0.8 Ω, Low-Voltage, 4-Channel Analog Multiplexer

General Description

The MAX4734 is a low on-resistance, low-voltage, 4channel CMOS analog multiplexer that operates from a single 1.6 V to 3.6 V supply. This device has fast switching speeds (ton $=25 \mathrm{~ns}$, toFF $=20 \mathrm{~ns}$ max), handles Rail-to-Rail ${ }^{\circledR}$ analog signals, and consumes less than $4 \mu \mathrm{~W}$ of quiescent power. The MAX4734 has break-before-make switching.

When powered from a 3V supply, the MAX4734 features low 0.8Ω (max) on-resistance (RON), with 0.2Ω (max) RON matching and 0.1Ω Ron flatness. The digital logic input is 1.8 V CMOS compatible when using a single 3V supply.
The MAX4734 is available in space-saving 12-pin QFN ($3 \mathrm{~mm} \times 3 \mathrm{~mm}$) and 10-pin μ MAX packages.

Applications

Power Routing
Battery-Powered Systems
Audio and Video Signal Routing
Low-Voltage Data-Acquisition Systems
Communications Circuits
PCMCIA Cards
Cellular Phones
Modems
Hard Drives

Features

- Low Ron
0.8Ω (max) (3V Supply)
2Ω (max) (1.8V Supply)
- 0.1Ω (max) RoN Flatness (3V Supply)
- 1.6V to 3.6V Single-Supply Operation
- Available in QFN (3mm x 3mm) Package
- High-Current Handling Capacity (150mA Continuous)
- 1.8V CMOS-Logic Compatible (3V Supply)
- Fast Switching: toN $=25 n s$, toFF $=20 n s$

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX4734EUB	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$10 \mu \mathrm{MAX}$
MAX4734EGC	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$12 \mathrm{QFN}(3 \mathrm{~mm} \times 3 \mathrm{~mm})$

Pin Configurations/Functional Diagrams/Truth Table

Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.

0.8 , Low-Voltage, 4-Channel Analog Multiplexer

ABSOLUTE MAXIMUM RATINGS

ND	
COM, NO_ (Note 1)	to ($\mathrm{V}++0.3 \mathrm{~V}$)
Continuous Current COM, NO_	$\ldots \pm 150 \mathrm{~mA}$
Continuous Current (all other pins)	.. $\pm 20 \mathrm{~mA}$
Peak Current COM, NO (pulsed at $1 \mathrm{~ms} \mathrm{10} \mathrm{\%} \mathrm{duty} \mathrm{cycle)}$.	.. $\pm 300 \mathrm{~mA}$

Continuous Power Dissipation ($\left.\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$	
12-Pin QFN (derate 14.7mW/ C above +70 ${ }^{\text {c }}$	1176mW
Operating Temperature Range $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Maximum Junction Temperature $+150^{\circ} \mathrm{C}$	
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering,	

Note 1: Signals on COM or NO_ exceeding V+ or GND are clamped by internal diodes. Limit forward current to maximum current rating

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS—Single 3V Supply

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}_{+}=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, VNO_			0		V+	V
On-Resistance (Note 4)	Ron	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V}, \\ & \mathrm{ICOM}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.6	0.8	Ω
			TMIN to TMAX			1	
On-Resistance Match Between Channels (Notes 4, 5)	$\Delta \mathrm{RON}$	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{COM}}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}}=1.5 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.1	0.2	Ω
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			0.3	
On-Resistance Flatness (Note 6)	RFLAT(ON)	$\begin{aligned} & \mathrm{V}+=2.7 \mathrm{~V} \\ & \mathrm{I}_{+} \mathrm{COM}=100 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {NO- }}=1 \mathrm{~V}, 1.5 \mathrm{~V}, 2 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.05	0.1	Ω
			TMIN to TMAX			0.2	
NO_ Off-Leakage Current (Note 7)	INO_(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO- }}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	± 0.002	+1	nA
			TMIN to TMAX	-5		+5	
COM Off-Leakage Current (Note 7)	ICOM(OFF)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=0.3 \mathrm{~V}, 3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO- }}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$	-1	± 0.002	+1	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-5		+5	
COM On-Leakage Current (Note 7)	ICOM(ON)	$\begin{aligned} & \mathrm{V}_{+}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{COM}}=3.3 \mathrm{~V}, 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {NO- }}=3.3 \mathrm{~V}, 0.3 \mathrm{~V} \text {, or } \\ & \text { floating } \end{aligned}$	$+25^{\circ} \mathrm{C}$	-2	± 0.002	+2	nA
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$	-10		+10	

0.8 Ω, Low-Voltage, 4-Channel Analog Multiplexer

ELECTRICAL CHARACTERISTICS—Single 3V Supply (continued)

$\left(\mathrm{V}+=2.7 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{V}_{+}=3.0 \mathrm{~V}$, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2, 3)

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{CL}_{\mathrm{L}}=35 \mathrm{pF}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		20	25	ns
			$\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$			30	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{CL}=35 \mathrm{pF}, \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		15	20	ns
			TMIN to TMAX			25	
Break-Before-Make (Note 8)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{CL}=35 \mathrm{pF}, \\ & \text { Figure } 2 \end{aligned}$	$+25^{\circ} \mathrm{C}$		5		ns
			TMIN to $\mathrm{T}_{\text {MAX }}$	1			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, \text { RGEN }=0, \\ & C_{L}=1.0 \mathrm{nF}, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		60		pC
NO_ Off-Capacitance	COFF	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		33		pF
COM Off-Capacitance	CCOM(OFF)	$\mathrm{f}=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		117		pF
COM On-Capacitance	CCOM(ON)	$f=1 \mathrm{MHz}$, Figure 4	$+25^{\circ} \mathrm{C}$		171		pF
-3dB On-Channel Bandwidth	BW	Signal $=0$, RIN $=$ ROUT $=$ $50 \Omega, C_{L}=5 \mathrm{pF}$, Figure 5			90		MHz
Off-Isolation (Note 9)	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{P-P}, R_{L}= \\ & 50 \Omega, C_{L}=5 p F, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-56		dB
Crosstalk (Note 10)	$V_{C T}$	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{P-P,}, R_{L}= \\ & 50 \Omega, C_{L}=5 p F, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-56		dB
Total Harmonic Distortion	THD	$\begin{aligned} & f=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{~V}_{\mathrm{COM}}= \\ & 2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}, \mathrm{R}_{\mathrm{L}}=32 \Omega} \end{aligned}$	$+25^{\circ} \mathrm{C}$		0.018		\%
LOGIC INPUT (A_, EN)							
Input Logic High	V_{IH}			1.4			V
Input Logic Low	VIL					0.5	V
Input Leakage Current	IIN	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \text { or } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{A}}=0 \\ & \text { or } 3.6 \mathrm{~V} \end{aligned}$		-1	0.005	+1	$\mu \mathrm{A}$
POWER SUPPLY							
Power-Supply Range	V+			1.6		3.6	V
Positive Supply Current	I+	$\begin{aligned} & V_{+}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EN},} \mathrm{~A}_{-}=0 \text { or } \\ & \mathrm{V}_{+} \text {, all channels on or off } \end{aligned}$			0.004	1	$\mu \mathrm{A}$

0.8 , Low-Voltage, 4-Channel
 Analog Multiplexer

ELECTRICAL CHARACTERISTICS—Single 1.8V Supply

$\left(\mathrm{V}+=1.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=1.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=0.4 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}\right.$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 2,3$)$

PARAMETER	SYMBOL	CONDITIONS	TA	MIN	TYP	MAX	UNITS
ANALOG SWITCH							
Analog Signal Range	$\mathrm{V}_{\mathrm{COM}}$, VNO_			0		V+	V
On-Resistance	Ron	$\begin{aligned} & \mathrm{ICOM}_{\mathrm{C}}=10 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{NO}-}=1 \mathrm{~V} \end{aligned}$	$+25^{\circ} \mathrm{C}$		1.5	2	Ω
			TMIN to TMAX			3	
SWITCH DYNAMIC CHARACTERISTICS							
Turn-On Time	ton	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \end{aligned}$ Figure 1	$+25^{\circ} \mathrm{C}$		25	30	ns
			TMIN to TMAX			35	
Turn-Off Time	toff	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \text {, } \\ & \text { Figure } 1 \end{aligned}$	$+25^{\circ} \mathrm{C}$		18	25	ns
			Tmin to Tmax			28	
Break-Before-Make (Note 8)	tBBM	$\begin{aligned} & \mathrm{V}_{\mathrm{NO}}=1 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=35 \mathrm{pF}, \end{aligned}$ Figure 2	$+25^{\circ} \mathrm{C}$		7		ns
			TMIN to TMAX	1			
Charge Injection	Q	$\begin{aligned} & V_{G E N}=0, R_{G E N}=0, \\ & C L=1 n F, \text { Figure } 3 \end{aligned}$	$+25^{\circ} \mathrm{C}$		35		pC
Off-Isolation (Note 9)	VISO	$\begin{aligned} & f=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{NO}} \\ & =1 \mathrm{VP}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-56		dB
Crosstalk (Note 10)	VCT	$\begin{aligned} & f=1 \mathrm{MHz}, V_{C O M}=1 V_{P-P}, \\ & R_{L}=50 \Omega, \\ & C_{L}=5 p F, \text { Figure } 5 \end{aligned}$	$+25^{\circ} \mathrm{C}$		-56		dB
LOGIC INPUT (A_, EN)							
Input Logic High	V_{IH}			1			V
Input Logic Low	$\mathrm{V}_{\text {IL }}$					0.4	V
Input Leakage Current	IIN	$\begin{aligned} & \mathrm{V}_{\mathrm{EN}}=0 \text { or } 3.6 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{A}_{-}}=0 \text { or } 3.6 \mathrm{~V} \end{aligned}$				1	$\mu \mathrm{A}$

Note 2: The algebraic convention, where the most negative value is a minimum and the most positive value is a maximum, is used in this data sheet.
Note 3: $-40^{\circ} \mathrm{C}$ specifications are guaranteed by design.
Note 4: RON and \triangle RON matching specifications for QFN packaged parts are guaranteed by design.
Note 5: $\Delta \mathrm{RON}=\operatorname{RON}(\mathrm{MAX})-\operatorname{RON}(\mathrm{MIN})$.
Note 6: Flatness is defined as the difference between the maximum and the minimum value of on-resistance as measured over the specified analog signal ranges.
Note 7: Leakage parameters are 100\% tested at hot temperature and guaranteed by correlation at room temperature
Note 8: Guaranteed by design.
Note 9: Off-Isolation = 20log ${ }_{10}\left(\mathrm{~V}_{\mathrm{COM}} / \mathrm{V}_{\text {NO_ }}\right), \mathrm{V}_{\mathrm{COM}}=$ output, $\mathrm{V}_{\mathrm{NO}}=$ input to off switch.
Note 10: Between two switches.

0.8 , Low-Voltage, 4-Channel Analog Multiplexer

Typical Operating Characteristics
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

0.8』, Low-Voltage, 4-Channel Analog Multiplexer

Typical Operating Characteristics (continued)

$\left(T_{A}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

PIN		NAME	
$\boldsymbol{\mu}$ MAX	QFN		
1	12	A0	Address 0 Input
2	1	NO1	Analog Switch 1-Normally Open Terminal
3	2	GND	Ground
4	3	NO3	Analog Switch 3-Normally Open Terminal
5	4	EN	Enable Logic Input
6	6	V+	Positive-Supply Voltage Input
7	7	NO4	Analog Switch 4-Normally Open Terminal
8	8	COM	Analog Switch Common Terminal
9	9	NO2	Analog Switch 2-Normally Open Terminal
10	10	A1	Address 1 Input
-	5,11	N.C.	No Connection

0.8 Ω, Low-Voltage, 4-Channel Analog Multiplexer

Detailed Description

The MAX4734 is a low 0.8Ω max (at $\mathrm{V}+=2.7 \mathrm{~V}$) onresistance, low-voltage, 4-channel CMOS analog multiplexer that operates from a 1.6 V to 3.6 V single supply. CMOS switch construction allows switching analog signals that range from GND to $\mathrm{V}+$.
When powered from a 2.7 V supply, the 0.8Ω max RON allows high continuous currents to be switched in a variety of applications.

Applications Information

Proper power-supply sequencing is recommended for all CMOS devices. Do not exceed the absolute maximum ratings, because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence $\mathrm{V}+$ on first, followed by $\mathrm{NO}_{\text {_ }}$ or COM .
Although it is not required, power-supply bypassing improves noise margin and prevents switching noise propagation from the $V+$ supply to other components. A $0.1 \mu \mathrm{~F}$ capacitor, connected from $\mathrm{V}+$ to GND, is adequate for most applications.

Logic Inputs

The MAX4734 logic inputs can be driven up to 3.6 V regardless of the supply voltage. For example, with a 1.8 V supply, A_{-}and EN may be driven low to GND and high to 3.6 V . Driving $A_{\text {_ }}$ and EN rail-to-rail minimizes power consumption.

Analog Signal Levels
Analog signals that range over the entire supply voltage ($\mathrm{V}+$ to GND) can be passed with very little change in onresistance (see Typical Operating Characteristics). The switches are bidirectional, so the NO_ and COM_ pins can be used as either inputs or outputs.

Layout

High-speed switches require proper layout and design procedures for optimum performance. Reduce stray inductance and capacitance by keeping traces short and wide. Ensure that bypass capacitors are as close to the device as possible. Use large ground planes where possible.

Test Circuits/Timing Diagrams

Figure 1. Switching Time

0.8』, Low-Voltage, 4-Channel Analog Multiplexer

Test Circuits/Timing Diagrams (continued)

Figure 2. Break-Before-Make Interval

$\Delta V_{\text {OUT }}$ IS THE MEASURED VOLTAGE DUE TO CHARGE TRANSFER ERROR Q WHEN THE CHANNEL TURNS OFF.
$Q=\Delta V_{\text {OUT }} \times C_{L}$
Figure 3. Charge Injection

Figure 4. Channel Off/On-Capacitance

0.8,, Low-Voltage, 4-Channel Analog Multiplexer

Test Circuits/Timing Diagrams (continued)

Figure 5. Off-Isolation/On-Channel/Crosstalk Bandwidth

0.8 , Low-Voltage, 4-Channel Analog Multiplexer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

0.8 , Low-Voltage, 4-Channel Analog Multiplexer

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

FRENT VIEW
SIDE VIEW
NOTES:

1. D\&E DO NOT INCLUDE MOLD FLASH.
2. MOLD FLASH OR PROTRUSIONS NOT TO EXCEED 0.15 mm (.006").
3. CONTROLLING DIMENSION: MILLIMETERS.
4. MEETS JEDEC MO187.

