

Preliminary

Overview

The LC6529N/F/L provides the basic architecture and instruction set of the Sanyo LC6500 Series of 4-bit singlechip microcomputers in a version specially for small-scale control applications involving circuits built with standard logic elements, applications using simple, comparatorbased voltage or phase detectors, or other applications controlling a limited number of controls. The LC6529F is a replacement for the former LC6529H. (Certain functions differ, however.) The N (medium-speed) and L (powersaving) versions are new additions to the lineup.

Features

- Power-saving CMOS design (Standby mode accessed with HALT instruction included.)
- Memory: 1 kilobyte of 8 -bit ROM and 64 words of 4-bit RAM
- Instruction set: 51-member subset of LC6500 standard complement of 80 instructions
- (L version) Wide range of operating voltages: 2.2 to 6.0 V
- (F version) $0.92 \mu \mathrm{~s} / 3.0 \mathrm{~V}$ instruction cycle time
- Flexible I/O ports

Four ports with up to 16 lines

- Bidirectional I/O ports: 12

Dedicated input ports: 4 (These double as comparator inputs.)

- I/O voltage limit: max. +15 V (open-drain configuration)
- Output current: max. 20 mA sink current (capable of directly driving an LED)
Choice of options to match system specifications
- Choice of open-drain or pull-up resistor output configurations at the bit level for all ports
- Choice of reset output levels for Ports C and D in groups of 4 bits each
Port E configurable as four comparator inputs
- Stack: Four levels
- Timers: 4-bit prescaler plus 8-bit programmable counter
- Comparators: 4 channels (2 reference levels)

Separator reference level for each channel pair

- Feedback resistor option for choice of input with or without hysteresis
- Choice of clock oscillator options to match system specifications
- Oscillator circuit options: 2-pin RC oscillator circuit (N and L versions) or 2-pin ceramic oscillator circuit (N, F, and L versions)
- Frequency divider options: Built-in $1 / 3$ and $1 / 4$ frequency dividers that eliminate the need for external frequency dividers

LC6529N, LC6529F, LC6529L

Summary of Functions

Item	LC6529N	LC6529F	LC6529L
[Memory]			
ROM	1024×8 bits	1024×8 bits	1024×8 bits
RAM	64×4 bits	64×4 bits	64×4 bits
Instruction set	51	51	51
[On-board functions]			
Timers	4-bit prescaler plus 8-bit programmable counter	4-bit prescaler plus 8-bit programmable counter	4-bit prescaler plus 8-bit programmable counter
Stack levels	4	4	4
Standby mode	HALT instruction places chip on standby.	HALT instruction places chip on standby.	HALT instruction places chip on standby.
Comparators	4 channels (2 reference levels)	4 channels (2 reference levels)	4 channels (2 reference levels)
[//O ports]			
Number of ports	12 bidirectional I/O pins, 4 input pins	12 bidirectional I/O pins, 4 input pins	12 bidirectional I/O pins, 4 input pins
I/O voltage limit	max. 15 V (ports A, C, and D)	max. 15 V (ports A, C, and D)	max. 15 V (ports A, C, and D)
Output current	10 mA typ. 20 mA max.	10 mA typ. 20 mA max.	10 mA typ. 20 mA max.
I/O circuit configuration	Choice of open-drain output or pull-up resistors at the bit level for ports A, C, and D		
Reset output level	Choice of high or low in groups of 4 bits each (ports C and D)		
Port function	Port E configurable as four comparator inputs		
[Characteristics]			
Minimum cycle time	2.77 ¢ $\left(\mathrm{V}_{\mathrm{DD}} \geq 3.0 \mathrm{~V}\right)$	$0.92 \mu \mathrm{~s}\left(\mathrm{~V}_{\mathrm{DD}} \geq 3.0 \mathrm{~V}\right)$	$3.84 \mu \mathrm{~s}\left(\mathrm{~V}_{\mathrm{DD}} \geq 2.2 \mathrm{~V}\right)$
Operating temperature	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$	-40 to $+85^{\circ} \mathrm{C}$
Power supply voltage	3.0 to 6.0 V	3.0 to 6.0 V	2.2 to 6.0 V
Current drain	1.1 mA typ.	1.6 mA typ.	1.0 mA typ.
[Clock]			
Oscillator	RC ($850 \mathrm{kHz}, 400 \mathrm{kHz}$ typ.) Ceramic oscillator ($400 \mathrm{kHz}, 800 \mathrm{kHz}$, $2 \mathrm{MHz}, 4 \mathrm{MHz}$)	Ceramic oscillator ($2 \mathrm{MHz}, 4 \mathrm{MHz}$)	RC (400 kHz typ.) Ceramic oscillator ($400 \mathrm{kHz}, 800 \mathrm{kHz}$, $2 \mathrm{MHz}, 4 \mathrm{MHz}$)
Frequency divider options	1/1, 1/3, 1/4	1/1	1/1, 1/3, 1/4
[Miscellaneous]			
Package	DIP24S, SSOP24, MFP30S	DIP24S, SSOP24, MFP30S	DIP24S, SSOP24, MFP30S
OTP	Included	Included	Included

Note: The oscillator constants will be announced once the recommended circuit design has been decided.

Pin Assignments
MFP30S

DIP24S/SSOP24

Note: Do not use dip-soldering when mounting the SSOP package on the circuit board.

Package Dimensions

unit: mm
3073A-MFP30S

unit: mm
3067-DIP24S

unit: mm
3175A-SSOP24

Note: The above diagrams give only the nominal dimensions. Contact Sanyo for drawings complete with tolerances.

Pin Names

OSC1, OSC2: Pins for RC or ceramic oscillator circuit
TEST: Test pin
RES: Reset pin
PA0 to PA3: \quad Bidirectional I/O port A, bits 0 to 3
PC0 to PC3: \quad Bidirectional I/O port C, bits 0 to 3
PD0 to PD3: \quad Bidirectional I/O port D, bits 0 to 3
PE0 to PE3: \quad Unidirectional input port E, bits 0 to 3
CMP0 to CMP3: Comparator input port, bits 0 to 3
VREF0, VREF1: Reference inputs

System Block Diagram

RAM: Data memory
AC: Accumulator
ALU: Arithmetic and Logic Unit
DP: Data pointer
E: E register
OSC: Oscillator circuit
TM: Timer
STS: Status register

ROM: Program memory
PC: Program Counter
IR: Instruction Register
I.DEC: Instruction Decoder

CF: Carry Flag
ZF: Zero Flag
TMF: Timer overflow Flag

Pin Functions

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Pin No. \& Symbol \& 1/O \& Function \& Output driver type \& Options \& State after reset \\
\hline \[
1
\] \& \[
\begin{aligned}
\& \mathrm{V}_{\mathrm{DD}} \\
\& \mathrm{~V}_{\mathrm{SS}}
\end{aligned}
\] \& - \& Power supply. Normally +5 V . Power supply. 0 V . \& \& \& - \\
\hline 1
1 \& \[
\begin{aligned}
\& \text { OSC1 } \\
\& \text { OSC2 }
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { I } \\
\& 0
\end{aligned}
\] \& Pins for attaching external system clock oscillator circuit (RC or ceramic) \& \& \begin{tabular}{l}
1. 2-pin RC oscillator circuit (1-pin external clock) \\
2. 2-pin ceramic oscillator circuit \\
3. Frequency divider options: \(1 / 1,1 / 3,1 / 4\)
\end{tabular} \& \\
\hline 4 \& \[
\begin{aligned}
\& \text { PA0 } \\
\& \text { PA1 } \\
\& \text { PA2 } \\
\& \text { PA3 }
\end{aligned}
\] \& I/O \& \begin{tabular}{l}
- Bidirectional I/O port A0 to A3: 4-bit input (IP instruction), 4-bit output (OP instruction), 1-bit conditionals (BP and BNP instructions), 1-bit set and reset (SPB and RPB instructions) \\
- PA3 also doubles as standby operation control. \\
- Block chattering from entering PA3 during the HALT instruction execution cycle.
\end{tabular} \& \begin{tabular}{l}
- \(N\) channel: sink current type \\
- I/O voltage limit for open-drain configuration: max. \(+15 \mathrm{~V}\) \\
- P channel: highimpedance pull-up type
\end{tabular} \& \begin{tabular}{l}
1. Open-drain output \\
2. Pull-up resistor \\
- Choice of configuration 1. or 2. at bit level
\end{tabular} \& High output (output N channel transistor off) \\
\hline 4 \& \[
\begin{aligned}
\& \text { PC0 } \\
\& \text { PC1 } \\
\& \text { PC2 } \\
\& \text { PC3 }
\end{aligned}
\] \& I/O \& \begin{tabular}{l}
- Bidirectional I/O port CO to C3. Functions the same as PA0 to PA3 except that there is no the standby operation control. \\
- Option controls whether output is high or low after reset.
\end{tabular} \& \begin{tabular}{l}
- N channel: sink current type \\
- I/O voltage limit for open-drain configuration: max. \(+15 \mathrm{~V}\) \\
- P channel: lowimpedance pull-up type
\end{tabular} \& \begin{tabular}{l}
1. Open-drain output \\
2. Pull-up resistor \\
3. High output after reset \\
4. Low output after reset \\
- Choice of configuration 1. or 2. at bit level \\
- Choice of configuration 3. or 4 . at port (4-bit) level
\end{tabular} \& High or low (option) \\
\hline 4 \& \[
\begin{aligned}
\& \text { PD0 } \\
\& \text { PD1 } \\
\& \text { PD2 } \\
\& \text { PD3 }
\end{aligned}
\] \& I/O \& Bidirectional I/O port D0 to D3. Functions and options the same as PC0 to PC3. \& \begin{tabular}{l}
- N channel: sink current type \\
- I/O voltage limit for open-drain configuration: max. \(+15 \mathrm{~V}\) \\
- P channel: highimpedance pull-up type
\end{tabular} \& \begin{tabular}{l}
1. Open-drain output \\
2. Pull-up resistor \\
3. High output after reset \\
4. Low output after reset \\
- Choice of configuration 1. or 2. at bit level \\
- Choice of configuration 3. or 4 . at port (4-bit) level
\end{tabular} \& High or low (option) \\
\hline 4

4 \& \begin{tabular}{l}
PE0/CMPO

PE1/CMP1

PE2/CMP2

PE3/CMP3

 \& 1 \&

- When configured for comparator input: CMP0 and CMP1 use reference voltage $\mathrm{V}_{\text {REF }} 0$; CMP2 and CMP3 use reference voltage $\mathrm{V}_{\text {REF }} 1$.

- 4-bit (CMPO to 3) input (IP instruction)

- 1-bit conditionals (BP and BNP instructions)

- When configured for port E input:

- 4-bit (E0-3) input (IP instruction)

- 1-bit conditionals (BP and BNP instructions)

 \& \&

1. Comparator input

2. Port E input

3. Without feedback resistor

4. With feedback resistor

- Choice of configuration 1. or 2. at port (4-bit) level

- Options 3. and 4. only available with 1.
\end{tabular} \&

\hline 2 \& \[
$$
\begin{aligned}
& \mathrm{V}_{\text {REF } 0} \\
& \mathrm{~V}_{\mathrm{REF}} 1
\end{aligned}
$$

\] \& 1 \& | - Comparator reference level inputs: CMP0 and CMP1 use reference voltage $\mathrm{V}_{\mathrm{REF}} 0$; CMP2 and CMP3 use reference voltage $\mathrm{V}_{\text {REF }} 1$. |
| :--- |
| - Connect to V_{SS} when PEO/CMP0 to PE3/CMP3 configured as port E. | \& \& \&

\hline 1 \& $\overline{\mathrm{RES}}$ \& 1 \& | - System reset input |
| :--- |
| - Connect external capacitor for power up reset. |
| - Low level input for a minimum of four clock cycles triggers a reset. | \& \& \&

\hline 1 \& TEST \& 1 \& Chip test pin. Normally connect to $\mathrm{V}_{\text {SS }}$. \& \& \&

\hline
\end{tabular}

Oscillator Circuit Options

Name

Frequency Divider Options

Name	Circuit diagram	Conditions, etc.
No frequency divider (1/1)		Available with all three oscillator circuit options (N, F, and L versions)
1/3 frequency divider		Available only with external clock and ceramic oscillator circuit options (N and L versions)
1/4 frequency divider		Available only with external clock and ceramic oscillator circuit options (N and L versions)

Frequency Divider Options
 LC6529N

Oscillator circuit	Frequency	Frequency divider options (cycle time)	$V_{\text {DD }}$ range	Note
Ceramic oscillator	400 kHz	1/1 ($10 \mu \mathrm{~s}$)	3 to 6 V	$1 / 3$ and $1 / 4$ frequency divider options not available
	800 kHz	$\begin{aligned} & \hline 1 / 1(5 \mu \mathrm{~s}) \\ & 1 / 3(15 \mu \mathrm{~s}) \\ & 1 / 4(20 \mu \mathrm{~s}) \end{aligned}$	3 to 6 V 3 to 6 V 3 to 6 V	
	2 MHz	$\begin{aligned} & \hline 1 / 3(6 \mu \mathrm{~s}) \\ & 1 / 4(8 \mu \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 3 \text { to } 6 \mathrm{~V} \\ & 3 \text { to } 6 \mathrm{~V} \end{aligned}$	1/1 frequency divider option not available
	4 MHz	$\begin{aligned} & \hline 1 / 3(3 \mu \mathrm{~s}) \\ & 1 / 4(4 \mu \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 3 \text { to } 6 \mathrm{~V} \\ & 3 \text { to } 6 \mathrm{~V} \end{aligned}$	1/1 frequency divider option not available
External clock based on RC oscillator circuit	200 k to 1444 kHz 600 k to 4330 kHz 800 k to 4330 kHz	$\begin{aligned} & 1 / 1(20 \text { to } 2.77 \mu \mathrm{~s}) \\ & 1 / 3(20 \text { to } 2.77 \mu \mathrm{~s}) \\ & 1 / 4(20 \text { to } 3.70 \mu \mathrm{~s}) \end{aligned}$	3 to 6 V 3 to 6 V 3 to 6 V	
RC oscillator circuit	Use $1 / 1$ frequency divider and recommended constants or, if this is not possible, one of the frequency, frequency divider option, and V_{DD} range combinations listed for external clocks based on an RC oscillator circuit.		3 to 6 V	
External clock based on ceramic oscillator circuit	This configuration not allowed. Use an external clock based on an RC oscillator circuit instead.			

LC6529F

Oscillator circuit	Frequency	Frequency divider options (cycle time)	V_{DD} range	Note
Ceramic oscillator	4 MHz	$1 / 1(1 \mu \mathrm{~s})$	3 to 6 V	
External clock based on RC oscillator circuit	200 k to 4330 kHz	$1 / 1(20$ to $0.92 \mu \mathrm{~s})$	3 to 6 V	
External clock based on ceramic oscillator circuit	This configuration not allowed. Use an external clock based on an RC oscillator circuit instead.			

LC6529L

Oscillator circuit	Frequency	Frequency divider options (cycle time)	$V_{\text {DD }}$ range	Note
Ceramic oscillator	400 kHz	1/1 ($10 \mu \mathrm{~s}$)	2.2 to 6 V	$1 / 3$ and $1 / 4$ frequency divider options not available
	800 kHz	$\begin{aligned} & \hline 1 / 1(5 \mu \mathrm{~s}) \\ & 1 / 3(15 \mu \mathrm{~s}) \\ & 1 / 4(20 \mu \mathrm{~s}) \end{aligned}$	$\begin{aligned} & 2.2 \text { to } 6 \mathrm{~V} \\ & 2.2 \text { to } 6 \mathrm{~V} \\ & 2.2 \text { to } 6 \mathrm{~V} \end{aligned}$	
	2 MHz	$\begin{aligned} & \hline 1 / 3(6 \mu \mathrm{~s}) \\ & 1 / 4(8 \mu \mathrm{~s}) \end{aligned}$	$\begin{aligned} & \hline 2.2 \text { to } 6 \mathrm{~V} \\ & 2.2 \text { to } 6 \mathrm{~V} \end{aligned}$	1/1 frequency divider option not available
	4 MHz	1/4 (4 $\mu \mathrm{s}$)	2.2 to 6 V	$1 / 1$ and $1 / 3$ frequency divider options not available
External clock based on RC oscillator circuit	$\begin{aligned} & 200 \mathrm{k} \text { to } 1040 \mathrm{kHz} \\ & 600 \mathrm{k} \text { to } 3120 \mathrm{kHz} \\ & 800 \mathrm{k} \text { to } 4160 \mathrm{kHz} \end{aligned}$	1/1 (20 to $3.84 \mu \mathrm{~s}$) $1 / 3$ (20 to $3.84 \mu \mathrm{~s}$) $1 / 4$ (20 to $3.84 \mu \mathrm{~s}$)	$\begin{aligned} & 2.2 \text { to } 6 \mathrm{~V} \\ & 2.2 \text { to } 6 \mathrm{~V} \\ & 2.2 \text { to } 6 \mathrm{~V} \end{aligned}$	
RC oscillator circuit	Use $1 / 1$ frequency divider and recommended constants or, if this is not possible, one of the frequency, frequency divider option, and $V_{D D}$ range combinations listed for external clocks based on an RC oscillator circuit.		2.2 to 6 V	
External clock based on ceramic oscillator circuit	This configuration not allowed. Use an external clock based on an RC oscillator circuit instead.			

Reset Level Options for Ports C and D

The following two options are available for controlling the output levels of ports C and D in groups of four bits each.

Option	Conditions, etc.
High level output after reset	Selection affects all bits of port
Low level output after reset	Selection affects all bits of port

Comparator vs. Port E Configuration Option

The four pins PE0/CMP0 to PE3/CMP3 may be configured for comparator input or as port E.

Option	Conditions, etc.
Comparator input	Selection affects all bits of port
Port E input	Selection affects all bits of port

Comparator Options

The comparators offer the following two configuration options.

Name	Circuit diagram	Conditions, etc.
Without feedback resistor		The comparator does not use hysteresis.
With feedback resistor		The comparator, in combination with an external resistor, uses hysteresis.

Port Output Configurations

The bidirectional I/O ports A, C, and D offer a choice of two output configurations.

Name	Circuit diagram	Conditions, etc.	
Open drain (OD)			
With pull-up resistors (PU)			

Specifications

LC6529N
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Maximum supply voltage	V_{DD} max	$V_{D D}$	-0.3		+7.0	V
Input voltage	$\mathrm{V}_{1} 1$	OSC1*1	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{1} 2$	TEST, $\overline{R E S}$	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
	V_{1}	Port E (PE) configuration	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Output voltage	V_{O}	OSC2	Voltages up to that generated allowed.			V
I/O voltages	$\mathrm{V}_{10}{ }^{1}$	Open-drain (OD) configuration	-0.3		+15	V
	$\mathrm{V}_{1 \mathrm{O}}{ }^{2}$	Pull-up (PU) resistor configuration	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Peak output current	$\mathrm{I}_{\text {OP }}$	PA, PC, PD	-2		+20	mA
Average output current	I_{OA}	PA, PC, PD: Average for pin over 100-ms interval	-2		+20	mA
	${ }^{\text {I }} \mathrm{OA}^{1}$	PA: Total current for pins PA0 to PA3*2	-6		+40	
	${ }^{\text {I }} \mathrm{OA}^{2}$	PC, PD: Total current for pins PC0 to PC3 and PD0 to PD3*2	-14		+90	
Allowable power dissipation	Pd max1	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (DIP24S)			360	mW
	Pd max2	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (SSOP24)			165	
	Pd max3	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (MFP30S)			150	
Operating temperature	Topr		-40		+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55		+125	

Note: 1. When the oscillator circuit in Figure 3 and the guaranteed constant are used, this is guaranteed over the full amplitude.
2. Averaged over $100-\mathrm{ms}$ interval.

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0$ to 6.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	$V_{\text {DD }}$	$V_{D D}$	3.0		6.0	V
Standby voltage	$V_{\text {ST }}$	V_{DD} : Preserves contents of RAM and registers*.	1.8		6.0	V
Input high level voltage	$\mathrm{V}_{\mathrm{H} 1} 1$	Open-drain (OD) configuration: With output N-channel transistor off	$0.7 \mathrm{~V}_{\text {DD }}$		13.5	V
	$\mathrm{V}_{\mathrm{H}}{ }^{2}$	Pull-up (PU) resistor configuration: With output N -channel transistor off	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$V_{\text {DD }}$	
	$\mathrm{V}_{1 \mathrm{H}^{3}}$	PE: Using port E configuration	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	
	$\mathrm{V}_{1 \mathrm{H}^{4}}$	$\overline{\mathrm{RES}}$: $\mathrm{V}_{\mathrm{DD}}=1.8$ to 6 V	$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	
	$\mathrm{V}_{1 \mathrm{H}^{5}}$	OSC1: Using external clock option	$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	
Input low level voltage	$\mathrm{V}_{\text {IL }} 1$	PA, PC, PD: With output N-channel transistor off, $V_{D D}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		0.3 V D	V
	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	PA, PC, PD: With output N-channel transistor off	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\mathrm{IL}} 3$	PE: Using port E configuration, $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		$0.3 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 4$	PE: Using port E configuration	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }}{ }^{5}$	OSC1: Using external clock option, $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 6$	OSC1: Using external clock option	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }}{ }^{7}$	TEST: $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		$0.3 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 8$	TEST	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 9$	$\overline{\mathrm{RES}}$: $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 10$	$\overline{R E S}$	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	
Operating frequency (cycle time)	$\begin{gathered} \text { fop } \\ \text { (Tcyc) } \\ \hline \end{gathered}$	Using the built-in $1 / 3$ or $1 / 4$ frequency dividers extends the maximum to 4.33 MHz .	200 (20)		1444 (2.77)	kHz ($\mu \mathrm{s}$)

Note: * Maintain the power supply voltage at V_{DD} until the HALT instruction has completed execution, placing the chip in the standby mode. Block chattering from entering PA3 during the HALT instruction execution cycle.

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
[External clock conditions]						
Frequency	text	OSC1: If the clock frequency exceeds 1.444 MHz , use the built-in $1 / 3$ or $1 / 4$ frequency divider. Figure 1	200		4330	kHz
Pulse width	textH, textL		69			ns
Rise/fall times	textR, textF				50	
[Oscillator guaranteed constants]						
2-pin RC oscillator circuit	Cext	OSC1, OSC2: $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V , Figure 2	$220 \pm 5 \%$			pF
	Cext	OSC1, OSC2: Figure 2	$220 \pm 5 \%$			
	Rext	OSC1, OSC2: $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V , Figure 2	$4.7 \pm 1 \%$			$\mathrm{k} \Omega$
	Rext	OSC1, OSC2: Figure 2	$12.0 \pm 1 \%$			
Ceramic oscillator		Figure 3	See Table 1.			

Electrical Characteristics at $\mathbf{T a}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=3.0$ to 6.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Input high level current	$\mathrm{I}_{1 H^{1}}$	Open-drain (OD) configuration for port: With output N -channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{2}}$	PE: Using port E configuration, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			1.0	
	$\mathrm{I}_{\mathrm{IH}}{ }^{3}$	OSC1: Using external clock option, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			1.0	
Input low level current	$\mathrm{I}_{\text {IL }}{ }^{1}$	Open-drain (OD) configuration for port: With output N -channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	-1.0			$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IL}}{ }^{2}$	Pull-up (PU) resistor configuration for port A or D: With output N -channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	-220	-71.5		
	$\mathrm{I}_{\text {IL }} 3$	Pull-up (PU) resistor configuration for port C: With output N -channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	-6.00	-2.17		mA
	$\mathrm{I}_{\text {IL }} 4$	PE: Using port E configuration, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-1.0			
	$\mathrm{I}_{\text {IL }} 5$	$\overline{R E S}$: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-45	-10		$\mu \mathrm{A}$
	${ }_{\text {ILL }} 6$	OSC1: Using external clock option, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-1.0			
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	Pull-up (PU) resistor configuration for port C : $\mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=4 \text { to } 6 \mathrm{~V}$	$V_{D D}-1.2$			V
	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	Pull-up (PU) resistor configuration for port C: $\mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A}$	$V_{D D}-0.5$			
Output low level voltage	$\mathrm{V}_{\mathrm{OL}} 1$	PA, PC, PD: $\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4$ to 6 V			1.5	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	PA, PC, PD: With I_{OL} for each port less than or equal to $1 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=1.8 \mathrm{~mA}$			0.4	
Hysteresis voltage	$\mathrm{V}_{\text {HIS }}{ }^{1}$	$\overline{\mathrm{RES}}$		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V
	$\mathrm{V}_{\mathrm{HIS}}{ }^{2}$	OSC1*: Using RC oscillator or external clock option		$0.1 \mathrm{~V}_{\mathrm{DD}}$		

Note: * The RC oscillator and external clock options require a Schmidt trigger configuration for OSC1.

LC6529N, LC6529F, LC6529L

Parameter	Symbol	Conditions	min	typ	max	Unit
[Current drain]						
RC oscillator	IDD OP ${ }^{1}$	V_{DD} : Figure 2, 850 kHz (typ)		0.8	2.0	mA
	$\mathrm{I}_{\mathrm{DD} \mathrm{OP}}{ }^{2}$	V_{DD} : Figure 2, 400 kHz (typ)		0.4	1.0	
Ceramic oscillator	$\mathrm{I}_{\text {D OP }}{ }^{\text {3 }}$	V_{DD} : Figure 3, $4 \mathrm{MHz}, 1 / 3$ frequency divider		1.6	4.0	mA
	IDD OP4	V_{DD} : Figure $3,4 \mathrm{MHz}, 1 / 4$ frequency divider		1.6	4.0	
	$\mathrm{I}_{\text {DD OP5 }}$	V_{DD} : Figure 3, $2 \mathrm{MHz}, 1 / 3$ frequency divider		1.3	3.0	
	IDD OP6	V_{DD} : Figure 3, $2 \mathrm{MHz}, 1 / 4$ frequency divider		1.3	3.0	
	IDD OP7	V_{DD} : Figure 3, 800 kHz		1.1	2.6	
	IDD OP8	V_{DD} : Figure 3, 400 kHz		0.9	2.4	
External clock	IDD OP9	V_{DD} : 200 to 667 kHz , $1 / 1$ frequency divider, 600 to $2000 \mathrm{kHz}, 1 / 3$ frequency divider, 800 to $2667 \mathrm{kHz}, 1 / 4$ frequency divider		1.0	2.5	mA
	IDD OP 10	V_{DD} : 200 to $1444 \mathrm{kHz}, 1 / 1$ frequency divider, 600 to $4330 \mathrm{kHz}, 1 / 3$ frequency divider, 800 to $4330 \mathrm{kHz}, 1 / 4$ frequency divider		1.6	4.2	
Standby operation	$\mathrm{I}_{\mathrm{DD}} \mathrm{st1}$	V_{DD} : With output N -channel transistor off and port level $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$		0.05	10	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{DD}} \mathrm{st} 2$	V_{DD} : With output N -channel transistor off and port level $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$		0.025	5	
[Oscillator characteristics] (RC oscillator)						
Oscillator frequency	$\mathrm{f}_{\text {MOSC }}$	$\begin{aligned} & \text { OSC1, OSC2: Figure 2, Cext }=220 \mathrm{pF} \pm 5 \%, \\ & \text { Rext }=12.0 \mathrm{k} \Omega \pm 1 \% \end{aligned}$	309	400	577	kHz
		$\begin{aligned} & \text { OSC1, OSC2: Figure 2, Cext }=220 \mathrm{pF} \pm 5 \% \text {, } \\ & \text { Rext }=4.7 \mathrm{k} \Omega \pm 1 \%, \mathrm{~V}_{\mathrm{DD}}=4 \text { to } 6 \mathrm{~V} \end{aligned}$	660	850	1229	
[Oscillator characteristics] (Ceramic oscillator)						
Oscillator frequency	${ }^{\text {f CFOSC* }}$	OSC1, OSC2: Figure 3, $\mathrm{f}_{\mathrm{O}}=400 \mathrm{kHz}$	384	400	416	kHz
		OSC1, OSC2: Figure 3, $\mathrm{f}_{\mathrm{O}}=800 \mathrm{kHz}$	768	800	832	
		OSC1, OSC2: Figure 3, $\mathrm{f}_{\mathrm{O}}=2 \mathrm{MHz}$	1920	2000	2080	
		OSC1, OSC2: Figure 3, $\mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz}$	3840	4000	4160	
		Figure 4, $\mathrm{f}_{\mathrm{O}}=400 \mathrm{kHz}$			10	
Oscillator stabilization interval	${ }^{\text {chFS }}$	Figure $4, \mathrm{f}_{\mathrm{O}}=800 \mathrm{kHz}, \mathrm{f}_{\mathrm{O}}=2 \mathrm{MHz}, \mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz}$, 1/3, 1/4 frequency divider			10	ms
[Pull-up resistors]						
1/O ports	RPP1	Pull-up (PU) resistor configuration for port A or D: With output N -channel transistor off and $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	30	70	130	$\mathrm{k} \Omega$
	RPP2	Pull-up (PU) resistor configuration for port C: With output N -channel transistor off and $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, $V_{D D}=5 \mathrm{~V}$	1.0	2.3	3.9	
Reset port	Ru	$\overline{\mathrm{RES}}$: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	200	500	725	
External reset characteristic: Reset time	${ }^{\text {RSST }}$			See Figure 6.		
Pin capacitance	C_{P}	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ for pins other than one being measured			10	pF

Note: * $\mathrm{f}_{\text {CFOSC }}$ is the allowable oscillator frequency.
Comparator Characteristics for Comparator Option at $\mathrm{Ta}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {SS }}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=3.0$ to 6.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Reference input voltage range	$\mathrm{V}_{\text {RFIN }}$	$\mathrm{V}_{\text {REF }} 0$ and $\mathrm{V}_{\text {REF }} 1$	$\mathrm{V}_{\mathrm{SS}}+0.3$		$\mathrm{V}_{\mathrm{DD}}-1.5$	V
Inphase input voltage range	$\mathrm{V}_{\text {CMIN }}$	CMP0 to CMP3	$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\mathrm{DD}}-1.5$	V
Offset voltage	$\mathrm{V}_{\text {OFF }}$	$\mathrm{V}_{\text {CMIN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}-1.5 \mathrm{~V}$		± 50	± 300	mV
Response speed	TRS1	Figure 5: $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V		1.0	5.0	$\mu \mathrm{s}$
	TRS2	Figure 5		1.0	200	
Input high level current	$\mathrm{I}_{1{ }^{1}}$	$\mathrm{V}_{\text {REF }} 0$ and $\mathrm{V}_{\text {REF }} 1$			1.0	$\mu \mathrm{A}$
	IIH^{2}	CMP0 to CMP3: Without feedback resistor option			1.0	
Input low level current	$\mathrm{I}_{\text {IL }} 1$	$\mathrm{V}_{\text {REF }} 0$ and $\mathrm{V}_{\text {REF }} 1$	-1.0			$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{2}$	CMP0 to CMP3: Without feedback resistor option	-1.0			
Feedback resistor	RCMFB	CMP0 to CMP3: With feedback resistor option		460		k Ω

LC6529N, LC6529F, LC6529L
Table 1 Guaranteed Constants for Ceramic Oscillators

Oscillator type	Standard type					Chip type			
	Manufacturer	Oscillator	C1	C2	Rd	Manufacturer	Oscillator	C1	C2
[External capacitor]									
4-MHz ceramic oscillator	Murata	CS A4.00MG	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	Murata	CS AC4.00MGC	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$
	Kyocera	KBR-4.0MSA	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	-	-	-	-
2-MHz ceramic oscillator	Murata	CS A2.00MG	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	Murata	CS AC2.00MGC	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$
	Kyocera	KBR-2.0MSA	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	-	-	-	-
[Built-in capacitor]									
4-MHz ceramic oscillator	Murata	CS A4.00MG	-	-	-	Kyocera	KBR-4.0MWS	-	-
	Kyocera	KBR-4.0MSA	-	-	-	-	-	-	-
2-MHz ceramic oscillator	Murata	CS A2.00MG	-	-	-	Kyocera	KBR-2.0MWS	-	-
$800-\mathrm{kHz}$ ceramic oscillator	Murata	CS B800J	$100 \mathrm{pF} \pm 10 \%$	$100 \mathrm{pF} \pm 10 \%$	$3.3 \mathrm{k} \Omega$	-	-	-	-
	Kyocera	KBR-800F/Y	$150 \mathrm{pF} \pm 10 \%$	$150 \mathrm{pF} \pm 10 \%$	-	-	-	-	-
$400-\mathrm{kHz}$ ceramic oscillator	Murata	CS B400P	$220 \mathrm{pF} \pm 10 \%$	$220 \mathrm{pF} \pm 10 \%$	$3.3 \mathrm{k} \Omega$	-	-	-	-
	Kyocera	KBR-400BK/Y	$330 \mathrm{pF} \pm 10 \%$	$330 \mathrm{pF} \pm 10 \%$	-	-	-	-	-

Figure 1 External Clock Input Waveform

Figure 2 2-Pin RC Oscillator Circuit

Figure 3 Ceramic Oscillator Circuit

Figure 4 Oscillator Stabilization Interval

Figure 5 Comparator Response Speed (TRS) Timing

Figure 6 Reset Circuit

LC6529N RC Oscillator Characteristics

Figure 7 gives the RC oscillator characteristics for the LC6529N. The frequency fluctuation ranges are as follows:

1. For $\mathrm{V}_{\mathrm{DD}}=3.0$ to $6.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Cext}=220 \mathrm{pF}$, and Rext $=12.0 \mathrm{k} \Omega$,

$$
309 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{MOSC}} \leq 577 \mathrm{kHz}
$$

2. For $\mathrm{V}_{\mathrm{DD}}=4.0$ to $6.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Cext}=220 \mathrm{pF}$, and Rext $=4.7 \mathrm{k} \Omega$,

$$
660 \mathrm{kHz} \leq \mathrm{f}_{\mathrm{MOSC}} \leq 1229 \mathrm{kHz}
$$

These results are only guaranteed for the above RC constants.
If the above values are not available, keep the RC constants within the following ranges. (See Figure 7.)
Rext $=3$ to $20 \mathrm{k} \Omega$, Cext $=150$ to 390 pF
Note: 1. The oscillator frequency must be within the range between 350 and 750 kHz for $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
2. Make sure that the oscillator frequency remains well within the operating clock frequency range (See frequency divider option table.) for the two ranges $\mathrm{V}_{\mathrm{DD}}=3.0$ to $6.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{DD}}=4.0$ to $6.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$.
f MOSC-Rext

Figure 7 RC Oscillator Frequency Data (Sample Values)

LC6529F
Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Maximum supply voltage	V_{DD} max	$V_{\text {DD }}$	-0.3		+7.0	V
Input voltage	$\mathrm{V}_{1} 1$	OSC1*1	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{1} 2$	TEST, RES	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
	$\mathrm{V}_{1} 3$	Port E (PE) configuration	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Output voltage	V_{O}	OSC2	Voltages up to that generated allowed.			V
I/O voltages	$\mathrm{V}_{10}{ }^{1}$	Open-drain (OD) configuration	-0.3		+15	V
	$\mathrm{V}_{10}{ }^{2}$	Pull-up (PU) resistor configuration	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Peak output current	$\mathrm{I}_{\text {OP }}$	PA, PC, PD	-2		+20	mA
Average output current	I_{OA}	PA, PC, PD: Average for pin over 100-ms interval	-2		+20	mA
	$\Sigma^{\text {OA }}{ }^{1}$	PA: Total current for pins PA0 to PA3*2	-6		+40	
	$\Sigma^{\text {OA }}{ }^{2}$	PC, PD: Total current for pins PC0 to PC3 and PD0 to PD3*2	-14		+90	
Allowable power dissipation	Pd max1	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (DIP24S)			360	mW
	Pd max2	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (SSOP24)			165	
	Pd max3	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (MFP30S)			150	
Operating temperature	Topr		-40		+85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55		+125	

Note: 1. When the oscillator circuit in Figure 3 and the guaranteed constant are used, this is guaranteed over the full amplitude.
2. Averaged over $100-\mathrm{ms}$ interval.

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0$ to 6.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Supply voltage	$V_{\text {DD }}$	$V_{\text {DD }}$	3.0		6.0	V
Standby voltage	$\mathrm{V}_{\text {ST }}$	V_{DD} : Preserves contents of RAM and registers*.	1.8		6.0	V
Input high level voltage	$\mathrm{V}_{\mathbf{I H}}{ }^{1}$	Open-drain (OD) configuration: With output N -channel transistor off	$0.7 \mathrm{~V}_{\mathrm{DD}}$		13.5	V
	$\mathrm{V}_{1 \mathrm{H}^{2}}$	Pull-up (PU) resistor configuration: With output N -channel transistor off	$0.7 \mathrm{~V}_{\mathrm{DD}}$		$\mathrm{V}_{\text {DD }}$	
	$\mathrm{V}_{1 \mathrm{H}^{3}}$	PE: Using port E configuration	$0.7 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	
	$\mathrm{V}_{1 \mathrm{H}^{4}}$	$\overline{\mathrm{RES}}$: $\mathrm{V}_{\mathrm{DD}}=1.8$ to 6 V	$0.8 \mathrm{~V}_{\mathrm{DD}}$		V_{DD}	
	$\mathrm{V}_{\mathrm{IH}}{ }^{5}$	OSC1: Using external clock option	0.8 V DD		V_{DD}	
Input low level voltage	$\mathrm{V}_{\text {IL }} 1$	PA, PC, PD: With output N-channel transistor off, $V_{D D}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\mathrm{IL}}{ }^{2}$	PA, PC, PD: With output N-channel transistor off	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 3$	PE: Using port E configuration, $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		0.3 V DD	
	$\mathrm{V}_{\text {IL }} 4$	PE: Using port E configuration	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 5$	OSC1: Using external clock option, $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 6$	OSC1: Using external clock option	$\mathrm{V}_{\text {SS }}$		$0.2 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }}{ }^{7}$	TEST: V $\mathrm{DD}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		0.3 V DD	
	$\mathrm{V}_{\text {IL }} 8$	TEST	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\text {IL }} 9$	RES: $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V	$\mathrm{V}_{\text {SS }}$		$0.25 \mathrm{~V}_{\mathrm{DD}}$	
	$\mathrm{V}_{\mathrm{IL}} 10$	$\overline{\text { RES }}$	$\mathrm{V}_{\text {SS }}$		0.2 V DD	
Operating frequency (cycle time)	$\begin{gathered} \text { fop } \\ \text { (Tcyc) } \end{gathered}$		$\begin{aligned} & 200 \\ & (20) \end{aligned}$		$\begin{array}{r} 4330 \\ (0.92) \end{array}$	$\begin{aligned} & \mathrm{kHz} \\ & (\mu \mathrm{~s}) \end{aligned}$
[External clock conditions]						
Frequency	text	OSC1: Figure 1	200		4330	kHz
Pulse width	textH, textL		69			ns
Rise/fall times	textR, textF				50	
Oscillator guaranteed constants Ceramic oscillator		Figure 2	See Table			

[^0]Electrical Characteristics at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0$ to 6.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Input high level current	${ }_{1+1}$	Open-drain (OD) configuration for port: With output N-channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{2}}$	PE: Using port E configuration, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}}$			1.0	
	${ }_{1 H^{3}}$	OSC1: Using external clock option, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			1.0	
Input low level current	$\mathrm{I}_{\text {IL }}{ }^{1}$	Open-drain (OD) configuration for port: With output N -channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	-1.0			$\mu \mathrm{A}$
	$\mathrm{I}_{\mathbf{I L} 2}$	Pull-up (PU) resistor configuration for port: With output N-channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	-220	-71.5		
	$\mathrm{I}_{\text {IL }} 3$	Pull-up (PU) resistor configuration for port C: With output N -channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{SS}}$	-6.00	-2.17		mA
	$l_{\text {IL }} 4$	PE: Using port E configuration, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$	-1.0			
	ILL 5	RES: $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-45	-10		$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 6$	OSC1: Using external clock option, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-1.0			
Output high level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	Pull-up (PU) resistor configuration for port C: $\mathrm{I}_{\mathrm{OH}}=-300 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=4 \text { to } 6 \mathrm{~V}$	$V_{D D}-1.2$			V
	$\mathrm{V}_{\mathrm{OH}}{ }^{2}$	Pull-up (PU) resistor configuration for port C: $\mathrm{I}_{\mathrm{OH}}=-60 \mu \mathrm{~A}$	$V_{D D}-0.5$			
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}{ }^{1}$	PA, PC, PD: $\mathrm{I}_{\mathrm{OL}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=4$ to 6 V			1.5	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	PA, PC, PD: With I ${ }_{\mathrm{OL}}$ for each port less than or equal to $1 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=1.8 \mathrm{~mA}$			0.4	
Hysteresis voltage	$\mathrm{V}_{\text {HIS }}{ }^{1}$	$\overline{R E S}$		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V
	$\mathrm{V}_{\text {HIS }}{ }^{2}$	OSC1*: Using RC oscillator or external clock option		$0.1 \mathrm{~V}_{\mathrm{DD}}$		

Note: * The RC oscillator and external clock options require a Schmidt trigger configuration for OSC1.

Parameter	Symbol	Conditions	min	typ	max	Unit
[Current drain]						
Ceramic oscillator	IDD OP1	V_{DD} : Figure 2, 4 MHz , 200 to 4330 kHz , 1/1 frequency divider Note: With output N-channel transistor off and port level = V		1.6	4.0	mA
External clock	$\mathrm{I}_{\mathrm{DD} \mathrm{OP}}{ }^{2}$			1.6	4.2	
Standby operation		V_{DD} : With output N -channel transistor off and port level $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$		0.05	10	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{DD} \mathrm{st}}{ }^{2}$	V_{DD} : With output N -channel transistor off and port level $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$		0.025	5	
[Oscillator characteristics] (Ceramic oscillator)						
Oscillator frequency	${ }^{\text {f CFOSC }}$	OSC1, OSC2: Figure 2, $\mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz} *$	3840	4000	4160	kHz
Oscillator stabilization interval	$\mathrm{t}_{\text {CFS }}$	Figure $3, \mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz}$			10	ms
[Pull-up resistors]						
I/O ports	RPP1	Pull-up (PU) resistor configuration for port A or D: With output N -channel transistor off and $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, $V_{D D}=5 \mathrm{~V}$	30	70	130	$\mathrm{k} \Omega$
	RPP2	Pull-up (PU) resistor configuration for port C: With output N -channel transistor off and $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, $V_{D D}=5 \mathrm{~V}$	1.0	2.3	3.9	
Reset port	Ru	RES: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	200	500	725	
External reset characteristic: Reset time	$t_{\text {RST }}$			See Figure 5.		
Pin capacitance	C_{P}	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ for pins other than one being measured		10		pF

Note: * $\mathrm{f}_{\text {CFOSC }}$ is the allowable oscillator frequency.

Comparator Characteristics for Comparator Option at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.0$ to 6.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Reference input voltage range	$\mathrm{V}_{\text {RFIN }}$	$\mathrm{V}_{\text {REF }} 0, \mathrm{~V}_{\text {REF }} 1$	$\mathrm{V}_{S S}+0.3$		$\mathrm{V}_{\text {DD }}-1.5$	V
Inphase input voltage range	$\mathrm{V}_{\text {CMIN }}$	CMP0 to CMP3	V_{SS}		$\mathrm{V}_{\mathrm{DD}}-1.5$	V
Offset voltage	$\mathrm{V}_{\text {OFF }}$	$\mathrm{V}_{\text {CMIN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}-1.5 \mathrm{~V}$		± 50	± 300	mV
Response speed	TRS1	Figure 4: $\mathrm{V}_{\mathrm{DD}}=4$ to 6 V		1.0	5.0	$\mu \mathrm{s}$
	TRS2	Figure 4		1.0	200	
Input high level current	$\mathrm{I}_{\mathrm{IH} 1}$	$\mathrm{V}_{\text {REF }} 0, \mathrm{~V}_{\text {REF }} 1$			1.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{2}}$	CMP0 to CMP3: Without feedback resistor option			1.0	
Input low level current	$\mathrm{I}_{\text {IL }} 1$	$\mathrm{V}_{\text {REF }} 0, \mathrm{~V}_{\text {REF }} 1$	-1.0			$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{IL}}{ }^{2}$	CMP0 to CMP3: Without feedback resistor option	-1.0			
Feedback resistor	RCMFB	CMP0 to CMP3: With feedback resistor option		460		$\mathrm{k} \Omega$

Table 1. Guaranteed Constants for Ceramic Oscillators

Oscillator type	Standard type					Chip type			
	Manufacturer	Oscillator	C1	C2	Rd	Manufacturer	Oscillator	C1	C2
[External capacitor]									
4-MHz ceramic oscillator	Murata	CS A4.00MG	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	Murata	CS AC4.00MGC	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$
	Kyocera	KBR-4.0MSA	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	-	-	-	-
2-MHz ceramic oscillator	Murata	CS A2.00MG	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	Murata	CS AC2.00MGC	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$
	Kyocera	KBR-2.0MSA	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	-	-	-	-
[Built-in capacitor]									
4-MHz ceramic oscillator	Murata	CS A4.00MG	-	-	-	Kyocera	KBR-4.0MWS	-	-
	Kyocera	KBR-4.0MSA	-	-	-	-	-	-	-
2-MHz ceramic oscillator	Murata	CS A2.00MG	-	-	-	Kyocera	KBR-2.0MWS	-	-

Figure 1 External Clock Input Waveform

Figure 2 Ceramic Oscillator Circuit

Figure 3 Oscillator Stabilization Interval

Figure 4 Comparator Response Speed (TRS) Timing

Figure 5 Reset Circuit

LC6529L
Absolute Maximum Ratings at $\mathrm{Ta}=\mathbf{2 5}^{\circ} \mathrm{C}, \mathbf{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}$

Parameter	Symbol	Conditions	min	typ	max	Unit
Maximum supply voltage	V_{DD} max	V_{DD}	-0.3		+7.0	V
Input voltage	$\mathrm{V}_{1} 1$	OSC1*1	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{1} 2$	TEST, $\overline{R E S}$	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
	V_{1}	Port E (PE) configuration	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Output voltage	V_{O}	OSC2	Voltages up to that generated allowed.			V
I/O voltages	$\mathrm{V}_{10}{ }^{1}$	Open-drain (OD) configuration	-0.3		+15	V
	$\mathrm{V}_{10}{ }^{2}$	Pull-up (PU) resistor configuration	-0.3		$\mathrm{V}_{\mathrm{DD}}+0.3$	
Peak output current	IOP	PA, PC, PD	-2		+20	mA
Average output current	I_{OA}	PA, PC, PD: Average for pin over 100-ms interval	-2		+20	mA
	$\Sigma^{\text {OA }}{ }^{1}$	PA: Total current for pins PA0 to 3*2	-6		+40	
	$\Sigma^{\text {OA }}{ }^{2}$	PC, PD: Total current for pins PC0 to PC3 and PD0 to PD3*2	-14		+90	
Allowable power dissipation	Pd max1	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (DIP24S)			360	mW
	Pd max2	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (SSOP24)			165	
	Pd max3	$\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$ (MFP30S)			150	
Operating temperature	Topr		-40		+85	
Storage temperature	Tstg		-55		+125	C

Note: 1. When the oscillator circuit in Figure 3 and the guaranteed constant are used, this is guaranteed over the full amplitude.
2. Averaged over $100-\mathrm{ms}$ interval.

Allowable Operating Ranges at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.2$ to 6.0 V

Note: * Maintain the power supply voltage at V_{DD} until the HALT instruction has completed execution, placing the chip in the standby mode. Block chattering from entering PA3 during the HALT instruction execution cycle.

Electrical Characteristics at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=2.2$ to 6.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Input high level current	$\mathrm{I}_{1 H^{1}}$	Open-drain (OD) configuration for port: With output N-channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=13.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{2}}$	PE: Using port E configuration, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			1.0	
	${ }_{1 H^{3}}$	OSC1: Using external clock option, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			1.0	
Input low level current	$\mathrm{I}_{\text {IL }}{ }^{1}$	Open-drain (OD) configuration for port: With output N-channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{I N}=\mathrm{V}_{\mathrm{SS}}$	-1.0			$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{2}$	Pull-up (PU) resistor configuration for port: With output N-channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	-220	-71.5		
	$\mathrm{I}_{\text {IL }} 3$	Pull-up (PU) resistor configuration for port C: With output N -channel transistor off. (Includes transistor's leak current.) $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$	-6.00	-2.17		mA
	${ }_{\text {ILL }} 4$	PE: Using port E configuration, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$	-1.0			
	$\mathrm{I}_{\text {IL }}{ }^{\text {a }}$	$\overline{R E S}$: $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {SS }}$	-45	-10		$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 6$	OSC1: Using external clock option, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}$	-1.0			
Output high level voltage	V_{OH}	Pull-up (PU) resistor configuration for port C: $\mathrm{I}_{\mathrm{OH}}=-50 \mu \mathrm{~A}$	$V_{D D}-0.5$			V
Output low level voltage	$\mathrm{V}_{\mathrm{OL}}{ }^{1}$	PA, PC, PD: $\mathrm{I}_{\mathrm{OL}}=3 \mathrm{~mA}$			1.5	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	PA, PC, PD: With IOL for each port less than or equal to $1 \mathrm{~mA}, \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA}$			0.4	
Hysteresis voltage	$\mathrm{V}_{\text {HIS }}{ }^{1}$	RES		$0.1 \mathrm{~V}_{\mathrm{DD}}$		V
	$\mathrm{V}_{\mathrm{HIS}}{ }^{2}$	OSC1*: Using RC oscillator or external clock option		$0.1 \mathrm{~V}_{\mathrm{DD}}$		

Note: * The RC oscillator and external clock options require a Schmidt trigger configuration for OSC1.

Parameter	Symbol	Conditions	min	typ	max	Unit
[Current drain]						
RC oscillator	$\mathrm{I}_{\text {DD OP }} 1$	V_{DD} : Figure 2, 400 kHz (typ)		0.4	1.0	mA
Ceramic oscillator	$\mathrm{I}_{\mathrm{DD} \mathrm{OP}}{ }^{2}$	V_{DD} : Figure 3, $4 \mathrm{MHz}, 1 / 4$ frequency divider		1.6	4.0	
	$\mathrm{I}_{\mathrm{DD} \mathrm{OP}}{ }^{3}$	V_{DD} : Figure $3,4 \mathrm{MHz}, 1 / 4$ frequency divider, $\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V}$		0.4	0.8	
	$\mathrm{I}_{\text {DD OP4 }}$	V_{DD} : Figure 3, $2 \mathrm{MHz}, 1 / 3$ frequency divider		1.3	3.0	
	IDD OP5	V_{DD} : Figure $3,2 \mathrm{MHz}, 1 / 4$ frequency divider		1.3	3.0	
	IDD OP6	$V_{D D}$: Figure $3,2 \mathrm{MHz}, 1 / 3$, $1 / 4$ frequency divider $\mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V}$		0.3	0.6	
	$\mathrm{I}_{\text {DD OP }}{ }^{\text {l }}$	V_{DD} : Figure 3, 800 kHz		1.1	2.6	
	$\mathrm{I}_{\text {D OP }} 8$	V_{DD} : Figure 3, 400 kHz		0.9	2.4	
External clock	$I_{\text {DD OP }} 9$	V_{DD} : 200 to $667 \mathrm{kHz}, 1 / 1$ frequency divider, 600 to $2000 \mathrm{kHz}, 1 / 3$ frequency divider, 800 to $2667 \mathrm{kHz}, 1 / 4$ frequency divider		1.0	2.5	mA
Standby operation	$\mathrm{I}_{\mathrm{DD}} \mathrm{st} 1$	V_{DD} : With output N -channel transistor off and port level $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=6 \mathrm{~V}$		0.05	10	$\mu \mathrm{A}$
	$\mathrm{I}_{\mathrm{DD}} \mathrm{st} 2$	V_{DD} : With output N -channel transistor off and port level $=\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{DD}}=2.2 \mathrm{~V}$		0.025	5	
[Oscillator characteristics]						
RC oscillator Oscillator frequency	$\mathrm{f}_{\text {MOSC }}$	$\begin{aligned} & \text { OSC1, OSC2: Figure 2, Cext }=220 \mathrm{pF} \pm 5 \%, \\ & \text { Rext }=12.0 \mathrm{k} \Omega \pm 1 \% \end{aligned}$	275	400	577	kHz
[Oscillator characteristics] (Ceramic oscillator)						
Oscillator frequency	${ }_{\text {f CFOSC* }}$	OSC1, OSC2: Figure 3, $\mathrm{f}_{\mathrm{O}}=400 \mathrm{kHz}$	384	400	416	kHz
		OSC1, OSC2: Figure 3, $\mathrm{f}_{\mathrm{O}}=800 \mathrm{kHz}$	768	800	832	
		OSC1, OSC2: Figure 3, $\mathrm{f}_{\mathrm{O}}=2 \mathrm{MHz}$	1920	2000	2080	
		OSC1, OSC2: Figure $3, \mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz}$, 1/4 frequency divider	3840	4000	4160	
Oscillator stabilization interval	${ }^{\text {ches }}$	Figure 4, $\mathrm{f}_{\mathrm{O}}=400 \mathrm{kHz}$			10	ms
		Figure 4, $\mathrm{f}_{\mathrm{O}}=800 \mathrm{kHz}$, $\mathrm{f}_{\mathrm{O}}=2 \mathrm{MHz}, 1 / 3,1 / 4$ frequency divider, $\mathrm{f}_{\mathrm{O}}=4 \mathrm{MHz}, 1 / 4$ frequency divider			10	

Continued from preceding page.

Parameter	Symbol	Conditions	min	typ	max	Unit
[Pull-up resistors]						
1/O ports	RPP1	Pull-up (PU) resistor configuration for port A or D: With output N -channel transistor off and $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	30	70	130	k Ω
	RPP2	Pull-up (PU) resistor configuration for port C: With output N -channel transistor off and $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$, $V_{D D}=5 \mathrm{~V}$	1.0	2.3	3.9	
Reset port	Ru	$\overline{R E S}: \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	200	500	725	
External reset characteristic: Reset time	$t_{\text {RST }}$		See Figure 6.			
Pin capacitance	C_{P}	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ for pins other than one being measured		10		pF

Note $* \mathrm{f}_{\mathrm{CFOSC}}$ is the allowable oscillator frequency.
Comparator Characteristics for Comparator Option at $\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=\mathbf{0} \mathrm{V}, \mathrm{V}_{\mathrm{DD}}=3.0$ to 6.0 V

Parameter	Symbol	Conditions	min	typ	max	Unit
Reference input voltage range	$\mathrm{V}_{\text {RFIN }}$	$\mathrm{V}_{\text {REF }} 0, \mathrm{~V}_{\text {REF }} 1$	$\mathrm{V}_{S S}+0.3$		$\mathrm{V}_{\mathrm{DD}}-1.5$	V
Inphase input voltage range	$\mathrm{V}_{\text {CMIN }}$	CMP0 to CMP3	$\mathrm{V}_{\text {SS }}$		$\mathrm{V}_{\mathrm{DD}}-1.5$	V
Offset voltage	$\mathrm{V}_{\text {OFF }}$	$\mathrm{V}_{\text {CMIN }}=\mathrm{V}_{\text {SS }}$ to $\mathrm{V}_{\text {DD }}-1.5 \mathrm{~V}$		± 50	± 300	mV
Response speed	TRS	Figure 5		1.0	200	$\mu \mathrm{s}$
Input high level current	$\mathrm{I}_{\mathrm{H}}{ }^{1}$	$\mathrm{V}_{\text {REF }} 0, \mathrm{~V}_{\text {REF }} 1$			1.0	$\mu \mathrm{A}$
	IIH^{2}	CMP0 to CMP3: Without feedback resistor option			1.0	
Input low level current	$\mathrm{I}_{\text {IL }} 1$	$\mathrm{V}_{\text {REF }} 0, \mathrm{~V}_{\text {REF }} 1$	-1.0			$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{2}$	CMP0 to CMP3: Without feedback resistor option	-1.0			
Feedback resistor	RCMFB	CMP0 to CMP3: With feedback resistor option		460		k Ω

Table 1 Guaranteed Constants for Ceramic Oscillators

Oscillator type	Standard type					Chip type			
	Manufacturer	Oscillator	C1	C2	Rd	Manufacturer	Oscillator	C1	C2
[External capacitor]									
4-MHz ceramic oscillator	Murata	CS A4.00MG	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	Murata	CS AC4.00MGC	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$
	Kyocera	KBR-4.0MSA	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	-	-	-	-
2-MHz ceramic oscillator	Murata	CS A2.00MG	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	Murata	CS AC2.00MGC	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$
	Kyocera	KBR-2.0MSA	$33 \mathrm{pF} \pm 10 \%$	$33 \mathrm{pF} \pm 10 \%$	-	-	-	-	-
[Built-in capacitor]									
4-MHz ceramic oscillator	Murata	CS A4.00MG	-	-	-	Kyocera	KBR-4.0MWS	-	-
	Kyocera	KBR-4.0MSA	-	-	-	-	-	-	-
2-MHz ceramic oscillator	Murata	CS A2.00MG	-	-	-	Kyocera	KBR-2.0MWS	-	-
$800-\mathrm{kHz}$ ceramic oscillator	Murata	CS B800J	$100 \mathrm{pF} \pm 10 \%$	$100 \mathrm{pF} \pm 10 \%$	$3.3 \mathrm{k} \Omega$	-	-	-	-
	Kyocera	KBR-800F/Y	$150 \mathrm{pF} \pm 10 \%$	$150 \mathrm{pF} \pm 10 \%$	-	-	-	-	-
$400-\mathrm{kHz}$ ceramic oscillator	Murata	CS B400P	$220 \mathrm{pF} \pm 10 \%$	$220 \mathrm{pF} \pm 10 \%$	$3.3 \mathrm{k} \Omega$	-	-	-	-
	Kyocera	KBR-400BK/Y	$330 \mathrm{pF} \pm 10 \%$	$330 \mathrm{pF} \pm 10 \%$	-	-	-	-	-

Figure 1 External Clock Input Waveform

Figure 2 2-Pin RC Oscillator Circuit

Figure 3 Ceramic Oscillator Circuit

Figure 4 Oscillator Stabilization Interval

Figure 5 Comparator Response Speed (TRS) Timing

Note: When the power supply rising interval is zero, a value of $0.1 \mu \mathrm{~F}$ for CRES produces a reset interval of 10 to 100 ms . If the power supply rising interval is larger, adjust CRES to produce a minimum interval of 10 ms for the oscillation to stabilize.

Figure 6 Reset Circuit

LC6529L RC Oscillator Characteristics

Figure 7 gives the RC oscillator characteristics for the LC6529L. The frequency fluctuation range is as follows:
For $\mathrm{V}_{\mathrm{DD}}=2.2$ to $6.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{Cext}=220 \mathrm{pF}$, and Rext $=12.0 \mathrm{k} \Omega$,

$$
275 \mathrm{kHz} \leq=\mathrm{f}_{\mathrm{MOSC}} \leq=577 \mathrm{kHz}
$$

These results are only guaranteed for the above RC constants.
If the above values are not available, keep the RC constants within the following ranges: (See Figure 7.)

$$
\text { Rext }=3 \text { to } 20 \mathrm{k} \Omega, \text { Cext }=150 \text { to } 390 \mathrm{pF}
$$

Note: 1. The oscillator frequency must be within the range between 350 and 750 kHz for $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{Ta}=25^{\circ} \mathrm{C}$.
2. Make sure that the oscillator frequency remains well within the operating clock frequency range (See frequency divider option table.) for the range $\mathrm{V}_{\mathrm{DD}}=2.2$ to $6.0 \mathrm{~V}, \mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$.

Figure 7 RC Oscillator Frequency Data (Sample Values)

LC6529N/F/L Instruction Table (by Function)

Abbreviations:

AC:	Accumulator
ACt:	Accumulator bit t
CF:	Carry flag
$\mathrm{DP}:$	Data pointer
$\mathrm{E}:$	E register
$\mathrm{M}:$	Memory
$\mathrm{M}(\mathrm{DP}):$	Memory addressed by DP
$\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right):$	I / O port specified by DP_{L}
$\mathrm{PC}:$	Program counter

STACK Stack register
TM: Timer
TMF: Timer overflow flag
ZF: Zero flag
(), []: Indicates the contents of a location
$\leftarrow: \quad$ Transfer direction, result
$+: \quad$ Addition
-: \quad Subtraction
*: Exclusive or

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Accumulator manipulation instructions]									
CLA	Clear AC	$\begin{array}{lllll}1 & 1 & 0 & 0\end{array}$	$0 \begin{array}{llll}0 & 0 & 0 & 0\end{array}$	1	1	$\mathrm{AC} \leftarrow 0$	Set AC to zero.	ZF	*
CLC	Clear CF	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$		1	1	$\mathrm{CF} \leftarrow 0$	Clear CF to zero.	CF	
STC	Set CF	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	0	1	1	$\mathrm{CF} \leftarrow 1$	Set CF to one.	CF	
CMA	Complement AC	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1	1	$\mathrm{AC} \leftarrow(\overline{\mathrm{AC}})$	Take ones complement of AC.	ZF	
INC	Increment AC	00000	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1	1	$A C \leftarrow(A C)+1$	Add one to AC.	ZF, CF	
DEC	Decrement AC	$0 \begin{array}{llll}0 & 0 & 0 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1	1	$A C \leftarrow(A C)-1$	Subtract one from AC.	ZF, CF	
TAE	Transfer AC to E	00000	$\begin{array}{llll}0 & 0 & 1 & 1\end{array}$	1	1	$\mathrm{E} \leftarrow(\mathrm{AC})$	Copy contents of AC to E.		
XAE	Exchange AC with E	$0 \quad 0 \quad 0 \quad 0$	$\begin{array}{llll}1 & 1 & 0 & 1\end{array}$	1	1	$(\mathrm{AC}) \leftrightarrow(\mathrm{E})$	Exchange contents of $A C$ and E.		
[Memory manipulation instructions]									
INM	Increment M	$0 \quad 0 \quad 10$	$1 \begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1	1	$\begin{aligned} & \mathrm{M}(\mathrm{DP}) \leftarrow \\ & {[\mathrm{M}(\mathrm{DP})]+1} \end{aligned}$	Add one to M (DP).	ZF, CF	
DEM	Decrement M	$0 \quad 0 \quad 10$	$\begin{array}{llll}1 & 1 & 1 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{M}(\mathrm{DP}) \leftarrow \\ & {[\mathrm{M}(\mathrm{DP})]-1} \end{aligned}$	Subtract one from M (DP).	ZF, CF	
SMB bit	Set M data bit	$0 \quad 0 \quad 0 \quad 0$	$10 \mathrm{~B}_{1} \mathrm{~B}_{0}$	1	1	$\mathrm{M}\left(\mathrm{DP}, \mathrm{B}_{1} \mathrm{~B}_{0}\right) \leftarrow 1$	Set bit specified by immediate data $B_{1} B_{0}$ in M (DP) to one.		
RMB bit	Reset M data bit	$0 \quad 0010$	$10 B_{1} B_{0}$	1	1	$\mathrm{M}\left(\mathrm{DP}, \mathrm{B}_{1} \mathrm{~B}_{0}\right) \leftarrow 0$	Clear bit specified by immediate data $\mathrm{B}_{1} \mathrm{~B}_{0}$ in M (DP) to zero.	ZF	
[Arithmetic, logic and comparison instructions]									
AD	Add M to AC	$0 \begin{array}{llll}0 & 1 & 1 & 0\end{array}$	$0 \quad 0000$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+ \\ & {[\mathrm{M}(\mathrm{DP})]} \end{aligned}$	Add contents of M (DP) to contents of AC and store result in AC.	ZF, CF	
ADC	Add M to AC with CF	$0 \quad 0 \quad 10$	$0 \quad 0 \quad 0 \quad 0$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC})+ \\ & {[\mathrm{M}(\mathrm{DP})]+(\mathrm{CF})} \end{aligned}$	Add contents of M (DP) and CF to contents of AC and store result in $A C$.	ZF, CF	
DAA	Decimal adjust AC in addition	11110	$0 \begin{array}{llll}0 & 1 & 1 & 0\end{array}$	1	1	$A C \leftarrow(A C)+6$	Add 6 to contents of AC.	ZF	
DAS	Decimal adjust AC in subtraction	$1 \begin{array}{llll}1 & 1 & 0\end{array}$	10010	1	1	$A C \leftarrow(A C)+10$	Add 10 to contents of AC.	ZF	
EXL	Exclusive or M to AC	$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$\begin{array}{llll}0 & 1 & 0 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{AC} \leftarrow(\mathrm{AC}) \\ & {[\mathrm{M}(\mathrm{DP})]} \end{aligned}$	XOR contents of AC with contents of M (DP) and store result in AC.	ZF	
CM	Compare AC with M	$1 \begin{array}{llll}1 & 1 & 1 & 1\end{array}$	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	1	1	$[\overline{M(D P)}]+(A C)+1$	Compare contents of M (DP) with those of AC and set CF and ZF according to result.	ZF, CF	

Note: * The second and subsequent repetitions of an LI or CLA instruction produce the same effects as an NOP instruction.

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description			Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$								
[Accumulator manipulation instructions]											
Cl data	Compare AC with immediate data	$\begin{array}{llll} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{array}$	$\left\|\begin{array}{llll} 1 & 1 & 0 & 0 \\ I_{3} & I_{2} & I_{1} & I_{0} \end{array}\right\|$	2	2	$\overline{I_{3} I_{2} I_{1} I_{0}}+(A C)+1$	Compare contents of immediate data field $\left(I_{3} I_{2} I_{1} I_{0}\right)$ with those of $A C$ and set CF and ZF according to result.			ZF, CF	
							$\begin{gathered} \text { Magnitude } \\ \text { comparison } \end{gathered}$	CF	ZF		
							$\begin{aligned} & I_{3} I_{2} I_{1} I_{0}>A C \\ & I_{3} I_{2} I_{1} I_{0}=A C \\ & I_{3} I_{2} I_{1} I_{0}<A C \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 1 \\ 0 \\ \hline \end{array}$		
[Load and store instructions]											
LI data	Load AC with immediate data	1100	$\begin{array}{llllll}l_{3} & l_{2} & l_{1} & l_{0}\end{array}$	1	1	$A C \leftarrow I_{3} I_{2} I_{1} I_{0}$	Load AC with co immediate data $\left(I_{3} I_{2} I_{1} I_{0}\right)$.			ZF	*
S	Store AC to M	$0 \quad 0 \quad 00$	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	1	1	$\mathrm{M}(\mathrm{DP}) \leftarrow(\mathrm{AC})$	Copy contents of M (DP).				
L	Load AC from M	$\begin{array}{llll}0 & 0 & 1 & 0\end{array}$	$0 \begin{array}{llll}0 & 0 & 1\end{array}$	1	1	$\mathrm{AC} \leftarrow[\mathrm{M}(\mathrm{DP})]$	Copy contents	(D) to	AC.	ZF	
[Data pointer manipulation instructions]											
$\begin{aligned} & \text { LDZ } \\ & \text { data } \end{aligned}$	Load $D P_{H}$ with zero and $D P_{L}$ with immediate data respectively	1000	$\begin{array}{lllll}l_{3} & l_{2} & l_{1} & l_{0}\end{array}$	1	1	$\begin{aligned} & \mathrm{DP}_{\mathrm{H}} \leftarrow 0 \\ & \mathrm{DP}_{\mathrm{L}} \leftarrow \mathrm{I}_{3} \mathrm{I}_{2} \mathrm{I}_{1} \mathrm{I}_{0} \end{aligned}$	Clear DP_{H} to zer contents of imme field $\left(I_{3} I_{2} I_{1} I_{0}\right)$ to				
LHI data	Load DP_{H} with immediate data	01100		1	1	$D P_{H} \leftarrow I_{1} I_{0}$	Copy contents of data field $\left(I_{1} I_{0}\right)$ to				
IND	Increment DP ${ }_{\text {L }}$	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	1	1	$\mathrm{DP} \mathrm{L} \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)+1$	Add one to DP ${ }_{\text {L }}$.			ZF	
DED	Decrement DP	$\begin{array}{llll}1 & 1 & 1 & 0\end{array}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	1	1	$\mathrm{DP}_{\mathrm{L}} \leftarrow\left(\mathrm{DP} \mathrm{L}_{\mathrm{L}}\right)-1$	Subtract one from			ZF	
TAL	Transfer AC to DP ${ }_{\text {L }}$	$\begin{array}{lllll}1 & 1 & 1 & 1\end{array}$	$\begin{array}{lllll}0 & 1 & 1 & 1\end{array}$	1	1	$\mathrm{DP}_{\mathrm{L}} \leftarrow(\mathrm{AC})$	Copy contents of	to D			
TLA	Transfer DP ${ }_{\text {L }}$ to AC	$\begin{array}{lllll}1 & 1 & 1 & 0\end{array}$	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	1	1	$\mathrm{AC} \leftarrow\left(\mathrm{DP}_{\mathrm{L}}\right)$	Copy contents	to		ZF	
[Jump and subroutine instructions]											
JMP addr	Jump	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 1 & 0 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\begin{array}{cccc} 1 & 0 & P_{9} & P_{8} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}$	2	2	$\begin{array}{r} \mathrm{PC} \leftarrow \mathrm{P}_{9} \mathrm{P}_{8} \mathrm{P}_{7} \mathrm{P}_{6} \\ \mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \\ \mathrm{P}_{1} \mathrm{P}_{0} \end{array}$	Jump to address data field ($\mathrm{P}_{9} \mathrm{P}_{8}$ $\left.P_{3} P_{2} P_{1} P_{0}\right)$.		diate ${ }_{5} \mathrm{P}_{4}$		
$\begin{aligned} & \text { CZP } \\ & \text { addr } \end{aligned}$	Call subroutine in the zero page	$1 \begin{array}{llll}1 & 0 & 1 & 1\end{array}$	$P_{3} P_{2} P_{1} P_{0}$	1	1	$\begin{aligned} & \text { STACK } \leftarrow(\mathrm{PC})+1 \\ & \mathrm{PC}_{9} \text { to } \mathrm{PC}_{6}, \mathrm{PC}_{1}, \\ & \mathrm{PC}_{0} \leftarrow 0 \\ & \mathrm{PC}_{5} \text { to } \mathrm{PC}_{2} \leftarrow \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \hline \end{aligned}$	Call subroutine in	ro pa			
CAL addr	Call subroutine	$\left\lvert\, \begin{array}{cccc} 1 & 0 & 1 & 0 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{ccc} 1 & 0 & P_{9} \\ P_{3} & P_{2} & P_{1} \\ P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \text { STACK } \leftarrow(P C)+2 \\ & P_{9} \text { to } P_{0} \leftarrow 0 \\ & P_{9} P_{8} P_{7} P_{6} P_{5} P_{4} \\ & P_{3} P_{2} P_{1} P_{0} \\ & \hline \end{aligned}$	Call subroutine.				
RT	Return from subroutine	$0 \begin{array}{llll}0 & 1 & 1 & 0\end{array}$	$0 \begin{array}{llll}0 & 0 & 1 & 0\end{array}$	1	1	$\mathrm{PC} \leftarrow(\mathrm{STACK})$	Return from subr	ine.			
[Branch instructions]											
BAt addr	Branch on AC bit	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if } \mathrm{ACt}=1 \end{aligned}$	Branch to specifi in same page (P specified by imm $t_{1} t_{0}$ in $A C$ is one	addr P_{0}) ate d			The mnemonic includes decimal equivalent t of immediate data i.e., BAO to BA3.
BNAt addr	Branch on no AC bit	$\left\lvert\, \begin{array}{cccc} 0 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if } \mathrm{ACt}=0 \end{aligned}$	Branch to specifi in same page (P specified by imm $t_{1} t_{0}$ in $A C$ is zero	addre P_{0}) ate d			The mnemonic includes decimal equivalent t of immediate data i.e., BNAO to BNA3.
BMt addr	Branch on M bit	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[\mathrm{M}\left(\mathrm{DP}, \mathrm{t}_{1} \mathrm{t}_{0}\right)\right] \\ & \quad=1 \end{aligned}$	Branch to specifi in same page (P specified by imm $t_{1} t_{0}$ in M (DP) is	addre P_{0}) ate d e.			The mnemonic includes decimal equivalent t of immediate data i.e., BM0 to BM3.

Note: * The second and subsequent repetitions of an LI or CLA instruction produce the same effects as an NOP instruction.

Continued from preceding page.

Mnemonic		Instruction code				Operation	Description	Affected status bits	Note
		$\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4}$	$D_{3} D_{2} D_{1} D_{0}$						
[Branch instructions]									
BNMt addr	Branch on no M bit	$\left\lvert\, \begin{array}{cccc} 0 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 0 & 1 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[M\left(\mathrm{MP}, \mathrm{t}_{1} \mathrm{t}_{0}\right)\right] \\ & \quad=0 \end{aligned}$	Branch to specified address in same page (P_{7} to P_{0}) if bit specified by immediate data $t_{1} t_{0}$ in $M(D P)$ is zero.		The mnemonic includes decimal equivalent t of immediate data i.e., BNM0 to BNM3.
BPt addr	Branch on port bit	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[P\left(\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}, \mathrm{t}_{1} \mathrm{t}_{0}\right)\right]\right. \\ & \quad=1 \end{aligned}$	Branch to specified address in same page (P_{7} to P_{0}) if bit specified by immediate data $\mathrm{t}_{1} \mathrm{t}_{0}$ in $\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)$ is one.		The mnemonic includes decimal equivalent t of immediate data i.e., BP0 to BP3.
BNPt addr	Branch on no port bit	$\left\lvert\, \begin{array}{cccc} 0 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 0 & t_{1} & t_{0} \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if }\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}, \mathrm{t}_{1} \mathrm{t}_{0}\right)\right] \\ & \quad=0 \end{aligned}$	Branch to specified address in same page (P_{7} to P_{0}) if bit specified by immediate data $\mathrm{t}_{1} \mathrm{t}_{0}$ in $\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)$ is zero.		The mnemonic includes decimal equivalent t of immediate data i.e., BNP0 to BNP3.
BTM addr	Branch on timer	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if TMF }=1 \\ & \text { then } \mathrm{TMF} \leftarrow 0 \end{aligned}$	Branch to specified address in same page (P_{7} to P_{0}) if TMF is one. Clear TMF to zero.	TMF	
BNTM addr	Branch on no timer	$\left\lvert\, \begin{array}{cccc} 0 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 0 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{aligned} & \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ & \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ & \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ & \text { if TMF }=0 \\ & \text { then } \mathrm{TMF} \leftarrow 0 \end{aligned}$	Branch to specified address in same page (P_{7} to P_{0}) if TMF is zero. Clear TMF to zero.	TMF	
$\begin{aligned} & \mathrm{BC} \\ & \text { addr } \end{aligned}$	Branch on CF	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 1 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{gathered} \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ \text { if } \mathrm{CF}=1 \end{gathered}$	Branch to specified address in same page (P_{7} to P_{0}) if CF is one.		
BNC addr	Branch on no CF	$\left\lvert\, \begin{array}{cccc} 0 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 1 & 1 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{gathered} \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ \text { if } \mathrm{CF}=0 \end{gathered}$	Branch to specified address in same page (P_{7} to P_{0}) if CF is zero.		
BZ addr	Branch on ZF	$\left\lvert\, \begin{array}{cccc} 0 & 1 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\lvert\, \begin{array}{cccc} 1 & 1 & 1 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right.$	2	2	$\begin{gathered} \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ \text { if } Z \mathrm{ZF}=1 \end{gathered}$	Branch to specified address in same page (P_{7} to P_{0}) if ZF is one.		
$\begin{aligned} & \text { BNZ } \\ & \text { addr } \end{aligned}$	Branch on no ZF	$\left\lvert\, \begin{array}{cccc} 0 & 0 & 1 & 1 \\ \mathrm{P}_{7} & \mathrm{P}_{6} & \mathrm{P}_{5} & \mathrm{P}_{4} \end{array}\right.$	$\left\|\begin{array}{cccc} 1 & 1 & 1 & 0 \\ P_{3} & P_{2} & P_{1} & P_{0} \end{array}\right\|$	2	2	$\begin{gathered} \mathrm{PC}_{7} \text { to } \mathrm{PC}_{0} \leftarrow \\ \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \\ \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\ \text { if } \mathrm{ZF}=0 \end{gathered}$	Branch to specified address in same page (P_{7} to P_{0}) if ZF is zero.		
[//O instructions]									
IP	Input port to AC	0000	11000	1	1	$\mathrm{AC} \leftarrow\left[\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)\right]$	Copy contents of port specified by $\mathrm{P}\left(\mathrm{PD}_{\mathrm{L}}\right)$ to AC .	ZF	
OP	Output AC to port	$0 \begin{array}{llll}0 & 1 & 1 & \end{array}$	$0 \begin{array}{llll}0 & 0 & 0 & 1\end{array}$	1	1	$\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right) \leftarrow(\mathrm{AC})$	Copy contents of AC to port specified by P (DP $)$.		
SPB bit	Set port bit	0000	$01 \mathrm{~B}_{1} \mathrm{~B}_{0}$	1	2	$\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}, \mathrm{B}_{1} \mathrm{~B}_{0}\right) \leftarrow 1$	Set bit specified by immediate data $B_{1} B_{0}$ in port specified by $\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)$ to one.		Execution of this instruction invalidates contents of E .
RPB bit	Reset port bit	$0 \quad 0 \quad 10$	$01 B_{1} B_{0}$	1	2	$\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}, \mathrm{B}_{1} \mathrm{~B}_{0}\right) \leftarrow 0$	Clear bit specified by immediate data $\mathrm{B}_{1} \mathrm{~B}_{0}$ in port specified by $\mathrm{P}\left(\mathrm{DP}_{\mathrm{L}}\right)$ to zero.	ZF	Execution of this instruction invalidates contents of E .
[Other instructions]									
WTTM	Write timer	$1 \begin{array}{llll}1 & 1 & 1\end{array}$	$1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}$	1	1	$\begin{aligned} & \mathrm{TM} \leftarrow(\mathrm{E}),(\mathrm{AC}) \\ & \mathrm{TMF} \leftarrow 0 \end{aligned}$	Copy contents of E and AC to timer. Clear TMF to zero.	TMF	
HALT	Halt	$\begin{array}{llll}1 & 1 & 1\end{array}$	$0 \begin{array}{llll}0 & 1 & 1 & 0\end{array}$	1	1	Halt	Suspend all operations.		Execution requires that pin PA3 be high.
NOP	No operation	0000	$0 \quad 0 \quad 0 \quad 0$	1	1	No operation	Do nothing but consume one machine cycle.		

LC6529N, LC6529F, LC6529L

The above subset excludes the following instructions from the LC6523, 6526 set

AND, BFn, BI, BNFn, BNI, CLI, JPEA, OR, RAL, RCTL, RFB, TRI, RTBL, SCTL, SFB, X, XAH, XA0, XA1, XA3, XD, XH0, XH1, XI, XL0, XL1, and XM.

Specifying LC6529N/F/L User Options

Specifying (Ordering) LC6529N/F/L User Options
When developing the software or ordering the chip, the user must prepare an EPROM containing the user program, user option data, and fixed data. There are two ways of preparing these last two: with software provided by Sanyo and manually. This Section discusses both methods.
Using Sanyo's Option Specification Software
SU60K, the software for specifying LC6529 options, interactively asks the user to specify the options and writes the results to a mask option file, file.OPT.
The M60K macro assembler assembles the user program into an object file, file.OBJ.
The L60K linker merges the mask option and object files to create an EVA file, file.EVA.
The EVA2HEX conversion tool converts the user program and mask options inside the EVA file to an object file in hexadecimal (HEX) format.
The user use a PROM writer to download this HEX file to the EPROM submitted when ordering the chip.
For further details, see Figure A below and refer to the LC65/66K Software Manual.
Alternate Method

1. Overview

If not using the software for specifying LC6529 options, the user must list the mask options using the coding procedures described below and then write these with the program to the EPROM regions shown in Figure A.
When ordering, the user must submit an option table list as well as the EPROM. Figure B gives an example of such a list.
The procedures for coding the mask options appear on the pages following Figure B.

Figure A LC6529 ROM Data
2. Sample option table list

Figure B Sample Option Table List

Coding LC6529N/L Mask Options

Always place zeros in the unused bit positions.

Coding LC6529F Mask Options

Using Standby HALT Mode

The LC6529N/F/L features a convenient HALT mode that reduces current drain while the chip is on standby.
These standby functions involve the use of one instruction (HALT) and two control signal pins (PA3 and $\overline{\mathrm{RES}}$). For the functions to work properly, the design of external circuits and chip software must pay due attention to these three. Depending on how extensively the standby functions are used, the designer must consider and provide countermeasures that protect the design from the effects of power supply fluctuations, power interruptions, external noise, and other adverse conditions.
This document discusses the circuit and program design issues related to the most frequent application of the standby functions, the detection and recovery from power outages.
When using the standby functions, follow the sample circuits given in this document and carefully observe all warnings accompanying them.
Departures from the design guidelines herein will warrant thorough testing and evaluation of the effects of such sudden changes in the operating environment as momentary power outages on application operation.

1. Entering and leaving the HALT mode

Table 1 gives the conditions for entering and leaving the HALT mode.
Table 1 Entering and Leaving the HALT Mode

Entering HALT mode	Leaving HALT mode
HALT instruction while PA3 is high.	1. Reset signal (RES pin pulled low.) 2. PA3 pulled low.

Note: The second method for leaving the HALT mode is only available when the design uses an RC oscillator circuit. It may not work properly with a ceramic oscillator circuit.
2. Important notes

Using the standby functions requires close attention to the following issues in application circuit and software design.

- The power supply voltage must not fall below the rating while the chip is on standby.
- Carefully observe all timing restrictions for the control signals during transitions to and from the HALT mode.
- Make sure that a signal for leaving the HALT mode does not overlap the execution of the HALT instruction.

This document demonstrates how to observe these restrictions by discussing both application circuits for a power failure recovery function and programming considerations.
Such a power failure recovery function detects failure of the main power supply and causes the chip to execute a HALT instruction to put itself on standby. Reducing the current drain this way allows the backup capacitor to maintain the register contents for a longer period than otherwise possible. When the power is restored, the chip is reset and automatically resumes execution with the program counter set to 000 H . The following examples discuss how the software can then distinguish this type of reset from a power on reset sequence along with issues related to dealing with momentary AC power outages.

- Example 1

The first example does not distinguish a power-on reset sequence from a reset trigger by a power failure.

- Circuit diagram

Figure 2-1 gives the circuit diagram for this sample circuit.

Note: All ports other than PA3 are configured as normal input ports.

Figure 2-1 Power Outage Backup Example 1

- Waveforms during operation

Figure 2-2 gives the waveforms relevant to the operation of the above circuit. There are three main states: (a) power-on reset sequence, (b) momentary break in main power supply, and (c) recovery from power outage backup state.

Note: V^{+}TRON $=\mathrm{V}^{+}$level at which transistor switches on and off
Figure 2-2 Waveforms Relevant to Operation of Circuit Example 1

- Main circuit states
a: Power-on reset sequence
Once the power supply voltage has reached the proper level, the chip automatically resets and begins execution with the program counter set to 000_{H}.
Caution: This circuit does not reset the chip until the power supply voltage is within the range specified for V_{DD}, so leaves the chip in an indeterminate state.
b: Momentary break in main power supply
i. If only the $\overline{\mathrm{RES}}$ pin and none of the Pxx pins drops below the threshold level V_{IL}, the chip resets and repeats the power-on reset sequence.
ii. If the $\overline{\mathrm{RES}}$ pin and the Pxx pins remain above the threshold level V_{IL}, the chip continues normal execution.
iii. If both the $\overline{\operatorname{RES}}$ pin and the Pxx pins drop below the threshold level V_{IL}, the chip resets if two consecutive polls fail to detect a low at Pxx or, if a low is found, enters the HALT mode and then, because the power has been restored, leaves the HALT mode.
c: Recovery from power outage backup state
Since the power has been restored, the chip leaves the HALT mode.
- Design considerations
a: $\quad \mathrm{V}^{+}$rise time and C 2
The V^{+}rise time must be approximately ten times the RC constant for the reset circuit, $\mathrm{C} 2 \times \mathrm{R}$, where R is the internal resistance (typ. $200 \mathrm{k} \Omega$). It must also be no longer than approximately 20 ms .
b: R1 and C1 values
R1 must be as small as possible; C 1 , as large as possible to provide the longest backup time. At the same time, however, R1 must be large enough such that the C 1 charging current does not exceed the power supply capacity.
c: R2 and R3 values
Choose these to make the Pxx high levels equal to V_{DD}.
d: R4 value
Select R4 and thus the RC constant for C 2 and R 4 so that C 2 discharges sometime in the interval between the point at which V^{+}falls below $\mathrm{V}^{+}{ }_{\text {TRON }}$ (turning off the transistor) and the point at which Pxx falls below V_{IL}. (Otherwise, the chip will enter the HALT mode and then not respond to a reset.)
e: R5 and R6 values
Select R5 and R6 so that V^{+}when the reset circuit operates, switching on the transistor (that is, when R5 and R6 produce a V_{BE} of approximately 0.6 V) is at least the minimum operating voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ plus the V_{F} for diode D 1 . To provide a rapid reset once the power is restored, however, keep this voltage as small as possible while still satisfying these conditions.
f: Calculating backup time
From the time that the chip detects the power outage at Pxx until it executes the HALT instruction, the chip operates normally so drains relatively large amounts of current. C1 must therefore be large enough to provide backup power not only for the set's backup period, but for this transitional period as well.

- Software considerations

a: Assign signals so that PA3 is maintained high during standby operation.
b: The software should double-check a standby request by polling twice.
Example:

\vdots		
BP1	AAA	: Poll once
BP1	AAA	: Poll twice
HALT		: Begin standby operation
\vdots		

- Example 2

The second example distinguishes a power-on reset sequence from a reset trigger by a power failure.

- Circuit diagram

Figure 2-3 gives the circuit diagram for this sample circuit.

Figure 2-3 Power Outage Backup Example 2

- Waveforms during operation

Figure 2-4 gives the waveforms relevant to the operation of the above circuit. There are two main states: (a) power-on reset sequence and (b) recovery from power outage backup state.

Note: V^{+}TRON $=\mathrm{V}^{+}$level at which transistor switches on and off
Figure 2-4 Waveforms Relevant to Operation of Circuit Example 2

- Main circuit states
a: Power-on reset sequence
The operation and points to watch are the same as for the first example. The only difference is that the software interprets a low at Pxx as indicating an initial reset.
b: Switch to standby operation
The chip polls Pxx and, if it is low, enters the HALT mode.
c: Recovery from power outage backup state
Since the power has been restored, the chip leaves the HALT mode. If the recovery routine then finds that Pxx is high, it switches to a separate routine for restarting after a power outage.
Caution: If the power supply voltage V_{DD} drops below the V_{IH} level for Pxx during the outage, this recovery routine will subsequently find that Pxx is low and execute the routine for an initial reset instead.
- Design considerations
a: R2 and R3 values
Make R2 much greater than R1 and choose R3 to limit TR2's I_{B}.
b: R4 value
Since there are no momentary outages, the value is not critical, but select R 4 so that C 2 quickly discharges. In all other respects, the same considerations apply as in Example 1.
- Software considerations
a: Assign signals so that PA3 is maintained high during standby operation.
b: The software should check for a standby request by polling once.
Example:

	\vdots	
	BP1	AAA
HALT		: Poll port
AAA : Begin standby operation		

- Example 3

The third example adds support for momentary power outages.

- Circuit diagram

Figure 2-5 gives the circuit diagram for this sample circuit.

Unit (resistance: Ω)
Figure 2-5 Power Outage Backup Example 3

- Waveforms during operation

Figure 2-5 gives the waveforms relevant to the operation of the above circuit. There are three main states: (a) power-on reset sequence, (b) momentary break in main power supply, and (c) recovery from power outage backup state.

Note: V^{+}TR1ON $=\mathrm{V}^{+}$level at which transistor TR1 switches on and off
V^{+}TR3ON $=\mathrm{V}^{+}$level at which transistor TR3 switches on and off
Figure 2-5 Waveforms Relevant to Operation of Circuit Example 3

- Main circuit states
a: Power-on reset sequence
The operation and points to watch are the same as for the second example.
b: Momentary break in main power supply
i. If only the $\overline{\operatorname{RES}}$ pin and none of the Pxx pins drops below the threshold level V_{IL}, the chip resets. If the recovery routine then finds that Pxx is high, it switches to a separate routine for restarting after a power outage.
ii. If the $\overline{\mathrm{RES}}$ pin and the Pxx pins remain above the threshold level V_{IL}, the chip continues normal execution.
iii. If both the $\overline{\text { RES }}$ pin and the Pxx pins drop below the threshold level V_{IL}, the chip resets if two consecutive polls fail to detect a low at Pxx or, if a low is found, enters the HALT mode and then, because the power has been restored, leaves the HALT mode. If the recovery routine then finds that Pxx is high, it switches to a separate routine for restarting after a power outage.
c: Recovery from power outage backup state
The operation and points to watch are the same as for the second example.
- Design considerations
a: R3 value
This serves as the bias resistor for transistor TR2.
b: R7 and R8 values
Select these so that transistor TR3 switches on and off at approximately 1.5 V . In all other respects, the same considerations apply as in Example 1.
- Software considerations

The same considerations apply as in Example 1.

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
(1) Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
(2) Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1995. Specifications and information herein are subject to change without notice.

[^0]: Note: * Maintain the power supply voltage at V_{DD} until the HALT instruction has completed execution, placing the chip in the standby mode. Block chattering from entering PA3 during the HALT instruction execution cycle

