

Current Transducer LF 205-P/SP1

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 200 A$

Electrical data

	iootiiioai aata						
I _{PN}	Primary nominal r.m.s	s. current	200			Α	
I _P	Primary current, measuring range		0 ± 420				Α
\mathbf{R}_{M}	Measuring resistance @		$T_{\Delta} = 7$	70°C	T _A =	85°C)
IVI			$\mathbf{R}_{M\;min}^{n}$		$ \mathbf{R}_{M \; min} $		
	with ± 12 V	$@ \pm 200 A_{max}$	0	71	0	69	Ω
		@ $\pm 420 A_{max}$	0	14	0	12	Ω
	with ± 15 V	@ $\pm 200 A_{max}$	0	100	23	98	Ω
		@ ± 420 A _{max}	0	28	23	26	Ω
I_{SN}	Secondary nominal r.m.s. current		100				m A
\mathbf{K}_{N}	Conversion ratio		1:2000				
V _C	Supply voltage (± 5 %) ± 12 15		<u>;</u>	V			
I _c	Current consumption @ ± 15V			17	+ I s		mΑ

Accuracy - Dynamic performance data

R.m.s. voltage for AC isolation test, 50 Hz, 1 mn

X _G	Overall accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity	± 0.5 < 0.1		% %
I _o I _{om} I _{ot}	Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Residual current ¹⁾ @ $\mathbf{I}_{\rm p} = 0$, after an overloop Thermal drift of $\mathbf{I}_{\rm o}$ - 40°C	 Typ ± 0.12	Max ± 0.2 ± 0.1 ± 0.4	mA mA mA
t _{ra} t _r di/dt f	Reaction time @ 10 % of I _{P max} Response time ²⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 3 dB)	< 500 < 1 > 100 DC 1	00	ns µs A/µs kHz

General data

_		40 05	00
I _A	Ambient operating temperature	- 40 + 85	°C
$T_{_{S}}$	Ambient storage temperature	- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	33	Ω
	@ $T_A = 85^{\circ}C$	35	Ω
m	Mass	58	g
	Standards 3)	EN 50178	

Notes: 1) The result of the coercive field of the magnetic circuit

- $^{2)}$ With a di/dt of 100 A/ μ s
- ³⁾ A list of corresponding tests is available.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

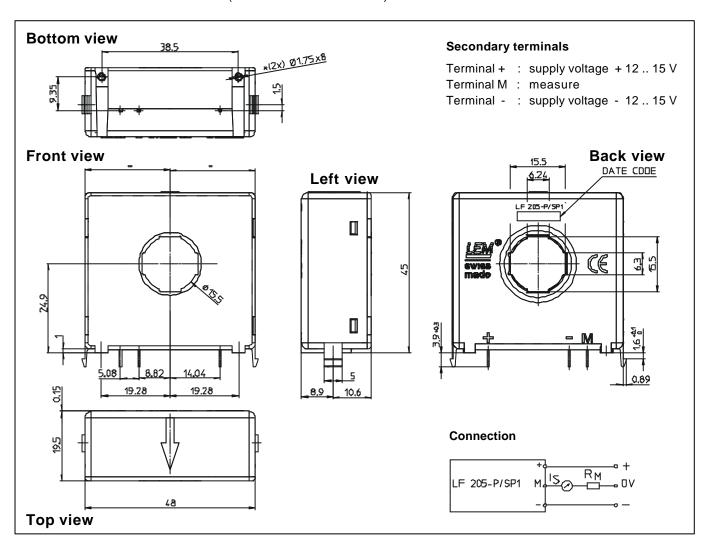
 Mounting clips molded into the transducer housing, attach to printed circuit boards 1.6mm thick.

Advantages

k۷

3.5

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

011120/2

Dimensions LF 205-P/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

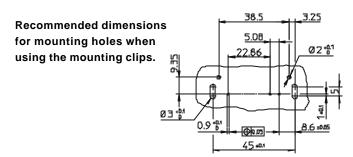
- General tolerance
- Fastening & secondary connection Recommanded PCB hole
- Primary through-hole
- Supplementary fastening Recommended PCB hole Recommended screws LEM code

± 0.2 mm

3 pins 0.63x0.56 mm Ø 0.9 mm

Ø 15.5 mm

2 holes Ø 1.75 mm


2.4 mm

KA22 x 6

47.30.60.006.0

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- Mounting clips molded into the transducer housing, attach to printed circuit board 1.6mm thick.

