Quad LVDS Receiver with Hysteresis

General Description

The MAX9179 is a quad low-voltage differential signaling (LVDS) line receiver designed for applications requiring high data rates, low power dissipation, and noise immunity. The receiver accepts four LVDS input signals and translates them to 3.3V LVCMOS output levels at speeds up to 400Mbps. The receiver features built-in hysteresis, which improves noise immunity and prevents multiple switching on slow transitioning inputs.
The device supports a wide 0.038 V to 2.362 V commonmode input voltage range, allowing for ground potential differences and common-mode noise between the driver and the receiver. A fail-safe circuit sets the output high when the input is open, undriven and shorted, or undriven and terminated. Common enable inputs control the highimpedance outputs.
The MAX9179 has a flow-through pinout for easy PC board layout, and is pin compatible with the MAX9121 and the DS90LV048A with the additional features of high ESD tolerance and built-in hysteresis.
The MAX9179 operates from a single 3.3 V supply, and is specified for operation from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. The device is offered in 16-pin TSSOP and thin QFN packages.

Applications
Laser Printers
Digital Copiers
Cell-Phone Base Stations
Telecom Switching Equipment
LCD Displays
Network Switches/Routers
Backplane Interconnect
Clock Distribution

Features

- Guaranteed 400Mbps Data Rate
- 50mV (typ) Hysteresis
- Overshoot/Undershoot Protection (-1.0V or Vcc + 1.0V) on Enables
- IEC61000-4-2 Level 4 ESD Tolerance
- AC Specifications Guaranteed with IVIDI $=100 \mathrm{mV}$
- Single 3.3V Supply
- Fail-Safe Circuit
- Flow-Through Pinout Simplifies PC Board Layout Reduces Crosstalk
- Low-Power CMOS Design
- Conforms to ANSI TIA/EIA-644 LVDS Standard
- High-Impedance Inputs when Powered Off
- Pin Compatible with the MAX9121 and the DS90LV048A
- Small Thin QFN Package Available

Ordering Information

PART	TEMP RANGE	PIN-PACKAGE
MAX9179EUE	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 TSSOP
MAX9179ETE $*$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	16 Thin QFN-EP**

${ }^{*}$ Future product-contact factory for availability.
${ }^{* *} E P=$ Exposed paddle.
Functional Diagram appears at end of data sheet.

Pin Configurations

Quad LVDS Receiver with Hysteresis

Abstract

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Range $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ ESD Protection

Human Body Model ($\mathrm{RD}_{\mathrm{D}}=1.5 \mathrm{k} \Omega, \mathrm{Cs}=100 \mathrm{pF}$) (IN_+, IN_-) ... $\pm 16 \mathrm{kV}$ IEC61000-4-2 ($\left.R_{D}=330 \Omega, C_{S}=150 p F\right)\left(I N_{-}+, I N_{-}\right)$ Contact Discharge .. $\pm 8 \mathrm{kV}$ Air-Gap Discharge .. $\pm 15 \mathrm{kV}$ Soldering Temperature (soldering, 10s).......................... $300^{\circ} \mathrm{C}$ Junction Temperature $+150^{\circ} \mathrm{C}$ Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$ to 3.6 V , differential input voltage $\mathrm{I} \mathrm{V}_{\mathrm{ID}} \mathrm{I}=0.075 \mathrm{~V}$ to 1.2 V , input common-mode voltage $\mathrm{V}_{\mathrm{CM}}=\left|\mathrm{V}_{\mathrm{ID}} / 2\right|$ to $2.4 \mathrm{~V}-\mathrm{I} \mathrm{V}_{\mathrm{ID}} / 2 \mid$, $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{C}}=3.3 \mathrm{~V}, \mathrm{IVID}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 1,2)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
INPUTS (IN_+, IN_-)							
Differential Input High Threshold	$\mathrm{V}_{\text {TH }}$	Figure 1			25	75	mV
Differential Input Low Threshold	$\mathrm{V}_{\text {TL }}$	Figure 1		-75	-25		mV
Hysteresis	$\mathrm{V}_{\text {TH }}-\mathrm{V}_{\text {TL }}$	Figure 1		50			mV
Input Current	lin+, lin-			-20		+20	$\mu \mathrm{A}$
Power-Off Input Current	lofF+, IOFF-	$V_{C C}=0 \mathrm{~V}$		-20		+20	$\mu \mathrm{A}$
Fail-Safe Input Resistor 1	RiN1	$\mathrm{VCC}=3.6 \mathrm{~V}$ or OV, Figure 2		40		65	k Ω
Fail-Safe Input Resistor 2	Rin2	$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ or OV, Figure 2		280		455	$\mathrm{k} \Omega$
OUTPUTS (OUT_)							
Output High Voltage	VOH	$\mathrm{IOH}=-4.0 \mathrm{~mA}$	Open, undriven short, or undriven parallel termination	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.2 \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.1 \end{gathered}$		V
			$\mathrm{V}_{\mathrm{ID}}=+50 \mathrm{mV}$				
Output Low Voltage	VOL	$\mathrm{IOL}=4.0 \mathrm{~mA}, \mathrm{~V}_{\text {ID }}=-50 \mathrm{mV}$			0.1	0.25	V
Output Short-Circuit Current	los	Enabled, VID $=+50 \mathrm{mV}$, Vout $=0$ (Note 3)		-40	-70	-120	mA
Output High-Impedance Current	Ioz	Disabled, Vout $=0$ or VCC		-1.0		+1.0	$\mu \mathrm{A}$
ENABLE INPUTS (EN, $\overline{\text { EN }}$)							
Input High Voltage	V_{IH}			2.0		$\begin{gathered} V_{C C}+ \\ 1.0 \end{gathered}$	V
Input Low Voltage	$\mathrm{V}_{\text {IL }}$			-1.0		+0.8	V
Input Current	IIN	$-1.0 \mathrm{~V} \leq \mathrm{EN}, \overline{\mathrm{EN}} \leq 0 \mathrm{~V}$		-1800		+10	$\mu \mathrm{A}$
		$\mathrm{OV} \leq \mathrm{EN}, \overline{\mathrm{EN}} \leq \mathrm{V}_{\mathrm{CC}}$		-20		+20	
		$\mathrm{V}_{C C} \leq \mathrm{EN}, \mathrm{EN} \leq \mathrm{V}_{C C}+1.0 \mathrm{~V}$		-10		+1800	
POWER SUPPLY							
Supply Current	ICC	Enabled, inputs open			10.4	15	mA
Disabled Supply Current	Iccz	Disabled, inputs open			0.6	1.0	

Quad LVDS Receiver with Hysteresis

AC ELECTRICAL CHARACTERISTICS

 $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{V} C \mathrm{C}=3.3 \mathrm{~V}, \mathrm{I} \mathrm{V} \mathrm{ID}=0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Notes 4,5,6)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Differential Propagation Delay High to Low	tPHLD	Figures 3, 4	2.0	2.6	4.6	ns
Differential Propagation Delay Low to High	tPLHD	Figures 3, 4	2.0	2.52	4.6	ns
Differential Pulse Skew I tpHLD - tpLHD I (Note 7)	tSKD1	V ID ${ }^{\text {a }}=0.1 \mathrm{~V}$ to 0.15 V			700	ps
		$\mid \mathrm{V}$ ID $\mid=0.15 \mathrm{~V}$ to 0.2 V			400	
		$\mathrm{V} \mathrm{V} \mathrm{DI}=0.2 \mathrm{~V}$ to 1.2 V		80	300	
Differential Channel-to-Channel Skew, Same Part (Note 8)	tSKD2	$\mid \mathrm{V}$ ID $\mid=0.1 \mathrm{~V}$ to 0.15 V			900	ps
		$\mid \mathrm{V}$ ID $\mid=0.15 \mathrm{~V}$ to 0.2 V			600	
		$\mathrm{V} \mathrm{ID} \mid=0.2 \mathrm{~V}$ to 1.2 V		120	400	
Differential Part-to-Part Skew (Note 9)	tSKD3				2.0	ns
Differential Part-to-Part Skew (Note 10)	tSKD4				2.6	ns
Rise Time	tTLH			0.77	1.4	ns
Fall Time	tTHL			0.74	1.4	ns
Disable Time High to Z	tPHZ	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, Figures 5, 6 (Note 11)		10.6	14	ns
Disable Time Low to Z	tplz	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, Figures 5, 6 (Note 11)		11	14	ns
Enable Time Z to High	tPZH	$R_{L}=2 \mathrm{k} \Omega$, Figures 5, 6 (Note 11)		4.8	14	ns
Enable Time Z to Low	tpZL	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, Figures 5, 6 (Note 11)		4.8	14	ns
Maximum Operating Frequency	$f_{\text {max }}$	$\begin{aligned} & \text { All channels switching, } C_{L}=15 \mathrm{pF}, \mathrm{~V}_{\mathrm{OL}} \\ & (\max)=0.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{OH}}(\min)=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text {, } \\ & 44 \%<\text { duty cycle }<56 \% \end{aligned}$	200	250		MHz

Note 1: Maximum and minimum limits over temperature are guaranteed by design and characterization. Parts are production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.
Note 2: Current into a pin is defined as positive. Current out of a pin is defined as negative. All voltages are referenced to ground except $\mathrm{V}_{\mathrm{TH}}, \mathrm{V}_{\mathrm{TL}}$, and V_{ID}.
Note 3: Short one output at a time.
Note 4: AC parameters are guaranteed by design and characterization. Limits are set at ± 6 sigma.
Note 5: CL_{L} includes scope probe and test jig capacitance.
Note 6: Pulse generator differential output for all tests (unless otherwise noted): $t_{R}=t_{\mathrm{F}}<1 \mathrm{~ns}(0 \%$ to 100%), frequency $=100 \mathrm{MHz}$, 50\% duty cycle.
Note 7: \quad SSKD1 is the magnitude of the difference of the differential propagation delays in a channel. tSKD1 = I tPHLD - tPLHD .
Note 8: tSKD2 is the magnitude of the difference of the tPLHD or tPHLD of one channel and the tPLHD or tPHLD of the other channel on the same part.
Note 9: $\operatorname{tSKD3}$ is the magnitude of the difference of any differential propagation delays between parts at the same $\mathrm{V}_{C C}$ and within $5^{\circ} \mathrm{C}$ of each other
Note 10: tSKD4 is the magnitude of the difference of any differential propagation delays between parts operating over the rated supply and temperature ranges.
Note 11: Pulse generator output for tphz, tplz, tpZH, and tpzL tests: $\mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{t}}=1.5 \mathrm{~ns}\left(0.2 \mathrm{~V}_{\mathrm{CC}}\right.$ to $\left.0.8 \mathrm{~V} C \mathrm{C}\right), 50 \%$ duty $\mathrm{cycle}, \mathrm{V}_{\mathrm{OH}}=$ $\mathrm{V}_{\mathrm{CC}}+1.0 \mathrm{~V}$ settling to $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{OL}}=-1.0 \mathrm{~V}$ settling to 0 , frequency $=1 \mathrm{MHz}$.

Quad LVDS Receiver with Hysteresis

Figure 1. Input Thresholds and Hysteresis

Figure 2. Fail-Safe Input Circuit

Figure 3. Propagation Delay and Transition Time Test Circuit

Figure 4. Propagation Delay and Transition Time Waveforms

Figure 5. High-Impedance Delay Test Circuit

Figure 6. High-Impedance Delay Waveforms

Quad LVDS Receiver with Hysteresis

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{IV}\right.$ ID $=0.15 \mathrm{~V}, C_{L}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted. .

Quad LVDS Receiver with Hysteresis

$\left(\mathrm{V}_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.2 \mathrm{~V}, \mathrm{IV} \mathrm{ID}=0.15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{f}=100 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Quad LVDS Receiver with Hysteresis

Pin Description

PIN		NAME	FUNCTION
TSSOP	QFN		
1	15	IN1-	Inverting LVDS Input 1
2	16	IN1+	Noninverting LVDS Input 1
3	1	IN2+	Noninverting LVDS Input 2
4	2	IN2-	Inverting LVDS Input 2
5	3	IN3-	Inverting LVDS Input 3
6	4	IN3+	Noninverting LVDS Input 3
7	5	IN4+	Noninverting LVDS Input 4
8	6	IN4-	Inverting LVDS Input 4
9	7	$\overline{\mathrm{EN}}$	Enable Complementary Input. The outputs are active when $\mathrm{EN}=$ high and $\overline{\mathrm{EN}}=$ low or open. For all other combinations of EN and EN , the outputs are disabled and in high impedance.
10	8	OUT4	LVCMOS/LVTTL Output 4
11	9	OUT3	LVCMOS/LVTTL Output 3
12	10	GND	Ground
13	11	VCC	Power-Supply Input. Bypass V_{CC} to GND with $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ ceramic capacitors.
14	12	OUT2	LVCMOS/LVTTL Output 2
15	13	OUT1	LVCMOS/LVTTL Output 1
16	14	EN	Enable Input. The outputs are active when $\mathrm{EN}=$ high and $\overline{\mathrm{EN}}=$ low or open. For all other combinations of EN and EN, the outputs are disabled and in high impedance.
-	EP	Exposed Pad	Exposed Pad. Connect to ground.

Quad LVDS Receiver with Hysteresis

Table 1. Functional Table

ENABLES		INPUTS	OUTPUT
EN	EN	(IN_+) - (IN_-)	OUT_
H	L or open	$\geq+75 \mathrm{mV}$	H
		$\leq-75 \mathrm{mV}$	L
		Open, undriven short, or undriven terminated	H
All other combinations of enable inputs		X	Z

$\mathrm{H}=$ High logic level
$\mathrm{L}=$ Low logic level
X = Don't care
Z = High impedance

Detailed Description

The LVDS is a signaling method intended for point-topoint communication over a controlled-impedance medium as defined by the ANSI TIA/EIA-644 and IEEE 1596.3 standards.

The MAX9179 is a quad LVDS line receiver with built-in hysteresis, intended for high-speed, point-to-point, lowpower applications. The receiver accepts four LVDS input signals and translates them to 3.3V LVCMOS output levels at speeds up to 400 Mbps over controlledimpedance media of 100Ω. The hysteresis improves noise immunity and prevents multiple switching due to noise on slow input transitions at the end of a long cable.
The receiver is capable of detecting differential signals as low as 75 mV and as high as 1.2 V within a 0 to 2.4 V input voltage range. The 250 mV to 450 mV differential output of an LVDS driver is nominally centered on a 1.2 V offset. This offset, coupled with the receiver's 0 to 2.4 V input voltage range, allows an approximate $\pm 1 \mathrm{~V}$ shift in the signal (as seen by the receiver). This allows for a difference in ground references of the transmitter and the receiver, the common-mode effects of coupled noise, or both. The LVDS standards specify an input voltage range of 0 to 2.4 V referenced to receiver ground.

Hysteresis

The MAX9179 incorporates hysteresis of 50 mV (typ), which rejects noise and prevents false switching during low-slew-rate transitions at the end of a long cable. The receiver typically switches at 25 mV above or below $\mathrm{V}_{\text {ID }}$ $=0 \mathrm{~V}$ (Figure 1). The hysteresis is designed to be symmetrical around $\mathrm{VID}=0 \mathrm{~V}$ for low pulse distortion (see the Typical Operating Characteristics).

Input Fail-Safe
The fail-safe feature of the MAX9179 sets the output high when the differential input is:

- Open
- Undriven and shorted
- Undriven and terminated

Without a fail-safe circuit, when the input is undriven, noise at the input may switch the output and it may appear to the system that data is being sent. Open or undriven terminated input conditions can occur when a cable is disconnected or cut, or when a driver output is in high impedance. A shorted input can occur because of a cable failure.
When the input is driven with a differential signal of $\left|V_{I D}\right|$ $=75 \mathrm{mV}$ to 1.2 V within a voltage range of 0 to 2.4 V , the fail-safe circuit is not activated. If the input is open, undriven and shorted, or undriven and terminated, an internal resistor in the fail-safe circuit pulls both inputs above $V_{C C}-0.3 \mathrm{~V}$, activating the fail-safe circuit and forcing the output high (Figure 2).

Overshoot and Undershoot Voltage Protection

The MAX9179 is designed to protect the enable inputs (EN and EN) against latchup due to transient overshoot and undershoot voltage. If the enable input voltage goes above VCC or below GND by up to 1 V , an internal circuit clamps and limits input current to 1.8 mA .

Applications Information

Power-Supply Bypassing

Bypass the VCC pin with high-frequency surface-mount ceramic $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ capacitors in parallel as close to the device as possible, with the smaller valued capacitor closest to Vcc.

Differential Traces

Input trace characteristics affect the performance of the MAX9179. Use controlled-impedance differential traces (100Ω is typical). To reduce radiated noise and ensure that noise couples as common mode, route the differential input signals within a pair close together. Reduce skew by matching the electrical length of the signal paths making up the differential pair. Excessive skew can result in a degradation of magnetic field cancellation. Maintain a constant distance between the differential traces to avoid discontinuities in differential impedance. Minimize the number of vias to further prevent impedance discontinuities.

Quad LVDS Receiver with Hysteresis

Cables and Connectors

Interconnect for LVDS typically has a controlled differential impedance of 100Ω. Use cables and connectors that have matched differential impedance to minimize impedance discontinuities. Avoid the use of unbalanced cables such as ribbon or simple coaxial cable. Balanced cables such as twisted pair offer superior signal quality and tend to generate less EMI due to magnetic field canceling effects. Balanced cables pick up noise as common mode, which is rejected by the LVDS receiver.

Termination
The MAX9179 requires external termination resistors. The input termination resistor used on each active channel should match the differential impedance of the transmission line. Place the termination resistor as close to the MAX9179 receiver input as possible. Use 1% surface-mount resistors.

Board Layout

Keep the LVDS input and LVCMOS output signals separated from each other to reduce crosstalk; 180 degrees of separation between LVDS inputs and LVCMOS outputs is recommended. Because there are leads on all sides, this separation requires special attention when laying out traces for the QFN package.
A four-layer printed circuit board with separate layers for power, ground, LVDS inputs, and single-ended logic signals is recommended. Separate the LVDS signals from the single-ended signals with power and ground planes for best results.

IEC 61000-4-2 Level 4 ESD Protection The IEC 61000-4-2 standard (Figure 7) specifies ESD tolerance for electronic systems. The IEC61000-4-2 model specifies a 150 pF capacitor that is discharged into the device through a 330Ω resistor. The MAX9179 LVDS inputs are rated for IEC61000-4-2 level 4 ($\pm 8 \mathrm{kV}$ Contact Discharge and $\pm 15 \mathrm{kV}$ Air-Gap Discharge). The Human Body Model (HBM) (Figure 8) specifies a 100pF capacitor that is discharged into the device through a $1.5 \mathrm{k} \Omega$ resistor. The IEC 61000-4-2 discharges higher peak current and more energy than the HBM due to the lower series resistance and larger capacitor.

Chip Information

TRANSISTOR COUNT: 1173
PROCESS: CMOS

Figure 7. IEC61000-4-2 Test Model

Figure 8. Human Body Test Model
Functional Diagram

Quad LVDS Receiver with Hysteresis

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Quad LVDS Receiver with Hysteresis

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

