharge, bank C is selected. If both BA₀ and BA₁ are "High" at read, write, row active and precharge, bank D is selected. If A₁₀/AP is "High" at row precharge, BA₀ and BA₁ are ignored and all banks are selected.

5. During burst read or write with auto precharge, new read/write command can not be issued. Another bank read/write command can be issued after the end of burst.

New row active of the associated bank can be issued at $\ensuremath{\mathsf{trp}}$ after the end of burst.

- 6. Burst stop command is valid at every burst length.
- 7. DQM sampled at the positive going edge of CLK masks the data-in at that same CLK in write operation (Write DQM latency is 0), but in read operation it makes the data-out Hi-Z state after 2 CLK cycles. (Read DQM latency is 2).

(V=Valid, X=Don't Care, H=Logic High, L=Logic Low)