

Complete Dual-Band Quadrature Transmitters

Abstract

General Description The MAX2360 dual-band, triple-mode complete transmitter for cellular phones represents the most integrated and architecturally advanced solution to date for this application. The device takes a differential I/Q baseband input and mixes it up to IF through a quadrature modulator and IF variable-gain amplifier (VGA). The signal is then routed to an external bandpass filter and upconverted to RF through an SSB mixer and RF VGA. The signal is further amplified with an on-board PA driver. Dual IF synthesizers, dual RF synthesizers, a local oscillator (LO) buffer, and a 3 -wire programmable bus complete the basic functional blocks of this IC. The MAX2362 supports singleband, single-mode (PCS) operation. The MAX2364 supports single-band cellular dual-mode operation. The MAX2360 enables architectural flexibility because its two IF voltage-controlled oscillators (VCOs), two IF ports, two RF LO input ports, and three PA driver output ports allow the use of a single receive IF frequency and split-band PCS filters for optimum out-of-band noise performance. The PA drivers allow up to three RF SAW filters to be eliminated. Select a mode of operation by loading data on the SPITM $/$ QSPI ${ }^{\text {TM }} /$ MICROWIRE ${ }^{\text {TM }}$-compatible 3 -wire serial bus. Charge-pump current, sideband rejection, IF/RF gain balancing, standby, and shutdown are also controlled with the serial interface. The MAX2360/MAX2362/MAX2364 come in a 48 -pin TQFP-EP package and are specified for the extended $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$ temperature range.

Applications

Triple-Mode, Dual-Mode, or Single-Mode Mobile Phones
Satellite Phones
Wireless Data Links (WAN/LAN)
Wireless Local Area Networks (LANs)
High-Speed Data Modems
High-Speed Digital Cordless Phones
Wireless Local Loop (WLL)

Pin Configurations appear at end of data sheet.

Selector Guide appears at end of data sheet.

SPI and QSPI are trademarks of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corp.

Features

- Dual-Band, Triple-Mode Operation
- +7dBm Output Power with -54dBc ACPR
- 100dB Power Control Range
- Supply Current Drops as Output Power Is Reduced
- Dual Synthesizer for IF and RF LO
- Dual On-Chip IF VCO
- QSPI/SPI/MICROWIRE-Compatible 3-Wire Bus
- Digitally Controlled Operational Modes
- +2.7 V to +5.5 V Operation
- Single Sideband Upconverter Eliminates SAW Filters

Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE
MAX2360ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP-EP*
MAX2362ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP-EP*
MAX2364ECM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	48 TQFP-EP*

*Exposed paddle

Functional Diagram

Complete Dual-Band Quadrature Transmitters

ABSOLUTE MAXIMUM RATINGS

Vcc to GND. \qquad .-0.3 V to +3.6 V
RFL, RFH0, RFH1. \qquad $+5.5 \mathrm{~V}$
DI, CLK, $\overline{C S}, ~ V G C, \overline{S H D N}, \overline{T X G A T E}$,
IDLE, LOCK
-0.3 V to $\left(\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}\right)$
AC Input Pins (IFINL, IFINH, Q, I, TANKL, TANKH,
REF, RFPLL, LOL, LOH). \qquad .1.0V peak
Digital Input Current (SHDN, TXGATE, $\overline{\mathrm{IDLE}}$, CLK, DI, $\overline{\mathrm{CS}}$) .. $\pm 10 \mathrm{~mA}$
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

(MAX2360/2/4 test fixture: $\mathrm{V}_{C C}=\mathrm{V}_{\mathrm{BATT}}=2.75 \mathrm{~V}, \overline{\mathrm{SHDN}}=\overline{\mathrm{IDLE}}=\overline{\mathrm{TXGATE}}=2.0 \mathrm{~V}, \mathrm{VGC}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{BIAS}}=16 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, and operating modes are defined in Table 6.)

PARAMETER	CONDITIONS			MIN	TYP	MAX	UNITS
Operating Supply Voltage				2.7		3.0	V
Operating Supply Current	(Note 1)	PCS mode	VGC $=0.5 \mathrm{~V}$		92	118	mA
			$\mathrm{VGC}=2.0 \mathrm{~V}$		97	123	
			$\mathrm{VGC}=2.5 \mathrm{~V}$		132	161	
		Cellular digital mode	VGC $=0.5 \mathrm{~V}$		91	110	
			$\mathrm{VGC}=2.0 \mathrm{~V}$		95	122	
			$\mathrm{VGC}=2.5 \mathrm{~V}$		132	164	
		FM mode	$\mathrm{VGC}=0.5 \mathrm{~V}$		85	110	
			VGC $=2.0 \mathrm{~V}$		89	114	
			VGC $=2.5 \mathrm{~V}$		114	142	
		Addition for IFLO buffer			6.5	9.5	
	$\overline{\mathrm{IDLE}}=0.6 \mathrm{~V}$, cell idle				15	20	
	$\begin{aligned} & \overline{\overline{\text { STBY }}=0.6 \mathrm{~V},} \\ & \overline{\text { TXGATE }}=0.6 \mathrm{~V} \end{aligned}$				26	34	
		(RFPL			11		
	$\overline{\text { SHDN }}=0.6 \mathrm{~V}$, sleep mode				0.5	20	$\mu \mathrm{A}$
Logic High	(Note 6)			2.0			V
Logic Low	(Note 6)					0.6	V
Logic Input Current	(Note 6)			-5		+5	$\mu \mathrm{A}$
VGC Input Current	(Note 6)			-10		+10	$\mu \mathrm{A}$
VGC Input Resistance During Shutdown	$\overline{\text { SHDN }}=0.6 \mathrm{~V}$ (Note 6)			225	280		$\mathrm{k} \Omega$
Lock Indicator High	$50 \mathrm{k} \Omega$ pull-up load (Note 6)			VCC - 0.			V
Lock Indicator Low	$50 \mathrm{k} \Omega$ pull-up load (Note 6)					0.4	V

Complete Dual-Band Quadrature Transmitters

ELECTRICAL CHARACTERISTICS

(MAX2360/62/64 evaluation kit, 50Ω system, operating modes as defined in Table 6, input voltage at I and $\mathrm{Q}=200 \mathrm{mV}$ RMS differential, common mode $=\mathrm{V}_{\mathrm{CC}} / 2,300 \mathrm{kHz}$ quadrature CW tones, RF and IF synthesizers locked with passive lead-lag second-order loop filter, REF $=200 \mathrm{mVp}-\mathrm{p}$ at $19.68 \mathrm{MHz}, \mathrm{V} C \mathrm{C}=\overline{\mathrm{SHDN}}=\overline{\mathrm{IDLE}}=\overline{\mathrm{CS}}=\overline{\mathrm{TXGATE}}=2.75 \mathrm{~V}$, VBAT $=2.75 \mathrm{~V}$, IF output load $=400 \Omega$, LOH, LOL input power $=-7 \mathrm{dBm}, \mathrm{fLOL}=966 \mathrm{MHz}, \mathrm{fLOH}=1750 \mathrm{MHz}, \mathrm{IFINH}=125 \mathrm{mV}$ RMS at 130 MHz , IS-95 CDMA modulation $\mathrm{f}_{\text {RFHO }}=\mathrm{f}_{\mathrm{RFH}}=$ $1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{RFL}}=836 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Complete Dual-Band Quadrature Transmitters

ELECTRICAL CHARACTERISTICS (continued)

(MAX2360/62/64 evaluation kit, 50Ω system, operating modes as defined in Table 6, input voltage at I and $\mathrm{Q}=200 \mathrm{~m} V_{\text {RMS }}$ differential, common mode $=\mathrm{V}_{\mathrm{CC}} / 2,300 \mathrm{kHz}$ quadrature CW tones, RF and IF synthesizers locked with passive lead-lag second-order loop filter, REF $=200 \mathrm{mVp}-\mathrm{p}$ at $19.68 \mathrm{MHz}, \mathrm{VCC}=\overline{\mathrm{SHDN}}=\overline{\mathrm{IDLE}}=\overline{\mathrm{CS}}=\overline{\mathrm{TXGATE}}=2.75 \mathrm{~V}, \mathrm{~V}_{\text {BAT }}=2.75 \mathrm{~V}$, IF output load $=400 \Omega, \mathrm{LOH}, \mathrm{LOL}$ input power $=-7 \mathrm{dBm}, \mathrm{fLOL}=966 \mathrm{MHz}, \mathrm{fLOH}=1750 \mathrm{MHz}, \mathrm{IFINH}=125 \mathrm{mV}$ RMS at 130 MHz , IS-95 CDMA modulation $\mathrm{f}_{\mathrm{RFH}}=\mathrm{f}_{\mathrm{RFH}} 1=$ $1880 \mathrm{MHz}, \mathrm{f}_{\mathrm{RFL}}=836 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
IF_PLL					
Reference Frequency		5		30	MHz
Frequency Reference Signal Level		0.1		0.6	Vp-p
IF Main Divide Ratio		256		16384	
IF Reference Divider Ratio		2		2048	
VCO Operating Range	$\mathrm{VCO}=$ low	240-470			MHz
	$\mathrm{VCO}=$ high	240-600			
IF LO Output Power	BUF_EN = 1	-6			dBm
Charge-Pump Source/Sink Current	ICP = 00 (Note 6)	115	175	230	$\mu \mathrm{A}$
	ICP = 01 (Note 6)	145	235	315	
	ICP $=10$ (Note 6)	235	350	470	
	ICP = 11 (Note 6)	300	465	625	
Turbolock Boost Current	(Notes 5, 6)	265	450	615	$\mu \mathrm{A}$
Charge-Pump Source/Sink Matching	Locked, all values of ICP, over specified compliance range (Note 6)		5		\%
Charge-Pump High-Z Leakage	Over specified compliance range			10	nA
RF_PLL					
RF Main Divide Ratio		4096	262144		
RF Reference Divide Ratio		2		8192	
Maximum Phase-Detector Comparison Frequency		10			MHz
Charge-Pump Source/Sink Current	RCP = 00 (Note 6)	100	165	225	$\mu \mathrm{A}$
	RCP = 01 (Note 6)	135	230	310	
	RCP = 10 (Note 6)	210	340	460	
	RCP = 11 (Note 6)	270	450	630	
Turbolock Boost Current	(Notes 5, 6)	245	435	630	$\mu \mathrm{A}$
Charge-Pump Source/Sink Matching	Locked, all values of RCP, over specified compliance range (Note 6)	5			\%
Charge-Pump High-Z Leakage	Over specified compliance range			10	nA
RFPLL Input Sensitivity		160			mVp-p

Note 1: See Table 6 for register settings.
Note 2: ACPR is met over the specified $V_{C M}$ range.
Note 3: $V_{C M}$ must be supplied by the I/Q baseband source with $\pm 6 \mu \mathrm{~A}$ capability.
Note 4: Guaranteed by design and characterization.
Note 5: When enabled, turbolock is active during acquisition and injects boost current in addition to the normal charge-pump current.
Note 6: $>25^{\circ} \mathrm{C}$ guaranteed by production test, $<25^{\circ} \mathrm{C}$ guaranteed by design and characterization.

Complete Dual-Band Quadrature Transmitters

Typical Operating Characteristics

(MAX2360EVKIT, $\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

OUTPUT POWER, ACPR, Icc TOTAL vs. VGC

IF OUTPUT POWER vs. VGC

OUTPUT POWER, ACPR, Icc vs. VGC

IF OUTPUT POWER vs. VGC AND IF DAC SETTING

SIDEBAND SUPPRESSION AND LO FEEDTHROUGH (IFOUTH)

Complete Dual-Band Quadrature Transmitters

(MAX2360EVKIT, $\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

 vS. FREQUENCY OFFSET (130.38MHz)

RFHO OUTPUT SPECTRUM

IFOUTH DIFFERENTIAL PORT OUTPUT IMPEDANCE

PHASE NOISE HIGH-BAND OSCILLATOR vs. FREQUENCY OFFSET (165MHz)

RFHO CASCADE ACPR

IFINH DIFFERENTIAL PORT INPUT IMPEDANCE

CASCADE ACPR vs. Pout AND Vbat

Complete Dual-Band Quadrature Transmitters

Typical Operating Characteristics (continued)
(MAX2360EVKIT, $\mathrm{V}_{\mathrm{CC}}=+2.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LOL PORT S11

Icc vs. RFH1 OUTPUT POWER (1880MHz)

LOH PORT S11

Complete Dual-Band
 Quadrature Transmitters

| PIN | | NAME | FUNCTION |
| :---: | :---: | :---: | :---: | :--- | :--- |

Complete Dual－Band Quadrature Transmitters

Pin Description（continued）

| PIN | | NAME | FUNCTION |
| :---: | :---: | :---: | :---: | :--- |

Complete Dual-Band Quadrature Transmitters

Pin Description (continued)

| PIN | | NAME | FUNCTION |
| :---: | :---: | :---: | :---: | :--- | :--- |

Complete Dual-Band Quadrature Transmitters

Detailed Description

The MAX2360 complete quadrature transmitter accepts differential I/Q baseband inputs with external commonmode bias. A modulator upconverts this to IF frequency in the 120 MHz to 300 MHz range. A gain control voltage pin (VGC) controls the gain of both the IF and RF VGAs simultaneously to achieve best noise and linearity performance. The IF signal is brought off-chip for filtering, then fed to a single sideband upconverter followed by the RF VGA and PA driver. The RF upconverter requires an external VCO for operation. The IF PLL, RF PLL, and operating mode can be programmed by an SPI/QSPI/ MICROWIRE-compatible 3-wire interface.
The following sections describe each block in the MAX2360 Functional Diagram.

I/Q Modulator
Differential in-phase (I) and quadrature-phase (Q) input pins are designed to be DC-coupled and biased with the baseband output from a digital-to-analog converter (DAC). I and Q inputs need a DC bias of $V_{C C} / 2$ and a current-drive capability of $6 \mu \mathrm{~A}$. Common-mode voltage will work within $\mathrm{a}+1.35 \mathrm{~V}$ to (VCC -1.25 V) range. Typically, I and Q will be driven differentially with a 200 mV RMS baseband signal. Optionally, I and Q may be programmed for 100 mV RMS operation with the IQ_LEVEL bit in the configuration register. The IF VCO output is fed into a divide-by-two/quadrature generator block to derive quadrature components to drive the IQ modulator. The output of the modulator is fed into the VGA.

IF VCOs

There are two VCOs to support high IF and low IF applications. The VCOs oscillate at twice the desired IF frequency. Oscillation frequency is determined by external tank components (see Applications Information). Typical phase-noise performance for the tank is as shown in Table 1. The high-band and low-band VCOs can be selected independently of the IF port being used.

Table 1. Typical VCO Phase Noise ($\mathrm{IF}=130.38 \mathrm{MHz}$)

OFFSET (kHz)	PHASE NOISE (dBc)
1	-80
12.5	-105
30	-111
120	-121
900	-128

IFLO Output Buffer

IFLO provides a buffered LO output when BUF_EN is 1. The IFLO output frequency is equal to the VCO frequency when BUF_DIV is 0, and half the VCO frequency when BUF_DIV is 1. The output power is -6 dBm . This output is intended for applications where the receive IF is the same frequency as the transmit IF.

IF/RF PLL
The IF/RF PLL uses a charge-pump output to drive a loop filter. The loop filter will typically be a passive sec-ond-order lead lag filter. Outside the filter's bandwidth, phase noise will be determined by the tank components. The two components that contribute most significantly to phase noise are the inductor and varactor. Use high-Q inductors and varactors to maximize equivalent parallel resistance. The IF_TURBO_CHARGE and the RF_TURBO_CHARGE bits in the CONFIG register can be set to 1 to enable turbo mode. Turbo mode provides maximum charge-pump current during frequency acquisition. Turbo mode is disabled after the second transition from phase lead to phase lag or from phase lag to phase lead. Turbo mode is also disabled after frequency acquisition is achieved. When turbo mode is disabled, charge-pump current will return to the programmed levels as set by ICP and RCP bits in the CONFIG register (Table 4).

IF VGA
The IF VGA allows varying an IF output level that is controlled by the VGC. The voltage range on VGC of 0.5 V to 2.6 V . provide a gain-control range of 85 dB . There are two differential IF output ports from the VGA. IFOUTL+/IFOUTL- are optimized for low IF operation (120MHz to 235 MHz) for IFOUTH+/IFOUTH- support high IF operation (120MHz to 300 MHz). IFOUTL ports support direct VCO FM modulation. The differential IF output port has an output impedance of 600Ω when pulled up to VCc through a choke.

Single Sideband Mixer

The RF transmit mixer uses a single sideband architecture to eliminate an off-chip RF filter. The single sideband mixer has IF input stages that correspond to IF output ports of the VGA. The mixer is followed by the RF VGA. The RF VGA is controlled by the same VGC pin as the IF VGA to provide optimum linearity and noise performance. The total power control range is $>100 \mathrm{~dB}$.

PA Driver

The MAX2360 includes three power-amplifier (PA) drivers. Each is optimized for the desired operating frequency. RFL is optimized for cellular-band operation.

Complete Dual-Band Quadrature Transmitters

RFH0 and RFH1 are optimized for split-band PCS operation. The PA drivers have open-collector outputs and require pull-up inductors. The pull-up inductors can act as the shunt element in a shunt series match.

Programmable Registers

The MAX2360/MAX2362/MAX2364 include seven programmable registers consisting of four divide registers, a configuration register, an operational control register, and a test register. Each register consists of 24 bits. The 4 least significant bits (LSBs) are the register's address. The 20 most significant bits (MSBs) are used for register data. All registers contain some "don't care" bits. These can be either a " 0 " or a " 1 " and will not affect operation (Figure 1). Data is shifted in MSB first, followed by the 4-bit address. When $\overline{\mathrm{CS}}$ is low, the clock is active and data is shifted with the rising edge of the clock. When $\overline{\mathrm{CS}}$ transitions to high, the shift register is latched into the register selected by the contents of the address bits. Power-up defaults for the seven registers are shown in Table 2. The dividers and control registers are programmed from the SPI/ QSPI/MICROWIRE-compatible serial port.
The RFM register sets the main frequency divide ratio for the RF PLL. The RFR register sets the reference frequency divide ratio. The RF VCO frequency can be determined by the following:

$$
\text { RF VCO frequency }=\text { fREF } \cdot(\text { RFM / RFR })
$$

IFM and IFR registers are similar:

$$
\text { IF VCO frequency }=\text { fREF } \cdot(\text { IFM / IFR })
$$

where fREF is the external reference frequency for the MAX2360/MAX2362/MAX2364.
The operational control register (OPCTRL) controls the state of the MAX2360/MAX2362/MAX2364. See Table 3 for the function of each bit.

The configuration register (CONFIG) sets the configuration for the RF/IF PLL and the baseband I/Q input levels. See Table 4 for a description of each bit.
The test register is not needed for normal use.

Power Management

Bias control is distributed among several functional sections and can be controlled to accommodate many different power-down modes as shown in Table 5.
The shutdown control bit is of particular interest since it differs from the $\overline{\text { SHDN }}$ pin. When the shutdown control bit is active $\left(S H D N _B I T=0\right)$, the serial interface is left active so that the part can be turned on with the serial bus while all other functions remain shut off. In contrast, when the SHDN pin is low it shuts down everything. In either case, PLL programming and register information is lost. To retain the register information, use standby mode $(\overline{\mathrm{STBY}}=0)$.

Signal Flow Control
Table 6 shows an example of key registers for triplemode operation, assuming half-band PCS and IF frequencies of $130 \mathrm{MHz} / 165 \mathrm{MHz}$.

Applications Information

The MAX2360 is designed for use in dual-band, triplemode systems. It is recommended for triple-mode handsets (Figure 2). The MAX2362 is designed for use in CDMA PCS handset or WLL single-mode 2.4GHz ISM systems (Figure 3). The MAX2364 is designed for use in dual-mode cellular systems (Figure 4).

3-Wire Interface
Figure 5 shows the 3 -wire interface timing diagram. The 3 -wire bus is SPI/QSPI/MICROWIRE compatible.

Table 2. Register Power-Up Default States

REGISTER	DEFAULT	ADDRESS	
RFM	172087 dec	0000_{b}	RF M divider count
RFR	1968 dec	0001_{b}	RF R divider count
IFM	6519 dec	0010_{b}	IF M divider count
IFR	0492 dec	0011_{b}	IF R divider count
OPCTRL	892F hex	$010 \mathrm{~b}_{\mathrm{b}}$	Operational control settings
CONFIG	D03F hex	0101_{b}	Configuration and setup control
TEST	0000 hex	0111_{b}	Test-mode control

Complete Dual－Band Quadrature Transmitters

Figure 1．Register Configuration

Electromagnetic

 Compliance ConsiderationsTwo major concepts should be employed to produce a noise－free and EMC－compliant transmitter：minimize cir－ cular current－loop area to reduce H －field radiation and minimize voltage drops to reduce E－field radiation．To minimize circular current－loop area，bypass as close to the part as possible and use the distributed capaci－ tance of a ground plane．To minimize voltage drops， make VCC traces short and wide，and make RF traces short．
The＂don＇t care＂bits in the registers should be＂ 0 ＂in order to minimize electromagnetic radiation due to unnecessary bit banging．RC filtering can also be used to slow the clock edges on the 3 －wire interface，reduc－ ing high－frequency spectral content．RC filtering also
provides for transient protection against IEC802 testing by shunting high frequencies to ground，while the series resistance attenuates the transients for error－free operation．The same applies to the override pins （SHDN，TXGATE，IDLE）．
High－frequency bypass capacitors are required close to the pins with a dedicated via to ground．The 48－pin TQFP－EP package provides minimal inductance ground by using an exposed paddle under the part．Provide at least five low－inductance vias under the paddle to ground，to minimize ground inductance．Use a solid ground plane wherever possible．Any cutout in the ground plane may act as slot radiator and reduce its shield effectiveness．
Keep the RF LO traces as short as possible to reduce LO radiation and susceptibility to interference．

Complete Dual-Band Quadrature Transmitters

Table 3. Operation Control Register (OPCTRL)

BIT NAME	POWER-UP STATE	$\begin{gathered} \text { BIT } \\ \text { LOCATION } \\ (0=\text { LSB }) \end{gathered}$	FUNCTION
LO_SEL	1	15	1 selects LOL input port; 0 selects LOH port.
RCP_MAX	0	14	1 keeps RF turbo-mode current active even when frequency acquisition is achieved. This bit has no effect when RF_TURBO_CHARGE $=0$. This mode is used when high operating RF charge-pump current is needed.
ICP_MAX	0	13	1 keeps IF turbo-mode current active even when frequency acquisition is achieved. This bit has no effect when IF_TURBO_CHARGE $=0$. This mode is used when high operating IF charge-pump current is needed.
MODE	01	12, 11	Sets operating mode according to the following: $00=\mathrm{FM}$ mode 01 = Cellular digital mode, RFL is selected $10=$ PCSHIGH mode, RFH1 is selected 11 = PCSLOW mode, RFHO is selected
IF_BAND	0	10	1 selects IFINH and IFOUTH; 0 selects IFINL and IFOUTL. For FM mode (MODE = 00), set IF_BAND to 0 .
VCO	0	9	1 selects high-band IF VCO; 0 selects low-band IF VCO.
IFG	100	8, 7, 6	3-bit IF gain control. Alters IF gain by approximately 2 dB per LSB (0 to 14dB). Provides a means for adjusting balance between RF and IF gain for optimized linearity.
SIDE_BAND	1	5	When this register is 1 , the upper sideband is selected (LO below RF). When this register is 0 , the lower sideband is selected (LO above RF).
BUF_EN	0	4	0 turns IFLO buffer off; 1 turns IFLO buffer on.
MOD_TYPE	1	3	0 selects direct VCO modulation. (IF VCO is externally modulated and the I/Q modulator is bypassed); 1 selects quadrature modulation.
$\overline{\text { STBY }}$	1	2	0 shuts down everything except registers and serial interface.
$\overline{\text { TXSTBY }}$	1	1	0 shuts down modulator and upconverter, leaving PLLs locked and registers active. This is the programmable equivalent to the TXGATE pin.
SHDN_BIT	1	0	0 shuts down everything except serial interface, and also resets all registers to power-up state.

Complete Dual－Band Quadrature Transmitters

Table 4．Configuration Register（CONFIG）

BIT NAME	POWER－UP STATE	$\begin{gathered} \text { BIT } \\ \text { LOCATION } \\ (0=\text { LSB }) \end{gathered}$	FUNCTION
IF＿PLL＿SHDN	1	15	0 shuts down the IF PLL．This mode is used with an external IF VCO and IF PLL．
RF＿PLL＿ SHDN	1	14	0 shuts down the BF PLL．This mode is used with an external RF PLL．
RESERVED	0	13	Must be set to 0 for normal operation．
IQ＿LEVEL	1	12	1 selects 200 mV RMS input mode； 0 selects 100 mV RMS input mode．
BUF＿DIV	0	11	1 selects $\div 2$ on IFLO port； 0 bypasses the divider．
VCO＿BYPASS	0	10	1 bypasses IF VCO and enables a buffered input for external VCO use．
ICP	00	9， 8	A 2－bit register sets the IF charge－pump current as follows： $\begin{aligned} & 00=175 \mu \mathrm{~A} \\ & 01=235 \mu \mathrm{~A} \\ & 10=350 \mu \mathrm{~A} \\ & 11=465 \mu \mathrm{~A} \end{aligned}$
RCP	00	7， 6	A 2－bit register sets the RF charge－pump current as follows： $\begin{aligned} & 00=165 \mu \mathrm{~A} \\ & 01=230 \mu \mathrm{~A} \\ & 10=340 \mu \mathrm{~A} \\ & 11=450 \mu \mathrm{~A} \end{aligned}$
IF＿PD＿POL	1	5	IF phase－detector polarity； 1 selects positive polarity（increasing tuning voltage on the VCO produces increasing frequency）； 0 selects negative polarity （increasing tuning voltage on the VCO produces decreasing frequency）．
RF＿PD＿POL	1	4	RF phase－detector polarity； 1 selects positive polarity（increasing tuning voltage on the VCO produces increasing frequency）； 0 selects negative polarity （increasing voltage on the VCO produces decreasing frequency）．
${ }^{\text {IF＿TURBO＿}}$ CHARGE	1	3	1 activates turbocharge feature，providing an additional $450 \mu \mathrm{~A}$ of IF charge－ pump current during frequency acquisition．
$\begin{gathered} \text { RF_TURBO_ } \\ \text { CHARGE } \end{gathered}$	1	2	1 activates turbocharge feature，providing an additional $435 \mu \mathrm{~A}$ of IF charge－ pump current during frequency acquisition．
LD＿MODE	11	1， 0	Determines output mode for LOCK detector pin as follows： $00=$ test mode，LD＿MODE cannot be 00 for normal operation 01 ＝IF PLL lock detector 10 ＝RF PLL lock detector 11 ＝logical AND of IF PLL and RF PLL lock detectors

Complete Dual－Band
 Quadrature Transmitters

Table 5．Power－Down Modes

POWER－DOWN MODE	COMMENTS			$\stackrel{n}{\sim}$				$\begin{aligned} & \stackrel{u}{4} \\ & \stackrel{0}{0} \\ & \mathbf{O}^{\prime} \\ & \underline{\underline{u}} \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \text { O } \\ & \underline{u} \end{aligned}$			
$\overline{\text { SHDN }}$ Pin	Ultra－low shutdown current	X	X	X	X	X	X	X	X	X	X	X
$\overline{\text { IDLE Pin }}$	$\overline{\text { IDLE }}$ is low in RX mode	X	X					X	X	X	X	
TXGATE pin	For punctured TX mode	X	X									
RF PLL SHDN	For external RF PLL use				X	X						
IF PLL SHDN	For external IF PLL use									X	X	
TX STBY	TX is OFF，but IF and RF LOs stay locked	X	X									
REG STBY	Shuts down，but preserves registers	X	X		X			X	X	X		
REG SHDN	Serial bus is still active	X	X		X	X	X	X	X	X	X	X

$X=O f f$

Table 6．Register and Control Pin States for Key Operating Modes

		OPCTRL REGISTER								CONFIG REGISTER		CONTROL PINS		
MODE	DESCRIPTION	$\begin{aligned} & \vec{W} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { 山⿱丷⿱口儿口 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { 吕 } \\ & \text { 曾 } \end{aligned}$	O		$\frac{\grave{m}}{\text { 弟 }}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{m}} \\ & z_{1}^{\prime} \\ & \text { 모 } \end{aligned}$			$\begin{aligned} & \underline{\underline{u}} \end{aligned}$		$\begin{aligned} & \text { z } \\ & \text { 뭉 } \end{aligned}$
PCS High	PCS upper half－band，RFH1 selected	0	10	1	1	1	1	1	1	1	1	H	H	H
PCS Low	PCS lower half－band，RFH0 selected	0	11	1	1	1	1	1	1	1	1	H	H	H
Cellular Digital	RFL selected	1	01	0	0	1	1	1	1	1	1	H	H	H
FM	Direct VCO modulation，RFL selected	1	00	0	0	0	1	1	1	1	1	H	H	H
PCS Idle	Listen for pages RX ON，TX OFF	0	1X	X	X	X	1	X	1	X	1	L	H	H
Cellular Idle	Listen for pages RX ON，TX OFF	1	OX	X	X	X	1	X	1	X	1	L	H	H
PCS TXGATE	Gated transmission，PCS	0	1X	1	1	1	1	X	1	1	1	H	L	H
Cellular TXGATE	Gated transmission，cellular digital	1	01	0	0	1	1	X	1	1	1	H	L	H
Sleep	Everything off	X	XX	X	X	X	X	X	X	X	X	X	X	L

$X=$ Don＇t care

Complete Dual－Band Quadrature Transmitters

Figure 2．MAX2360 Typical Application Circuit

Complete Dual-Band Quadrature Transmitters

Figure 3. MAX2362 Typical Application Circuit

Complete Dual－Band Quadrature Transmitters

†9عてXVW／Z9عてXVW／09عてXVW

Figure 4．MAX2364 Typical Application Circuit

Complete Dual-Band Quadrature Transmitters

Figure 5. 3-Wire Interface Diagram

IF Tank Design

The low-band tank (TANKL+, TANKL-) and high-band tank (TANKH+, TANKH-) are fully differential. The external tank components are shown in Figure 6. The frequency of oscillation is determined by the following equation:

$$
\begin{aligned}
& f_{O S C}=\frac{1}{2 \pi \sqrt{\left(C_{I N T}+C_{C E N T}+C_{V A R}+C_{P}\right.}} \\
& C_{V A R}=\frac{C_{D} \times C_{C}}{2\left(C_{D}+C_{C}\right)}
\end{aligned}
$$

CINT $=$ Internal capacitance of TANK port
$C_{D}=$ Capacitance of varactor
CVAR = Equivalent variable tuning capacitance
CPAR = Parasitic capacitance due to PCB pads and traces
CCENT $=$ External capacitor for centering oscillation frequency
$\mathrm{C}_{\mathrm{C}}=$ External coupling capacitor to the varactor
Internal to the IC, the charge pump will have a leakage of less than 10 nA . This is equivalent to a $300 \mathrm{M} \Omega$ shunt resistor. The charge-pump output must see an extremely high DC resistance of greater than $300 \mathrm{M} \Omega$. This will minimize charge-pump spurs at the comparison frequency. Make sure there is no solder flux under the varactor or loop filter.

Layout Issues
The MAX2360/MAX2362/MAX2364 EV kit can be used as a starting point for layout. For best performance, take into consideration power-supply issues as well as the RF, LO, and IF layout.

Figure 6. Tank Port Oscillator

Power-Supply Layout

To minimize coupling between different sections of the IC, the ideal power-supply layout is a star configuration, which has a large decoupling capacitor at a central VCC node. The VCC traces branch out from this node, each going to a separate VCC node in the MAX2360/ MAX2362/MAX2364 circuit. At the end of each trace is a bypass capacitor with impedance to ground less than 1Ω at the frequency of interest. This arrangement provides local decoupling at each V_{CC} pin. Use at least one via per bypass capacitor for a low-inductance ground connection.

Matching Network Layout
The layout of a matching network can be very sensitive to parasitic circuit elements. To minimize parasitic inductance, keep all traces short and place components as close to the IC as possible. To minimize parasitic capacitance, a cutout in the ground plane (and

Complete Dual-Band Quadrature Transmitters

any other planes) below the matching network components can be used
On the high-impedance ports (e.g., IF inputs and outputs), keep traces short to minimize shunt capacitance.

Tank Layout
Keep the traces coming out of the tank short to reduce series inductance and shunt capacitance. Keep the inductor pads and coupling capacitor pads small to minimize stray shunt capacitance.

Selector Guide

PART	IF RANGE (MHz)	RF LO RANGE (MHz)	RF RANGE (MHz)
MAX2360	120 to 235	800 to 1150	800 to 1000
	120 to 300	1400 to 2300	1700 to 2000
MAX2362	120 to 300	1400 to 2300	1700 to 2000
MAX2364	120 to 235	800 to 1150	800 to 1000

Complete Dual-Band
 Quadrature Transmitters

Complete Dual－Band Quadrature Transmitters

\qquad

ゅ9عてXVW／Z9عてXVW／09عてXVW

Complete Dual－Band
 Quadrature Transmitters

Package Information（continued）

NDTES

1．ALL DIMENSIDNS AND TQLERANCING CDNFORM TD ANSI Y14．5－1982
2．DATUM PLANE－H－IS LOCATED AT MDLD PARTING LINE AND COINCIDENT WITH LEAD，WHERE LEAD EXITS PLASTIC BDDY AT BOTTIM DF PARTING MLDE
3．DIMENSIINS DI AND EI DI NDT INCLUDE MDLD PRDTRUSIDN．
ALLDWABLE MILD PROTRUSION IS 0.254 MM ON DI AND EI DIMENSIONS．
4．THE TIP DF PACKAGE IS SMALLER THAN THE BDTTOM DF PACKAGE BY 0.15 MILLIMETERS
5．DIMENSION b DIES NOT INCLUDE DAMBAR PROTRUSION．ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TITAL IN EXCESS DF THE b DIMENSIDN AT MAXIMUM MATERIAL CINDITION．
6．CINTROLLING DIMENSIONI MILLIMETER．
7．THIS OUTLINE CDNFDRMS TO JEDEC PUBLICATION 95 REGISTRATION MD－136，VARIATIONS AC AND AE．
8．LEADS SHALL BE CDPLANAR WITHIN ． 004 INCH．
9．EXPDSED DIE PAD SHALL BE COPLANAR WITH BOTTOM DF PACKAGE WITHIN 2 MILS（． 05 MM）．
10．DIMENSIONS X \＆Y APPLY TO EXPOSED PAD（EP）VERSIONS ZNLY．SEE INDIVIDUAL PRODUCT datasheet to determine if a product uses expased pad package．

$\begin{aligned} & \mathbf{S} \\ & \mathbf{Y} \\ & \text { M } \\ & \mathbf{B} \\ & \mathbf{L} \end{aligned}$	JEDEC VARIATIDNALL DIMENSIDNS IN MILLIMETERS					
	AC			AE		
	MIN．	NDM．	MAX．	MIN．	NDM．	MAX．
A	X	大号	1.20	Se	x	1.20
A_{1}	0.05	0.10	0.15	0.05	0.10	0.15
As	0.95	1.00	1.05	0.95	1.00	1.05
D	9.00 BSC．			9.00 BSC．		
D_{1}	7.00 BSC．			7.00 BSC．		
E	9.00 BSC．			9.00 BSC．		
E_{1}	7．00 BSC．			7．00 BSC．		
L	0.45	0.60	0.75	0.45	0.60	0.75
M	0.15	x	xe	0.14	Pe	x
N	32			48		
e	0.80 BSC．			0．50 BSC．		
b	0.30	0.37	0.45	0.17	0.22	0.27
bl	0.30	0.35	0.40	0.17	0.20	0.23
WX	3.20	3.50	3.80	3.70	4.00	4.30
w ${ }^{\text {Y }}$	3.20	3.50	3.80	3.70	4.00	4.30
						10)

[^0]\qquad

[^0]: Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product．No circuit patent licenses are implied．Maxim reserves the right to change the circuitry and specifications without notice at any time．

