CURRENT MODE PWM CONTROLLER

FEATURES

- Automatic feed forward compensation
- Optimized for offline converter
- Double pulse suppression
- Current mode operation to 500 KHz
- High gain totem pole output
- Internally trimmed bandgap reference
- Undervoltage lockout with hysteresis
- Low start up current :< 0.3 mA

8 SOP/ 8 DIP PIN Configulation				
Compen sation	1	8 V _{REF}		
Voltage Feedback	2	7 Vcc		
Current Sense	3	6 OUTPUT		
R _T /C _T	4	5 GND		

ORDERING INFORMATION

Device	Package		
LM3842A/3A/4A/5A D	8 SOP		
LM3842A/3A/4A/5A N	8 DIP		


DESCRIPTION

The LM3842A is fixed frequency current-mode PWM controller. It is specially designed for Off-Line and DC-to-DC converter applications with minimal external components.

This integrated circuit features a trimmed oscillator for precise duty cycle control, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totempole output ideally suited for driving a power MOSFET.

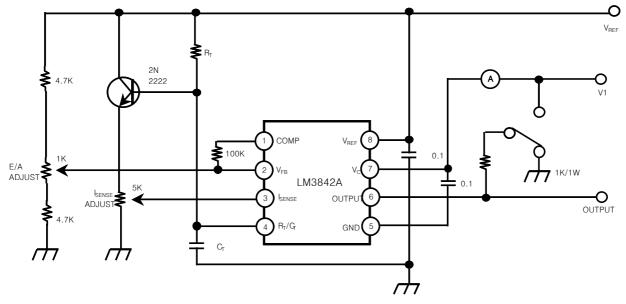
Protection circuitry includes built in under-voltage lockout and current limiting.

SIMPLIFIED BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C)

Characteristic	Symbol	Value	Unit	
Power Supply Voltage	V_{cc}	30	V	
Output Current		± 1	А	
Analog Inputes Voltage	V _{IN}	-0.3 to 5.5V	V	
Error Amp Output Sink Current	I _{SINK}	10	mA	
Power Dissipation	P _D	1	W	
Storage Temperature Range	Tstg	-65 to 150	Ĵ	
Lead Temperature (soldering 5 sec)	Т	260	Ĵ	

ELECTRICAL CHARACTERISTIC


(Vcc=15V(Note 1), R_T = 10k\Omega, C_T=3.3nF 0 \leq T_A \leq 70 $^\circ C$; unless otherwise specified)

Characteristic	Symbol	Test Condition	Min	Тур	Max	Unit
REFERENCE SECTION						
Reference Output Voltage	V_{REF}	T _j = 25℃, I _O =1 mA	4.90	5.00	5.10	V
Line Regulation	Vo	$12V \le Vcc \le 25V$		2	20	mV
Load Regulation	Vo	$1 \text{mA} \le \text{lo} \le 20 \text{mA}$		3	2.5	mV
Output Short Circuit Current	lsc	T _A = 25℃		-85	-180	mA
OSCILLATOR SECTION						
Normal Frequency	Fosc	T _j = 25 ℃	47	52	57	kHz
Voltage Stability	Sv	$12V \leq Vcc \leq 25V$		0.2	1	%
Amplitude	Vosc			1.6		Vp-p
ERROR AMPLIFIER SECTION						
Input B Current	I _{IB}			-0.1	-2	μA
Feedback Input Voltage	V _{FB}	Vo=2.5V	2.42	2.50	2.58	V
Open Loop Voltage Gain	A _{VOL}	$2V \le V_0 \le 4V$	65	90		dB
Power Supplier Rejection Ratio	PSRR _{EA}	$12V \le Vcc \le 25V$	60	70		dB
Output Sink Current	I _{SI}	V _{FB} =2.7V, Vo - 1.1V	2	7		mA
Output source Current	I _{SO}	V = 2.3V, Vo=5V	-0.5	-1.0		mA
Output Voltage High	V _{OH}	V_{FB} =2.7V, R_L =15k Ω to GND	5	6		V
Output Voltage Low	V _{OL}	V_{FB} =2.7V, R_L =15k Ω to V_{RGR}		0.8	1.1	V
CURRENT SENSE SECTION						
Input Voltage Gain	Av	(Note 2 & 3)	2.85	3	3.15	V/V
Maximum Input Signal	V _{MAX}	Vo=5V (Note 2)	0.9	1	1.1	V
Power Supply Rejection Ratio	PSRR _{SC}	$12V \leq Vcc \leq 25V$		70		dB
Input Bias Current	I _{IB}			-2	-1.0	μA
OUTPUT SECTION						
Output Voltage Low	V _{OL}	$I_{sink} = 20 mA$		0.1	0.4	V
		$I_{sink} = 20 mA$		1.5	2.2	V
Output Voltage High	V _{OH}	I _{source} = 20mA	13	13.5		V
		I _{source} = 20mA	12	13.0		V
Rise Time	Т	$T_j = 25^{\circ}C, C_L = 1nF$		45	150	nS
Fail Time	Т	T _i =25℃,C _L =1nF		35	150	nS
UNDERVOLTAGE LOCKOUT SECTION					-	_
Start-up Threshold	V _{th}	3842A / 3844A	14.5	16	17.5	V
	⊻ th	3843A / 3845A	7.8	8.4	9	V
Minimum Operating Voltage	Varian	3842A / 3844A	8.5	10	11.5	V
(After Turn-On)	V _{CC(MIN)}	3843A / 3845A	7.0	7.6	8.2	V
TOTAL STANDBY CURRENT						
Start-up Current	l _{st}	Vcc=14V		0.17	0.3	mA
Operating Supply Current	I _{cc}			13	17	mA
Zener Voltage	V	lcc = 25mA	30	38		V

Note: 1. Adjust Vcc above the start threshould before setting at 15V. 2. Parameter measured at trip point of latch with V_{FB} - 0.

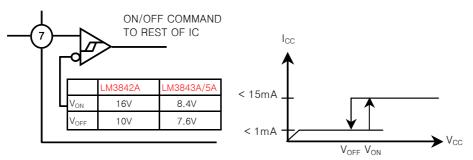

3. Comparator Gain defined as: $A_V = \frac{\Delta V \text{ Output Compensation(pin FB})}{\Delta V \text{ Current Sanseinput(pin CS)}}$;

Fig.1 Open Loop Test Circuit

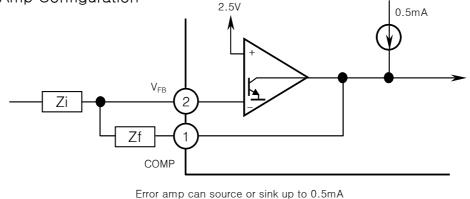

High peak currents associated with capacitive loads necessitate careful grounding techniques Timing and bypass capacitors should be connected close to pin 5 in a single point ground. The transistor and 5K Ω potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

Fig.2 Under Voltage Lockout

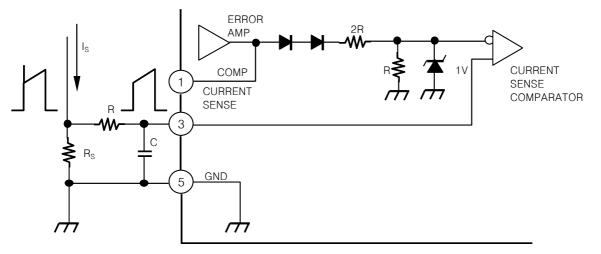
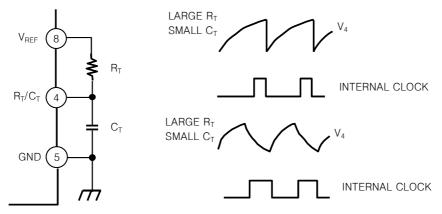

During Under-Voltage Lock-Out, the output driver is biased to a high impedance state. Pin 6 should be shunted to ground with a bleeder resistor to prevent activating the power switch with output leakage current.

Fig.3 Error Amp Configuration

З

Fig.4 Current Sense Circuit



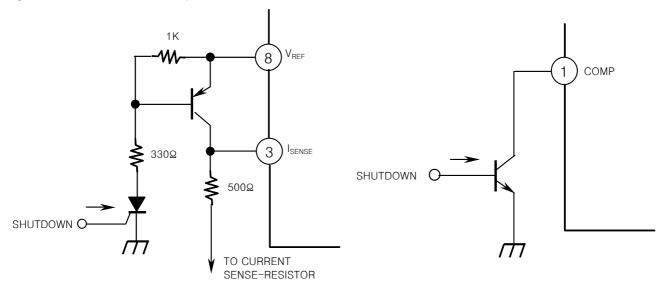
Peak current (I_s) is determined by the formula:

$$I_{S(MAX)} \approx \frac{1.0V}{R_S}$$

A small RC filter may be required to suppress switch transients.

Fig.5 Oscillator Waveforms and Maximum Duty Cycle

Oscillator timing capacitor, C_T , is charged by V_{REF} through R_T , and discharged by an internal current source. During the discharge time, the internal clock signal blanks the output to the low state. Selection of R_T and C_T therefore determines both oscillator frequency and maximum duty cycle. Charge and discharge times are determined by the formulas:


 $t_c \approx 0.55 \ R_T \ C_T$

$$t_{d} \sim R_{T} \ C_{T} \ \text{ln}(\frac{0.0063 \ R_{T} - 2.7}{0.0063 \ R_{T} - 4} \)$$

Frequency, then, is: $f = (t_c + t_d)^{-1}$

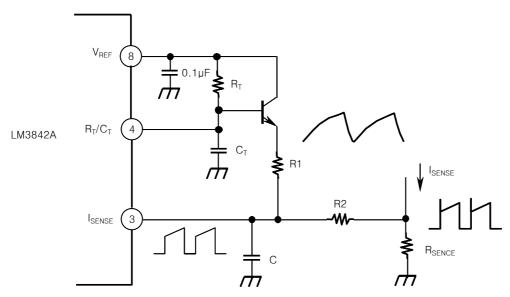

For $R_T > 5K\Omega$, $f \approx \frac{1.8}{R_T C_T}$

Fig.6 Shutdown Techniques

Shutdown of the LM3842A can be accomplished by two methods; either raise pin 3 above 1V or pull pin 1 below a voltage two diode drops above ground. Either method causes the output of the PWM comparator to be high (refer to block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shoutdown condition at pins 1 and/or 3 is removed. In one example, an externally latched shutdown may be accomplished by adding an SCR which will be reset by cycling V_{CC} below the lower UVLO threshold. At this point the reference turns off, allowing the SCR to reset.

Fig.7 Slope Compensation

A fraction of the oscillator ramp can be resistively summed with the current sense signal to provide slope compensation for converters requiring duty cycles over 50%.

Note that capacitor, C, forms a filter with R2 to suppress the leading edge switch spikes.

CURRENT MODE PWM CONTROLLER

Fig.1 Output Dead Time

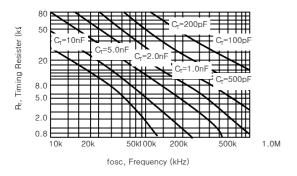


Fig.3 Output Saturation Characteristics

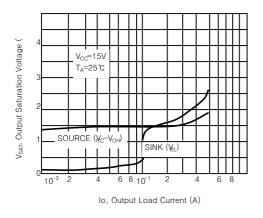


Fig.2 Timing Resistor vs Frequency

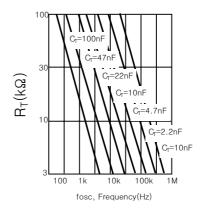
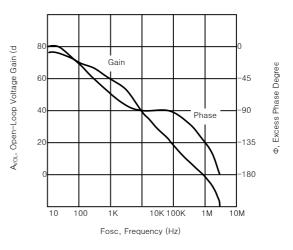



Fig.4 Error Amplifier Open Loop Gain and Phase Frequency

PIN FUNCTION DESCRIPTION

Pin No.	Function	Description	
1	Compensation	This pin is the Error Amplifier output and is made available for loop	
		compensation.	
2	Voltage	This is the inverting input of the Error Amplitier. It is normally connected	
	Feedback	to the switching power supply output through a resister divider.	
3	Current Sense	A voltage proportional to inductor current is connected to this input.	
		The PWM uses this information to terminate the output switch conduction.	
4	R_T/C_T	The Oscillator frequency and maximum Output duty cycle are	
		programmed by connecting resistor R_T to VR_{EF} and capacitor C_T	
		to ground. Operation to 500kHz is possible.	
5	GND	This pin is the combined control circuitry and power ground.	
6	Output	This output directly drives the gate of a power MOSFET. Peak currents	
		up to 1.0A are sourced and sunk by this pin.	
7	Vcc	This pin is the positive supply of the control IC.	
8	V _{REF}	This is the reference output. It provides charging current for capacitor	
		C_{T} through resistor R_{T} .	