RF Power Amplifier IC

Features

- Perfect for 2.4 GHz Cordless DECT (WDECT)
- Single Positive Supply
- Power Added Efficiency As High As 55 Percent
- $\mathrm{IP}_{3}=+43 \mathrm{dBm}$
- Output Power 26.5 dBm @ 3.3 V
- Output Power 28.5 dBm @ 5.0 V
- 100 Percent Duty Cycle
- 2200 to 2600 MHz Operation
- 8 Pin MSOP Full Downset Plastic Package
- Operates Over Wide Ranges of Supply Voltage
- Self-Aligned MSAG ${ }^{\circledR}$-Lite MESFET Process

Description

The MA02303GJ is an RF power amplifier based on M/A-COM's Self-Aligned MSAG ${ }^{\text {a }}$ MESFET Process. This product is designed for use in 2.4 GHz ISM products. For booster applications, it features a low power "bypass" mode and output power control via $V_{D D 1}$.

Ordering Information

Part Number	Description
MA02303GJ-R7	7 inch, 1000 piece reel
MA02303GJ-R13	13 inch, 3000 piece reel
MA02303GJ-SMB	Sample Test Board (Includes 5 Samples)

Functional Schematic

PIN Configuration ${ }^{1}$

PIN	Function	Description
1	$\mathrm{~V}_{\mathrm{D}} 1$	Drain voltage, first stage
2	$\mathrm{RF}_{\text {IN }} / \mathrm{V}_{\mathrm{G}} 1$	RF input and drain voltage for first stage
3	GND	Ground
4	$\mathrm{~V}_{\mathrm{G}} 2$	Gate bias voltage, second stage
5	$\mathrm{~V}_{\mathrm{G}} 3$	Gate bias voltage, third stage
6	GND	Ground
7	$\mathrm{RF}_{\text {out }} / \mathrm{V}_{\mathrm{D}} 3$	RF output and drain voltage for third stage
8	$\mathrm{~V}_{\mathrm{D} 2}$	Drain voltage for second stage

1. Package bottom is electrical and thermal ground.

Absolute Maximum Ratings ${ }^{2}$

Rating	Symbol	Value
DC Supply Voltage	V_{DD}	5.5 V
RF Input Power	$\mathrm{P}_{\text {IN }}$	10 mW
Junction Temperature	T_{J}	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\text {OPER }}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Moisture Sensitivity		JEDEC Level 1

2. Beyond these limits, the device may be damaged or device reliability reduced. Functional operation at absolute-maximum-rated conditions is not implied.

Electronics

Electrical Specifications: $\mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=-2 \mathrm{dBm}$, Duty Cycle $=100 \%, \mathrm{~T}_{\mathrm{S}}=37^{\circ} \mathrm{C}^{3}$, measured on evaluation board shown in Figure 11.

Characteristic	Symbol	Unit	Min.	Typ.	Max.
Frequency Range	f	MHz	2400	-	2500
Output Power, $f=2450 \mathrm{MHz}$	Pout	dBm	25.3	26.5	-
Power Added Efficiency, $f=2450 \mathrm{MHz}$	h	\%	43	51	-
Current, $f=2450 \mathrm{MHz}$	I_{DD}	mA	-	265	415
Current for linear operation, $f=2450 \mathrm{MHz}$	I_{DD}		-	265	-
Gain, $f=2450 \mathrm{MHz}$, linear operation	G	dB	-	29.5	-
Harmonics, $f=2450 \mathrm{MHz}$	$2 f, 3 f, 4 f$	dBc	-	-40	-30
Input VSWR, $f=2450 \mathrm{MHz}$	-	Ratio	-	-	2.0:1
Off Isolation ($\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}$)	-	dB	-	40	-
Noise Figure, $f=2450 \mathrm{MHz}$		dB	-	3.6	-
Thermal Resistance, junction to package bottom	$\mathrm{R}_{\text {TH }}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	-	25	-
Third Order Intercept Point $\left(f_{1}=2450 \mathrm{MHz}, f_{2}=2451 \mathrm{MHz}, \mathrm{P}_{\text {IN }}=-20 \mathrm{dBm} \mathrm{SCL}\right)$	IP_{3}	dBm	-	43	-
Load Mismatch ($\mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V}, \mathrm{VSWR}=8: 1, \mathrm{P}_{\text {IN }}=0 \mathrm{dBm}$)	-		No Degradation in Power Output		
Stability $\left(\mathrm{P}_{\text {IN }}=-2\right.$ to $2 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=0$ to -5.5 V , Load VSWR $=5: 1$, all phases $)$	-		All non-harmonically related outputs more than 60 dB below desired signal		

3. T_{s} is the temperature measured at the soldering point of the downset paddle on the bottom of the IC.

MSOP-8EP (Downset Lead)

Electronics

Typical Characteristics (Measured data from process nominal devices)

Output Power, Drain Current and Efficiency vs. Input Power

Output Power, Drain Current and Efficiency vs. Supply Voltage

Output Power, Input Return Loss and Efficiency vs. Frequency

Output Power, and Drain Current vs. Input Power for Low Current "Bypass" Mode (VDD1,2 $=3.3$ V, $V_{D D 3}=0.0 \mathrm{~V}$)

Output Power, Drain Current and Efficiency vs. VDD1 for Power Control

Output Power and Drain Current vs. Temperature at $V_{D D}=+3.0 \mathrm{~V}$

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Typical Characteristics (Cont'd) (Measured data from process nominal devices)

Output Power and Drain Current vs. Temperature at $V_{D D}=+3.2 \mathrm{~V}$

Harmonics

Output Power and Drain Current vs. Temperature at $V_{D D}=+3.6 \mathrm{~V}$

Maximum Operating Temperature (Ts) to Maintain $<150^{\circ} \mathrm{C}$ Junction Temperature.

Electronics

Mechanical Data

Figure 11 Component layout and printed circuit drawing for evaluation board (60 mil GETEK board).

Application Information

Figure 12 Evaluation Board Schematic

List of Components

Discrete Components	Transmission Line Lengths*
C1 - C4 = 100 pF multilayer ceramic chip capacitor (Dielectric Labs C11AH101K5TXL)	$\begin{aligned} & \text { T1 }=0.15^{\prime \prime} \\ & \text { T2 }=0.21^{\prime \prime} \end{aligned}$
$\mathrm{C} 5=2.0 \mathrm{pF}$ multilayer ceramic chip capacitor (Dielectric Labs C11AH2R0BTXL)	T3 $=0.11^{\prime \prime}$ (Not very critical)
C6 = 1.2 pF multilayer ceramic chip capacitor (Dielectric Labs C11AH1R2B5TXL)	T5 = 0.13"
R1 $=300 \Omega$ chip resistor (P300ECT-ND)	T7 $=0.13$ " (Not very critical)
L1 = 1.8 nH chip inductor (Toko TKS235CT-ND)	T1, T2, T3, T5, T6 are 0.077" wide
$\mathrm{L} 2=27 \mathrm{nH}$ chip inductor (Coilcraft 1008CS-270XKBB)	T4, T7, and T8 are 0.026 " wide

*The board material is 0.060 " FR-4 (distance is between RF and GND) with a dielectric constant of about 4.3 (standard FR-4)

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

RF Power Amplifier IC

Designing with the MA02303GJ

The MA02303GJ is built using a near-enhancement mode FET that operates from a single supply voltage. A negative voltage is not required because the FET is designed to operate with a +0V DC gate bias.

There is no impedance matching or RF choking on this IC - these functions are supplied externally. This approach offers the highest level of performance, the lowest bill of materials cost, and far fewer components than a discrete design.

To duplicate MA02303GJ data sheet performance, your circuit board must recreate the same impedances developed on this evaluation board. The table below has one-port s-parameter measurements looking into the traces on the evaluation board. S-parameters of the MA02303GJ are not supplied because the device is designed to operate under large-signal conditions.

Frequency	VDD1 Pin 1		$\mathrm{RF}_{\mathbf{I N}} / \mathbf{V}_{\mathrm{GG} 1}$ Pin 2		$\mathbf{V G G 2}^{\text {Pin }} 4$		RFout ${ }_{\text {V }} \mathrm{DD} 3$ Pin 7		$V_{\text {DD2 }}$ Pin 8	
GHz	Mag	Ang								
0.2	0.98890	168.89	0.98437	158.43	0.98990	157.75	0.96758	88.92	0.98740	170.03
0.3	0.88449	130.14	0.97810	148.00	0.98811	147.07	0.93440	52.01	0.87259	126.11
0.4	0.96296	162.21	0.96932	138.02	0.98733	136.83	0.89791	28.02	0.95647	168.46
0.5	0.98166	159.36	0.96033	128.52	0.98729	126.92	0.85525	8.85	0.97951	165.71
0.6	0.98669	150.11	0.95221	119.37	0.98779	117.53	0.80306	-8.42	0.98325	157.06
0.7	0.98659	142.94	0.94257	110.68	0.98796	108.67	0.75165	-23.19	0.98331	150.64
0.8	0.98701	136.46	0.93372	102.50	0.98912	100.34	0.70235	-36.51	0.98362	144.92
0.9	0.98696	130.40	0.92399	94.78	0.98928	92.48	0.65785	-49.03	0.98291	139.57
1.0	0.98757	124.64	0.91521	87.48	0.99004	85.10	0.61674	-61.22	0.98248	134.49
1.1	0.98793	119.13	0.90655	80.60	0.99099	78.16	0.58189	-73.60	0.98325	129.55
1.2	0.98766	113.79	0.89741	74.13	0.99165	71.67	0.55207	-86.36	0.98254	124.75
1.3	0.98685	108.52	0.88850	68.01	0.99162	65.55	0.52778	-99.76	0.98097	119.95
1.4	0.98253	103.08	0.87922	62.20	0.99228	59.78	0.51054	-113.87	0.97567	114.77
1.5	0.91016	98.26	0.87041	56.61	0.99283	54.27	0.50134	-128.62	0.88506	109.11
1.6	0.97895	96.95	0.85901	51.24	0.99372	49.02	0.50184	-143.72	0.96660	110.93
1.7	0.98693	91.94	0.84867	46.25	0.99362	44.08	0.51099	-159.03	0.97912	105.76
1.8	0.98885	87.51	0.83780	41.39	0.99411	39.33	0.52890	-174.06	0.98174	101.51
1.9	0.98968	83.39	0.82602	36.67	0.99457	34.73	0.55378	171.57	0.98247	97.56
2.0	0.99001	79.46	0.81268	32.09	0.99405	30.31	0.58373	158.06	0.98252	93.75
2.1	0.98939	75.68	0.79856	27.65	0.99409	26.02	0.61689	145.85	0.96646	89.86
2.2	0.99079	72.12	0.78264	23.35	0.99430	21.85	0.65283	133.76	0.98349	87.18
2.3	0.99100	68.61	0.76563	19.11	0.99427	17.75	0.68573	123.12	0.98395	83.71
2.4	0.99134	65.25	0.74652	14.96	0.99425	13.76	0.71788	113.31	0.98474	80.41
2.5	0.99146	61.98	0.72506	10.91	0.99399	9.82	0.74798	104.32	0.98447	77.23
2.6	0.99178	58.73	0.70186	6.91	0.99400	5.85	0.77528	95.95	0.98507	74.04
2.7	0.99134	55.49	0.67587	2.97	0.99331	1.90	0.79976	88.27	0.98381	70.83
2.8	0.98781	52.20	0.64683	-0.91	0.99282	-2.00	0.82079	81.13	0.98006	67.52
2.9	0.96980	48.90	0.61470	-4.81	0.99214	-5.98	0.83832	74.49	0.96403	63.91
3.0	0.95172	48.55	0.57400	-8.86	0.99108	-9.98	0.85400	68.30	0.90400	62.55
3.1	0.98242	46.16	0.52740	-11.19	0.98954	-13.99	0.86663	62.57	0.95087	63.65
3.2	0.99063	43.08	0.48956	-13.34	0.98827	-18.12	0.87801	57.07	0.97696	60.24
3.3	0.99392	40.27	0.44620	-15.29	0.98684	-22.42	0.88698	51.92	0.98397	57.19
3.4	0.99353	37.51	0.40182	-16.23	0.98579	-26.81	0.89353	46.93	0.98539	54.35
3.5	0.99183	34.87	0.35797	-15.65	0.98338	-31.29	0.89823	42.18	0.98374	51.69
3.6	0.98528	32.36	0.31683	-13.12	0.98114	-36.02	0.90042	37.52	0.97595	49.24

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

Electronics
RF Power Amplifier IC

Designing with the MA02303GJ (Cont'd)

Frequency GHz	$\mathrm{V}_{\mathrm{DD} 1}$ Pin 1		$\mathrm{RF}_{\text {IN }} / \mathbf{V}_{\text {GG1 }}$ Pin 2		$\mathbf{V}_{\text {GG2 }}$ Pin 4		$\mathrm{RF}_{\text {OUT }} / \mathrm{V}_{\mathrm{DD} 3}$ Pin 7		$\mathrm{V}_{\mathrm{DD} 2}$ Pin 8	
	Mag	Ang								
3.7	0.98115	30.74	0.28368	-7.89	0.97774	-40.95	0.89832	32.95	0.97468	47.68
3.8	0.99055	28.59	0.26456	-0.17	0.97527	-46.15	0.88711	28.34	0.98255	45.41
3.9	0.99468	26.15	0.26206	8.43	0.97149	-51.66	0.85217	23.98	0.98187	42.91
4.0	0.99541	23.85	0.27526	16.18	0.96801	-57.48	0.78439	25.69	0.97076	41.20
4.1	0.99675	21.53	0.30017	21.62	0.96214	-63.64	0.91321	26.53	0.98240	39.66
4.2	0.99695	19.34	0.33169	24.71	0.95817	-70.37	0.95402	19.53	0.98870	37.44
4.3	0.99709	17.08	0.36614	25.86	0.95218	-77.52	0.95927	14.12	0.99033	35.21
4.4	0.99625	14.89	0.40041	25.61	0.94464	-85.24	0.95907	9.50	0.99064	33.12
4.5	0.99600	12.71	0.43430	24.41	0.93766	-93.67	0.95776	5.12	0.99008	31.05
4.6	0.99528	10.53	0.46785	22.33	0.92733	-102.87	0.95648	0.78	0.98931	29.00
4.7	0.99356	8.29	0.49729	18.61	0.90989	-112.87	0.95538	-3.70	0.98729	26.91
4.8	0.98985	6.02	0.50830	15.70	0.89316	-122.91	0.95299	-8.40	0.98183	24.79
4.9	0.98183	3.77	0.53008	12.03	0.87835	-135.47	0.94875	-13.35	0.96994	22.79
5.0	0.96606	1.91	0.51899	5.22	0.76901	-147.15	0.94290	-18.71	0.94954	21.59
5.1	0.95907	1.19	0.48184	8.12	0.80492	-149.68	0.93754	-24.50	0.95096	21.58
5.2	0.97380	-0.08	0.51026	7.72	0.86212	-162.69	0.93242	-31.40	0.96888	20.35
5.3	0.98447	-2.18	0.52064	4.75	0.87712	-176.53	0.92307	-39.86	0.97525	18.47
5.4	0.98993	-4.47	0.51978	2.19	0.88096	170.41	0.90396	-50.55	0.98503	17.01
5.5	0.99206	-6.71	0.51313	-0.14	0.88478	157.90	0.86790	-64.94	0.99094	14.98
5.6	0.99234	-8.95	0.50465	-2.02	0.89099	145.89	0.79942	-85.01	0.99192	13.15
5.7	0.99149	-11.15	0.49217	-3.82	0.89655	134.39	0.69417	-115.75	0.99221	11.35
5.8	0.98990	-13.42	0.47394	-5.03	0.90165	123.67	0.55561	-163.96	0.99216	9.58
5.9	0.98628	-15.52	0.45693	-5.12	0.90854	113.69	0.51158	134.06	0.99070	7.95
6.0	0.98532	-17.49	0.44346	-4.72	0.91522	104.42	0.59033	85.74	0.98983	6.41

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Visit www.macom.com for additional data sheets and product information.

