Document Title

1Mx4 Bit High Speed Static RAM(5V Operating).
Operated at Extended and Industrial Temperature Ranges.
Revision History
RevNo. History Draft Data Remark
Rev. 0.0 Initial release with Preliminary.
Feb. 12. 1999 Preliminary
Rev. 1.0 1.1 Removed Low power Version.
Mar. 29. 1999 Preliminary

Rev. 2.0
2.1 Relax D.C parameters.

Aug. 19. 1999 Preliminary

Item		Previous	Current
Icc	12 ns	160 mA	190 mA
	15 ns	155 mA	185 mA
	20 ns	150 mA	180 mA

2.2 Relax Absolute Maximum Rating.

Item	Previous	Current
Voltage on Any Pin Relative to Vss	-0.5 to 7.0	-0.5 to Vcc +0.5

Rev. 3.0
3.1 Delete Preliminary

Mar. 27. 2000 Final
3.2 Update D.C parameters and 10ns part.

		Previou			Current	
	ICC	lsb	Isb1	ICC	Isb	Isb1
10ns	-	70mA	20 mA	160 mA	60mA	10 mA
12ns	190 mA			150 mA		
15 ns	185 mA			140 mA		
20 ns	180 mA			130 mA		

[^0] specifications. SAMSUNG Electronics will evaluate and reply to your requests and questions on the parameters of this device. If you have any questions, please contact the SAMSUNG branch office near your office, call or contact Headquarters.

1M x 4 Bit (with OE)High-Speed CMOS Static RAM

FEATURES

- Fast Access Time 10,12,15,20ns(Max.)
- Low Power Dissipation Standby (TTL) : 60mA(Max.)
(CMOS) : 10mA(Max.)
Operating K6R4004C1C-10:160mA(Max.)
K6R4004C1C-12 : 150mA(Max.)
K6R4004C1C-15:140mA(Max.)
K6R4004C1C-20 : 130mA(Max.)
- Single $5.0 \mathrm{~V} \pm 10 \%$ Power Supply
- TTL Compatible Inputs and Outputs
- I/O Compatible with 3.3V Device
- Fully Static Operation
- No Clock or Refresh required
- Three State Outputs
- Center Power/Ground Pin Configuration
- Standard Pin Configuration

K6R4004C1C-J : 32-SOJ-400
ORDERING INFORMATION

K6R4004C1C-C10/C12/C15/C20	Commercial Temp.
K6R4004C1C-E10/E12/E15/E20	Extended Temp.
K6R4004C1C-I10/I12/I15/I20	Industrial Temp.

FUNCTIONAL BLOCK DIAGRAM

GENERAL DESCRIPTION

The K6R4004C1C is a 4,194,304-bit high-speed Static Random Access Memory organized as 1,048,576 words by 4 bits. The K6R4004C1C uses 4 common input and output lines and has an output enable pin which operates faster than address access time at read cycle. The device is fabricated using SAMSUNG's advanced CMOS process and designed for highspeed circuit technology. It is particularly well suited for use in high-density high-speed system applications. The K6R4004C1C is packaged in a 400 mil 32-pin plastic SOJ.

PIN FUNCTION

Pin Name	Pin Function
Ao^{-}- 19	Address Inputs
$\overline{\mathrm{WE}}$	Write Enable
$\overline{\mathrm{CS}}$	Chip Select
$\overline{\mathrm{OE}}$	Output Enable
$\mathrm{I} / \mathrm{O}_{1} \sim \mathrm{I} / \mathrm{O}_{4}$	Data Inputs/Outputs
Vcc	Power(+5.0V)
Vss	Ground
N.C	No Connection

ABSOLUTE MAXIMUM RATINGS*

Parameter		Symbol	Rating
Voltage on Any Pin Relative to Vss	Vin, VouT	-0.5 to Vcc +0.5	Unit
Voltage on Vcc Supply Relative to Vss	Vcc	-0.5 to 7.0	V
Power Dissipation	PD	1.0	V
Storage Temperature	TsTG	-65 to 150	W
Operating Temperature	Commercial	TA	0 to 70
${ }^{\circ} \mathrm{C}$			
	Extended	TA	-25 to 85
${ }^{\circ} \mathrm{C}$			
	Industrial	TA	-40 to 85
${ }^{\circ} \mathrm{C}$			

* Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
RECOMMENDED DC OPERATING CONDITIONS*(TA=0 to $70^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	Vcc	4.5	5.0	5.5	V
Ground	Vss	0	0	0	V
Input High Voltage	VIH	2.2	-	Vcc $+0.5^{* * * ~}$	V
Input Low Voltage	VIL	$-0.5^{* *}$	-	0.8	V

* The above parameters are also guaranteed at extended and industrial temperature range.
** $\mathrm{VIL}(\mathrm{Min})=-2.0 \mathrm{~V}$ a.c(Pulse Width $\leq 8 \mathrm{~ns})$ for $\mathrm{I} \leq 20 \mathrm{~mA}$.
*** $\mathrm{V}_{\mathrm{IH}}(\mathrm{Max})=\mathrm{Vcc}+2.0 \mathrm{~V}$ a.c (Pulse Width $\leq 8 \mathrm{~ns}$) for $\mathrm{I} \leq 20 \mathrm{~mA}$.
DC AND OPERATING CHARACTERISTICS* ${ }^{*}\left(\operatorname{TA}=0\right.$ to $70^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%$, unless otherwise specified)

Parameter	Symbol	Test Conditions			Min	Max	Unit
Input Leakage Current	ILI	Vin=Vss to Vcc			-2	2	$\mu \mathrm{A}$
Output Leakage Current	ILO	$\begin{aligned} & \overline{\mathrm{CS}}=\mathrm{VIH} \text { or } \overline{\mathrm{OE}}=\mathrm{VIH} \text { or } \overline{\mathrm{WE}}=\mathrm{VIL} \\ & \text { Vout }=\text { Vss to } \mathrm{VCc} \end{aligned}$			-2	2	$\mu \mathrm{A}$
Operating Current	Icc	$\begin{aligned} & \text { Min. Cycle, } 100 \% \text { Duty } \\ & \hline \text { CS }=\text { VIL, VIN=VIH or VIL, IouT=OmA } \end{aligned}$	Com.	10ns	-	160	mA
				12ns	-	150	
				15ns	-	140	
				20ns	-	130	
			Ext. Ind.	10ns	-	175	
				12ns	-	165	
				15ns	-	155	
				20ns	-	145	
Standby Current	IsB	Min. Cycle, $\overline{\mathrm{CS}}=\mathrm{V} \mathbf{V}$			-	60	mA
	IsB1	$\begin{aligned} & \mathrm{f}=0 \mathrm{MHz}, \overline{\mathrm{CS}} \geq \mathrm{Vcc}-0.2 \mathrm{~V}, \\ & \mathrm{VIN} \geq \mathrm{Vcc}-0.2 \mathrm{~V} \text { or VIN } \leq 0.2 \mathrm{~V} \end{aligned}$			-	10	
Output Low Voltage Level	Vol	loL=8mA			-	0.4	V
Output High Voltage Level	Vor	$\mathrm{IOH}=-4 \mathrm{~mA}$			2.4	-	V
	Vон1**	$\mathrm{IOH} 1=-0.1 \mathrm{~mA}$			-	3.95	V

* The above parameters are also guaranteed at extended and industrial temperature range.
** $\mathrm{Vcc}=5.0 \mathrm{~V} \pm 5 \%$, Temp. $=25^{\circ} \mathrm{C}$.
CAPACITANCE* $\left(\mathrm{TA}=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}\right)$

Item	Symbol	Test Conditions	MIN	Max	Unit
Input/Output Capacitance	$\mathrm{C} / / \mathrm{O}$	$\mathrm{V} / \mathrm{O}=0 \mathrm{~V}$	-	8	pF
Input Capacitance	CIN	$\mathrm{V} / \mathrm{N}=0 \mathrm{~V}$	-	7	pF

[^1]AC CHARACTERISTICS $\left(\mathrm{TA}_{\mathrm{A}}=0\right.$ to $70^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$, unless otherwise noted.) TEST CONDITIONS*

Parameter	Value
Input Pulse Levels	0 V to 3 V
Input Rise and Fall Times	3 ns
Input and Output timing Reference Levels	1.5 V
Output Loads	See below

* The above test conditions are also applied at extended and industrial temperature range.

[^2]READ CYCLE*

Parameter	Symbol	K6R4004C1C-10		K6R4004C1C-12		K6R4004C1C-15		K6R4004C1C-20		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Read Cycle Time	trc	10	-	12	-	15	-	20	-	ns
Address Access Time	taA	-	10	-	12	-	15	-	20	ns
Chip Select to Output	tco	-	10	-	12	-	15	-	20	ns
Output Enable to Valid Output	toe	-	5	-	6	-	7	-	8	ns
Chip Enable to Low-Z Output	tLz	3	-	3	-	3	-	3	-	ns
Output Enable to Low-Z Output	tolz	0	-	0	-	0	-	0	-	ns
Chip Disable to High-Z Output	thz	0	5	0	6	0	7	0	9	ns
Output Disable to High-Z Output	tohz	0	5	0	6	0	7	0	9	ns
Output Hold from Address Change	tor	3	-	3	-	3	-	3	-	ns
Chip Selection to Power Up Time	tPu	0	-	0	-	0	-	0	-	ns
Chip Selection to Power DownTime	tPD	-	10	-	12	-	15	-	20	ns

[^3]WRITE CYCLE*

Parameter	Symbol	K6R4004C1C-10		K6R4004C1C-12		K6R4004C1C-15		K6R4004C1C-20		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Write Cycle Time	twc	10	-	12	-	15	-	20	-	ns
Chip Select to End of Write	tcw	7	-	8	-	10	-	12	-	ns
Address Set-up Time	tas	0	-	0	-	0	-	0	-	ns
Address Valid to End of Write	taw	7	-	8	-	10	-	12	-	ns
Write Pulse Width($\overline{\mathrm{OE}}$ High)	twp	7	-	8	-	10	-	12	-	ns
Write Pulse Width($\overline{\mathrm{OE}}$ Low)	twP1	10	-	12	-	15	-	20	-	ns
Write Recovery Time	twr	0	-	0	-	0	-	0	-	ns
Write to Output High-Z	twHz	0	5	0	6	0	7	0	9	ns
Data to Write Time Overlap	tDw	5	-	6	-	7	-	9	-	ns
Data Hold from Write Time	tDH	0	-	0	-	0	-	0	-	ns
End Write to Output Low-Z	tow	3	-	3	-	3	-	3	-	ns

* The above parameters are also guaranteed at extended and industrial temperature range.

TIMMING DIAGRAMS

TIMING WAVEFORM OF READ CYCLE(1) (Address Controlled, $\overline{\mathrm{CS}}=\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{WE}}=\mathrm{V}_{\mathrm{IH}}$)

TIMING WAVEFORM OF READ CYCLE(2) ($\overline{\mathrm{WE}}=\mathrm{V} / \mathrm{H}$)

NOTES(READ CYCLE)

1. $\overline{\text { WE }}$ is high for read cycle.
2. All read cycle timing is referenced from the last valid address to the first transition address
3. thz and tohz are defined as the time at which the outputs achieve the open circuit condition and are not referenced to Voн or Vol levels.
4. At any given temperature and voltage condition, $\operatorname{thz}\left(\mathrm{Max}_{\text {. }}\right.$) is less than tız(Min.) both for a given device and from device to device.
5. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage with Load(B). This parameter is sampled and not 100% tested.
6. Device is continuously selected with $\mathrm{CS}=\mathrm{VIL}$.
7. Address valid prior to coincident with $\overline{\mathrm{CS}}$ transition low.
8. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.

TIMING WAVEFORM OF WRITE CYCLE(1) ($\overline{\mathrm{OE}}=$ Clock)

TIMING WAVEFORM OF WRITE CYCLE(2) ($\overline{\mathrm{OE}}=$ Low Fixed)

TIMING WAVEFORM OF WRITE CYCLE(3) ($\overline{\mathrm{CS}}=$ Controlled)

NOTES(WRITE CYCLE)

1. All write cycle timing is referenced from the last valid address to the first transition address.
2. A write occurs during the overlap of a low $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WE}}$. A write begins at the latest transition $\overline{\mathrm{CS}}$ going low and $\overline{\mathrm{WE}}$ going low ; A write ends at the earliest transition $\overline{C S}$ going high or WE going high. twp is measured from the beginning of write to the end of write.
3. tcw is measured from the later of CS going low to end of write.
4. $t_{\text {As }}$ is measured from the address valid to the beginning of write.
5. twr is measured from the end of write to the address change. twr applied in case a write ends as $\overline{C S}$ or $\overline{W E}$ going high.
6. If $\overline{\mathrm{OE}}, \overline{\mathrm{CS}}$ and $\overline{\mathrm{WE}}$ are in the Read Mode during this period, the I/O pins are in the output low-Z state. Inputs of opposite phase of the output must not be applied because bus contention can occur.
7. For common I/O applications, minimization or elimination of bus contention conditions is necessary during read and write cycle.
8. If $\overline{\mathrm{CS}}$ goes low simultaneously with $\overline{\mathrm{WE}}$ going or after $\overline{\mathrm{WE}}$ going low, the outputs remain high impedance state.
9. Dout is the read data of the new address.
10. When CS is low : I/O pins are in the output state. The input signals in the opposite phase leading to the output should not be applied.

FUNCTIONAL DESCRIPTION

$\overline{\mathbf{C S}}$	$\overline{\mathrm{WE}}$	$\overline{\mathbf{O E}}$	Mode	I/O Pin	Supply Current
H	X	X^{*}	Not Select	High-Z	ISB, ISB1
L	H	H	Output Disable	High-Z	ICC
L	H	L	Read	DouT	ICC
L	L	X	Write	DIN	ICC

* X means Don't Care.

[^0]: 3.3 Added Extended temperature range

[^1]: * Capacitance is sampled and not 100\% tested.

[^2]: * Capacitive Load consists of all components of the test environment.

[^3]: * The above parameters are also guaranteed at extended and industrial temperature range.

