General Description

The MAX9973/MAX9974 fully integrated, high-performance, dual-channel pin electronics driver/comparator/load (DCL) with built-in level-setting digital-to-analog converters (DACs) are ideally suited for memory and SOC automatic test equipment (ATE) applications. Each channel includes a three-level pin driver, a window comparator, dynamic clamps, a 1k Ω load, and seven independent level-setting DACs.

The driver features a wide voltage range and high-speed operation, includes high-impedance and active-termination (3rd-level drive) modes, and is highly linear even at low voltage swings. Additionally, the driver provides highspeed differential multiplexer control inputs, with internal termination resistors that are compatible with ECL, LV-PECL, LVDS, and GTL. The window comparators provide extremely low timing variation over changes in slew rate, pulse width, or overdrive voltage, and have open-collector outputs. When high-impedance mode is selected, the dynamic clamps provide damping of high-speed deviceunder-test (DUT) waveforms. The load facilitates fast contact testing when used in conjunction with the comparators, and functions as a pullup for open-drain/collector DUT outputs. The MAX9973/ MAX9974 are configured through a serial interface.

The MAX9973/MAX9974 differ in two aspects: the position of the exposed heat slug and the pin arrangement. The MAX9973G/MAX9974G comparator outputs sink 8mA (typ), while the MAX9973H/MAX9974H comparator outputs sink 16mA (typ). The devices are available in a 64-pin (10mm x 10mm x 1.00mm) TQFP-EP package with an exposed paddle on top (MAX9973) or bottom (MAX9974) for heat removal. Power dissipation is only 700mW per channel. The full operating voltage range is -1.5V to +6.5V. Operation is specified at an internal die temperature of +40°C to +100°C, and features a temperature monitor output.

Applications

Memory Testers SOC Testers

SPI is a trademark of Motorola Inc.

_Features

- ♦ 600Mbps at 3V High Speed
- 700mW per Channel Extremely Low Power Dissipation
- ♦ -1.5V to +6.5V Wide Voltage Range
- ♦ 200mV to 8V Wide Voltage Swing Range
- 10nA (max) Low-Leakage Mode
- Integrated Termination On-the-Fly (3rd-Level Drive)
- Integrated Voltage Clamps
- Passive Load or Pullup
- Very Low Timing Dispersion
- Minimal External Component Count
- ♦ SPITM-Compatible Serial Control Interface

		5	
PART	PIN-PACKAGE	PKG CODE	OUTPUT SINK CURRENT
MAX9973 GCCB	64 TQFP-EP-IDP** (10mm x 10mm x 1.00mm)	C64E-13R	8mA
MAX9973HCCB*	64 TQFP-EP-IDP** (10mm x 10mm x 1.00mm)	C64E-13R	16mA
MAX9974GCCB*	64 TQFP-EP† (10mm x 10mm x 1.00mm)	_	8mA
MAX9974HCCB*	64 TQFP-EP† (10mm x 10mm x 1.00mm)	_	16mA

Ordering Information

Note: Devices are available in both leaded and lead-free packages. Specify lead free by adding a + symbol at the end of the part number when ordering. *Future product—contact factory for availability. **EP-IDP = Exposed paddle (inverted die paddle). †EP = Exposed paddle.

Pin Configuration appears at end of data sheet.

MAX9973/MAX9974

_ Maxim Integrated Products 1

For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com.

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.3V to +11V
VEE to GND	6V to +0.3V
V _{CC} - V _{EE}	0.3V to +17V
V _{DD} to GND	0.3V to +5V
V _{T0} , V _{T1} to GND	0.3V to +5V
DGS to GND	±0.7V
DUT_ to GND	2.5V to +7.5V
DATA_, NDATA_, RCV_, NRCV_ to GND	2.5V to +5V
DATA_ to NDATA_, RCV_ to NRCV	±1V
DATA_, NDATA_, RCV_, NRCV_ to VTERM_	±1.5V

0.3V to (V _{DD} + 0.3V)
0.2V to +5V
EE - 0.3V) to (V _{CC} + 0.3V)
Continuous
above +70°C)10.0W*
65°C to +150°C
+150°C
+300°C

*Dissipation wattage values are based on still air with no heat sink. Actual maximum power dissipation is a function of heat extraction technique and may be substantially higher.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +9.75V, V_{EE} = -4.75V, V_{DD} = 3.3V, V_{DHV_} = +3V, V_{DLV_} = 0, V_{DTV_} = +1.5V, SC1 = SC0 = 0, V_{CHV_} = +2.0V, V_{CLV_} = +1.0V, V_{CPHV_} = +7.2V, V_{CPLV_} = -2.2V, V_{VTERM} = V_{T_} = +1.8V, R_T = 50\Omega$ II 1pF, T_J = +70°C, unless otherwise noted. All temperature coefficients are measured at T_J = +40°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DRIVER						
DC CHARACTERISTICS ($R_L \ge 10$	DM Ω , unless of	otherwise noted; includes DAC error)				
	V _{DHV} _	$V_{DLV_} = -1.5V, V_{DTV_} = +1.5V$	-1.45		+6.50	
Output Voltage Range	V _{DLV} _	V _{DHV} = +6.5V, V _{DTV} = +1.5V	-1.50		+6.45	V
	V _{DTV} _	$V_{DHV} = +6.5V, V_{DLV} = -1.5V$	-1.50		+6.50	
	V _{DHV} _	V _{DHV} = +3V, V _{DLV} = -1.5V, V _{DTV} = +1.5V			±50	
Output Offset Voltage	V _{DLV} _	V _{DLV} = 0V, V _{DHV} = +6.5V, V _{DTV} = +1.5V			±50	mV
	V _{DTV} _	$V_{DTV} = +1.5V, V_{DHV} = +6.5V, V_{DLV} = -1.5V$			±50	
Output-Voltage Temperature Coefficient (Notes 2, 3)		DHV_, DLV_, DTV_		±75	±400	µV/°C
	V _{DHV} _	$V_{DLV_} = -1.5V, V_{DTV_} = +1.5V, V_{DHV_} = 0 and +4.5V$	0.998	1	1.002	
Gain	V _{DLV} _	V _{DHV} = +6.5V, V _{DTV} = +1.5V, V _{DLV} = 0 and +4.5V	0.998	1	1.002	V/V
	V _{DTV} _	$V_{DHV} = +6.5V, V_{DLV} = -1.5V, V_{DTV} = 0 and +4.5V$	0.998	1	1.002	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -4.75V, V_{DD} = 3.3V, V_{DHV_} = +3V, V_{DLV_} = 0, V_{DTV_} = +1.5V, SC1 = SC0 = 0, V_{CHV_} = +2.0V, V_{CLV_} = +1.0V, V_{CPHV_} = +7.2V, V_{CPLV_} = -2.2V, V_{VTERM} = V_T = +1.8V, R_T = 50\Omega$ II 1pF, TJ = +70°C, unless otherwise noted. All temperature coefficients are measured at TJ = +40°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS	
		$V_{DLV_{-}} = -1.5V, V_{DTV_{-}} = V_{DHV_{-}} = 0, +0.75V, +1.5$ 0 to 3V +2.25V, +3V				±5		
		relative to calibration points at 0	V _{DHV} = +6.5V, V _{DTV} = +1.5V, V _{DLV} = 0, +0.75V, +1.5V, +2.25V, +3V			±5		
Linearity Error		and 3V	V _{DLV} = -1.5V, V _{DHV} = +6.5V, V _{DTV} = 0, +0.75V, +1.5V, +2.25V, +3V			±5	mV	
		Full range	$V_{DLV_} = -1.5V, V_{DTV_} = +1.5V, V_{DHV_} = -1.25V \text{ and } +6.5V$			±5		
		relative to calibration points at 0	$V_{DHV_}$ = +6.5V, $V_{DTV_}$ = +1.5V, $V_{DLV_}$ = -1.5V and +6.25V			±5		
		and 3V	$V_{DLV_} = -1.5V, V_{DHV_} = +6.5V, V_{DTV_} = -1.5V \text{ and } +6.5V$			±5		
		V_{DHV} to V_{DLV} , $V_{DLV} = 0$, $V_{DTV} = 1.5V$, $V_{DHV} = 0.2V$ and 6.5V				±2		
		V_{DLV} to V_{DHV} , V_{DHV} = +5V, V_{DTV} = +1.5V, V_{DLV} = -1.5V and +4.8V				±2		
Crosstalk			$V_{\rm DHV}, V_{\rm DHV} = +3V, V_{\rm V} = -1.5V$ and +6.5V			±2	mV	
			v, V _{DTV} _ = +1.5V, ⊣v_ = +1.6V and +3.0V			±3		
			/, V _{DTV} _ = +1.5V, √ _{DLV} _ = 0 and +1.4V			±3	_	
Term Voltage Dependence on DATA_			V, $V_{DHV} = +3V$, ATA_ = 0 and 1			±2	mV	
			V _{DHV} , V _{DHV} = 3V, V _{CC} and V _{EE} independently varied over full range					
DC Power-Supply Rejection			= 0, V _{CC} and V _{EE} y varied over full range	40			dB	
			= 1.5V, V _{CC} and V _{EE} y varied over full range	40				
		V _{DLV} _/V _{DUT} _	= -1.5V/+6.5V, DATA_ = 0	-120		-60		
DC Drive Current Limit		$V_{DHV}/V_{DUT} = +6.5V/-1.5V, DATA_ = 1$		+60		+120	m^	
			= -1.5V/+6.5V, RCV_ = 1	-120		-60	- mA	
			= +6.5V/-1.5V, RCV_ = 1	+60		+120		
DC Output Resistance		(Note 4)		48	50	52	Ω	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -4.75V, V_{DD} = 3.3V, V_{DHV_} = +3V, V_{DLV_} = 0, V_{DTV_} = +1.5V, SC1 = SC0 = 0, V_{CHV_} = +2.0V, V_{CLV_} = +1.0V, V_{CPHV_} = +7.2V, V_{CPLV_} = -2.2V, V_{VTERM} = V_T = +1.8V, R_T = 50\Omega$ II 1pF, T_J = +70°C, unless otherwise noted. All temperature coefficients are measured at T_J = +40°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
DC Output Resistance Variation		DATA_ = 1, V_{DHV} = 3V, V_{DLV} = 0, V_{DTV} = 1.5V, I_{DUT} = 1mA to 40mA		1	2	Ω
		DATA_ = 0, V_{DHV} = 3V, V_{DLV} = 0, V_{DTV} = 1.5V, I_{DUT} = -1mA to -40mA		1	2	52
AC CHARACTERISTICS (RDUT_ =	: 50 Ω to grou	und) (Note 5)				
Dynamic Drive Current		(Note 6)		60		mA
		$V_{DLV_{}} = 0, V_{DHV_{}} = 0.1V$		30		
Drive Made Oversheet		$V_{DLV_} = 0, V_{DHV_} = 1V$ (Note 2)		40	75	
Drive-Mode Overshoot		V _{DLV} = 0, V _{DHV} = 3V (Note 2)		50	175	mV
		$V_{DLV_} = 0, V_{DHV_} = 5V$ (Note 2)		50	275	
Termination-Mode Overshoot		(Note 7)		0		mV
		To within 100mV, $V_{DHV} = 5V$, $V_{DLV} = 0$		0.25		
Settling Time (Note 8)		To within 50mV, $V_{DHV} = 3V$, $V_{DLV} = 0$		0.25		ns
		To within 25mV, $V_{DHV} = 0.5V$, $V_{DLV} = 0$		0.25]
TIMING CHARACTERISTICS (Not	es 5, 9)	•				
		Data to output; $V_{DHV} = 3V$, $V_{DLV} = 0$		2	3	
Prop Delay (Note 2)		Drive to high impedance, high impedance to drive (Note 10); $V_{DHV} = +1V$, $V_{DLV} = -1V$		1.7	4	ns
		Drive to term		2.7	4	-
		Term to drive		1.7	4	
Prop Delay Match		tLH vs. tHL		50	100	
(Note 2)		Drivers within package; same edge		40	100	ps
Prop-Delay Temperature Coefficient		(Note 2)		1	5	ps/°C
		V_{DHV} = 1V, V_{DLV} = 0, 2ns to 23ns pulse width		10	100	
Prop Delay Change vs. Pulse Width (Note 2)		V_{DHV} = 3V, V_{DLV} = 0, 3ns to 22ns pulse width		10	100	ps
		$V_{DHV} = 5V$, $V_{DLV} = 0$, 4ns to 21ns pulse width		20	100	
Prop Delay Change vs. Common Mode		$V_{DHV} - V_{DLV} = 1V$, $V_{DHV} = 0$ to 6V, (using a DC block)		25		ps
		Drive to high impedance vs. high impedance to drive; $V_{DHV} = 1V$, $V_{DLV} = -1V$ (Note 11)		0.2		
Delay Matab		High impedance vs. data (Note 2)		0.4		1
Delay Match		Drive to term vs. term to drive; $V_{DHV} = 3V$, $V_{DLV} = 0$, $V_{DTV} = 1.5V$ (Note 12)		1		ns
		Terminate vs. data		0.7		1

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -4.75V, V_{DD} = 3.3V, V_{DHV_} = +3V, V_{DLV_} = 0, V_{DTV_} = +1.5V, SC1 = SC0 = 0, V_{CHV_} = +2.0V, V_{CLV_} = +1.0V, V_{CPHV_} = +7.2V, V_{CPLV_} = -2.2V, V_{VTERM} = V_T_ = +1.8V, R_T = 50\Omega$ II 1pF, T_J = +70°C, unless otherwise noted. All temperature coefficients are measured at T_J = +40°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL		CONDITIONS	MIN	ТҮР	MAX	UNITS
		0.2VP-P programmed, V _{DHV} = 0.2V, V _{DLV} = 0, 20% to 80%			0.20		
Rise and Fall Time		1V _{P-P} program 10% to 90%	mmed, $V_{DHV} = 1V$, $V_{DLV} = 0$,	0.35	0.50	0.75	
			ammed, $V_{DHV} = 3V$, $V_{DLV} = 0$, trim condition	1.0	1.2	1.5	ns
		5V _{P-P} progra 10% to 90%	ammed $V_{DHV} = 5V$, $V_{DLV} = 0$,		2.0		
		0.2V _{P-P} progr 20% to 80%	rammed, $V_{DHV} = 0.2V$, $V_{DLV} = 0$,		40		
Diag and Fall Time Matching		1V _{P-P} program 10% to 90%	mmed, $V_{DHV} = 1V$, $V_{DLV} = 0$,			150	
Rise and Fall Time Matching		3V _{P-P} progra 10% to 90	ammed, $V_{DHV} = 3V$, $V_{DLV} = 0$,			200	ps
		$5V_{P-P}$ programmed, $V_{DHV_} = 5V$, $V_{DLV_} = 0$, 10% to 90% (Note 2)					
	to SC	Relative to SC1 = SC0 = 0	$\begin{split} SC1 &= 0, SC0 = 1, V_{DHV_} = 3V, \\ V_{DLV_} &= 0, 20\% \text{ to } 80\% \end{split}$		75		%
Slew Rate			$SC1 = 1, SC0 = 0, V_{DHV_} = 3V, V_{DLV_} = 0, 20\%$ to 80%		50		
			$SC1 = 1, SC0 = 1, V_{DHV} = 3V, V_{DLV} = 0, 20\% to 80\%$		25		
			$0.2V_{P-P}$ programmed, $V_{DHV} = 0.2V$, $V_{DLV} = 0$		0.4		- ns
		Positive or	$1V_{P-P}$ programmed $V_{DHV_} = 1V$, $V_{DLV_} = 0$ (Note 2)		0.7	2	
Minimum Pulse Width (Note 13)		negative	$3V_{P-P}$ programmed $V_{DHV_} = 3V$, $V_{DLV_} = 0$ (Note 2)		1.5	2.5	
			5VP-P programmed $V_{DHV} = 5V$, V _{DLV} = 0 (Note 2)		2.4	3.5	
		0.2V _{P-P} prog	rammed, $V_{DHV} = 0.2V$, $V_{DLV} = 0$		2900		
Data Data (Nata 14)		1VP-P progra	ammed, $V_{DHV} = 1V$, $V_{DLV} = 0$		1300		Mbr -
Data Rate (Note 14)		3V _{P-P} progra	ammed, $V_{DHV} = 3V$, $V_{DLV} = 0$		600		Mbps
		$5V_{P-P}$ programmed, $V_{DHV} = 5V$, $V_{DLV} = 0$			400		
Rise and Fall Time, Drive to Term		V _{DHV} = 3V, V _{DLV} = 0, V _{DTV} = 1.5V, measured 10% to 90% of waveform			1.6		ns
Rise and Fall Time, Term to Drive			V _{DLV} = 0, V _{DTV} = 1.5V, 0% to 90% of waveform		0.7		ns

ELECTRICAL CHARACTERISTICS (continued)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
COMPARATOR						
DC CHARACTERISTICS						
Input Voltage Range			-1.5		+6.5	V
Differential Input Voltage					±8	V
Minimum Hysteresis		RHYST_ = open		0		mV
Maximum Hysteresis		$R_{RHYST} = 2.5k\Omega$		10		mV
Input Offset Voltage		V _{DUT} = 1.5V			±50	mV
Input-Voltage Temperature Coefficient		(Notes 2, 15)		±75	±400	µV/°C
Common-Mode Rejection Ratio	CMRR	V _{DUT} = -1.5V, +6.5V	50	70		dB
Linearity Error, 0 to 3V		V _{DUT} = 0, 1.5V, 3V (Note 16)		±1	±5	mV
Linearity Error, Full Range		V _{DUT} = -1.5V, 0, +1.5V, +3V, +6.5V (Note 16)		±1	±10	mV
Power-Supply Rejection Ratio	PSRR	V _{DUT} = -1.5V and +6.5V	50	75		dB
AC CHARACTERISTICS (Notes 1	7–20)	·				•
Minimum Pulse Width		(Note 21)		0.85		ns
Prop Delay				1.2	2	ns
Prop-Delay Temperature Coefficient		(Note 2)		2.6	5	ps/°C
Prop Delay Match		High/low vs. low/high; absolute value of delta for each comparator (Note 2)		40	100	ps
Prop Delay Dispersion vs. Common-Mode Input		Common-mode input -1.4V to +6.4V (Note 22)		20		ps
Prop Delay Dispersion vs. Pulse Width (Note 2)		3ns to 22ns pulse width, 500ps t _{RISE} , positive and negative pulses		10	60	ps
Width (Note 2)		2ns to 23ns pulse width		10	100	
Prop Delay Dispersion vs. Slew Rate		Slew rate = 0.5V/ns to 2V/ns		10		ps
		100mV < V _{C_V} < 900mV, driver in term mode, peak-to-peak within this window		40		
Waveform Tracking (Note 23)		$50mV < V_{C_V} < 950mV$, driver in term mode, peak-to-peak within this window		60		ps
		100mV < V_{C_V} < 900mV, driver in high impedance, peak-to-peak within this window		100		
LOGIC OUTPUTS (CH_, NCH_, C	L_, NCL_)					
Termination Voltage	V _T _		0		3.5	V
Output Voltage Compliance		Set by I_{OUT} , R_{TERM} , and V_{T}	-0.5		V _T _	V
Differential Rise Time		20% to 80% (Note 2)		200	400	ps
Differential Fall Time		20% to 80% (Note 2)		200	400	ps

M/X/W

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -4.75V, V_{DD} = 3.3V, V_{DHV_} = +3V, V_{DLV_} = 0, V_{DTV_} = +1.5V, SC1 = SC0 = 0, V_{CHV_} = +2.0V, V_{CLV_} = +1.0V, V_{CPHV_} = +7.2V, V_{CPLV_} = -2.2V, V_{VTERM} = V_T_ = +1.8V, R_T = 50\Omega$ II 1pF, TJ = +70°C, unless otherwise noted. All temperature coefficients are measured at TJ = +40°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS	
Termination Resistor Value		VT_ to CH_, NCH_, CL_, NCL_	48		52	Ω	
Output High Voltage		V _T = 0, 3.5V	V _T _ - 0.1	V _T _ - 0.02	V _T _	V	
Output Low Voltage		V _T _ = 0, 3.5V	V _T _ - 0.55	V _{T_} - 0.4	VT_ - 0.35	V	
Output Voltage Swing		V _T _ = 0, 3.5V	350	400	450	mV	
DYNAMIC CLAMPS		· · ·					
Eurotional Clarge Dange		CPHV_; I _{DUT} _ = -1mA, CPHV_ = -0.4V and +6.6V, CPLV_ = -1.5V	-0.3		+6.5	V	
Functional Clamp Range		CPLV_; I _{DUT} _ = 1mA, CPLV_ = -1.6V and +5.4V, CPHV_ = +6.5V	-1.5		+5.3	V	
Maximum Programmable CPHV_		I _{DUT} = 0mA (Note 24)	7.2	7.5		V	
Minimum Programmable CPLV_		I _{DUT} = 0mA (Note 24)		-2.5	-2.2	V	
Offact Voltage		I _{DUT} = -1mA, CPHV = +1.5V, CPLV = -1.5V			±50	m\/	
Offset Voltage		I _{DUT} = +1mA, CPLV_ = +1.5V, CPHV_ = +6.5V			±50	mV	
Offset-Voltage Temperature Coefficient				0.5		mV/°C	
Power-Supply Rejection		I _{DUT} = -1mA, CPHV_ = +1.5V, CPLV_ = -1.5V	40			٩D	
		I _{DUT} = +1mA, CPLV_ = +1.5V, CPHV_ = +6.5V	40			dB	
High-Clamp Voltage Gain		CPHV_ = 0, +6.5V, CPLV_ = -1.5V	0.99		1.01	V/V	
Low-Clamp Voltage Gain		CPLV_ = -1.5V, +5.3V, CPHV_ = +6.5V	0.99		1.01	V/V	
Voltage Gain Matching					1	%	
Voltage-Gain Temperature Coefficient				100		ppm/°C	
		I _{DUT} = -1mA, CPHV = 0, +1.5V, +3.25V, +5V, +6.5V			±30		
Linearity		I _{DUT} = +1mA, CPLV = -1.5V, +0.5V, +2.25V, +4V, +5.3V			±30	- mV	
		CPHV_ = 0, CPLV_ = -1.5V, $R_L = 0\Omega$ to +6.5V	-120		-60		
Static Output Current		CPLV_ = +5V, CPHV_ = +6.5V, R _L = 0Ω to -1.5V	60		120	mA	
		High clamp, $V_{CPHV} = 2.5V$, IDUT_ = -5mA and -15mA	48		55		
DC Impedance		Low clamp, V _{CPLV} = 2.5V, I _{DUT} = 5mA and 15mA	48		55	Ω	
DC Impedance Variation		High clamp, I _{DUT} = -20mA and -30mA, CPHV_ = +2.5V, CPLV_ = -1.5V		±5			
(Note 25)		Low clamp, I _{DUT} = 20mA and 30mA, CPLV_ = 2.5V, CPHV_ = 6.5V		±5		Ω	

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -4.75V, V_{DD} = 3.3V, V_{DHV_} = +3V, V_{DLV_} = 0, V_{DTV_} = +1.5V, SC1 = SC0 = 0, V_{CHV_} = +2.0V, V_{CLV_} = +1.0V, V_{CPHV_} = +7.2V, V_{CPLV_} = -2.2V, V_{VTERM} = V_T = +1.8V, R_T = 50\Omega$ II 1pF, TJ = +70°C, unless otherwise noted. All temperature coefficients are measured at TJ = +40°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Overshoot and Undershoot		(Note 26)		650		mV
LEVEL-SETTING DACs						
Desclution	N	DHV_, DLV_, DTV_, CHV_, CLV_		16		Dite
Resolution	N	CPLV_, CPHV_		12		Bits
Differential Nonlinearity	DNL				±1	mV
Voltage Settling Time		Full-scale change to ±2.5mV		20		μs
GROUND SENSE (DGS)	7					
Input Range	V _{GS}	Relative to AGND_, verified by functional test	-250		+250	mV
Gain				1		V/V
Input Resistance			1			MΩ
Reference Input		(Note 27)		2.5		V
1k TRI-STATE LOAD (PULLUP	/PULLDOWN)	1				-
Source Impedance When Enabled		Tested at -5mA, 0, +5mA using a 0.5mA step	950		1050	Ω
Maximum Source Current		V _{DUT} = +6.1V, V _{DTV} = -1.1V	6.9	7.2		mA
Maximum Sink Current		$V_{DUT} = -1.1V, V_{DTV} = +6.1V$	6.9	7.2		mA
Turn-On Time				60		ns
Turn-Off Time				60		ns
Offset Voltage		Output with no load, $V_{DTV_} = 0$ and $3V$			±50	mV
Linearity Error		No load, $V_{DTV_}$ = -1.5V to +6.5V			±25	mV
TEMPERATURE MONITOR						
Nominal Voltage		$T_J = +70^{\circ}C, R_L \ge 10M\Omega$		3.43		V
Temperature Coefficient				10		mV/°C
Output Resistance				15		kΩ
DIFFERENTIAL CONTROL INF	PUTS (DATA_, N	NDATA_, RCV_, NRCV_)				
Input High Voltage			-1.6		+3.5	V
Input Low Voltage			-2.0		+3.1	V
Differential Input Voltage			±0.15		±1.00	V
Termination Resistor		50 Ω to VTERM_	48		52	Ω
VTERM_ Voltage Range		Verified by functional test	-2.0		+3.5	V
SERIAL PORT INPUTS (CS, SO	CLK, DIN, RST,	LOAD, V _{DD} = 3.3V)				-
Input High			2/3 (V _{DD})		V _{DD}	V
Input Low			-0.1		1/3 (V _{DD})	V

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -4.75V, V_{DD} = 3.3V, V_{DHV_} = +3V, V_{DLV_} = 0, V_{DTV_} = +1.5V, SC1 = SC0 = 0, V_{CHV_} = +2.0V, V_{CLV_} = +1.0V, V_{CPHV_} = +7.2V, V_{CPLV_} = -2.2V, V_{VTERM} = V_T = +1.8V, R_T = 50\Omega$ II 1pF, TJ = +70°C, unless otherwise noted. All temperature coefficients are measured at TJ = +40°C to +100°C, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
SERIAL PORT TIMING (Note 28)		•	•			
SCLK Frequency					50	MHz
SCLK Pulse-Width High	t1		8			ns
SCLK Pulse-Width Low	t2		8			ns
CS Low to SCLK High Setup	t3		3.5			ns
SCLK High to \overline{CS} Low Hold	t4		3.5			ns
CS High to SCLK High Setup	t5		3.5			ns
SCLK High to \overline{CS} High Hold	t ₆		3.5			ns
DIN to SCLK High Setup	t7		3.5			ns
DIN to SCLK High Hold	t8		3.5			ns
CS High Pulse Width	t9		20			ns
LOAD Low Pulse Width	t10		20			ns
RST Low Pulse Width	t11		20			ns
CS High to LOAD Low Hold Time	t ₁₂		20			ns
COMMON FUNCTIONS						
Operating Voltage Range		(Note 29)	-1.5		+6.5	V
		0 < V _{DUT} < 3V			±2	
DUT_ High-Impedance Leakage		$V_{CLV} = V_{CHV} = +6.5V, V_{DUT} = -1.5V$			±5	μA
		$V_{CLV_} = V_{CHV_} = -1.5V, V_{DUT_} = +6.5V$			±5	
		$LEAK = 1, 0 < V_{DUT} < 3V, T_J < +90^{\circ}C$	-10		+10	
DUT_ Low-Leakage Mode Leakage		$\label{eq:LEAK} \begin{array}{l} \mbox{LEAK} = \ 1, \ V_{CLV_} = \ V_{CHV_} = \ +6.5V, \\ \ V_{DUT_} = \ -1.5V, \ T_J < \ +90^{\circ}C \end{array}$	-10		+10	nA
Leanage		LEAK = 1, $V_{CLV_} = V_{CHV_} = -1.5V$, $V_{DUT_} = +6.5V$, $T_J < +90^{\circ}C$	-10		+10	
DUT Combined Conseitones		Driver in terminate mode		2		
DUT_ Combined Capacitance		Driver in high impedance		4		pF
POWER SUPPLY						
Positive Supply Voltage	V _{CC}		9.5	9.75	10.5	V
Negative Supply Voltage	VEE		-5.2	-4.75	-4.5	V
Logic Supply Voltage	V _{DD}		2.7	3.3	5.0	V
Positive Supply Current	ICC	(Note 30)		70	85	mA
Negative Supply Current	IEE	(Note 30)		150	180	mA
Logic Supply Current	IDD	(Note 30)		1.2	2	mA
Power Dissipation		(Notes 30, 31)		1.4	1.7	W
Power Dissipation per Channel		(Notes 30, 31)		700		mW
	1					

Note 1: All minimum and maximum specifications are 100% production tested, unless otherwise noted. All other test limits are guaranteed by design. Tests are performed at nominal supply voltages, unless otherwise noted. Tested with $T_J = +70^{\circ}C$ with accuracy of $\pm 15^{\circ}C$.

Note 2: Guaranteed by design and characterization.

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +9.75V, V_{EE} = -4.75V, V_{DD} = 3.3V, V_{DHV} = +3V, V_{DLV} = 0, V_{DTV} = +1.5V, SC1 = SC0 = 0, V_{CHV} = +2.0V, V_{CLV} = +1.0V, V_{CPHV} = +7.2V, V_{CPLV} = -2.2V, V_{VTERM} = V_T = +1.8V, R_T = 50\Omega$ II 1pF, T_J = +70°C, unless otherwise noted. All temperature coefficients are measured at T_J = +40°C to +100°C, unless otherwise noted.) (Note 1)

- **Note 3:** Change in any voltage over operating range. Includes both gain and offset temperature effects. Simulated over entire operating range. Verified at worst-case points, which are the endpoints. V_{DHV} V_{DLV} > 250mV.
- Note 4: DATA_ = 1, V_{DHV}_ = 3V, V_{DLV}_ = 0, V_{DTV}_ = 1.5V, I_{OUT} = ±30mA. Different values within the range of 48Ω to 52Ω are available by custom trimming (contact factory).
- **Note 5:** Rise time of the differential inputs DATA_ and RCV_ is 250ps (10% to 90%). SC1 = SC0 = 0, 40MHz, unless otherwise specified.
- Note 6: 0 to 6V step, current supplied for a minimum of 10ns.
- Note 7: $V_{DTV_}$ = 1.5V, R_S = 50 Ω external signal driven into a transmission line to produce a 0/3V edge at the comparator input with \leq 1.0ns rise time (10% to 90%). Measurement point is at comparator input.
- Note 8: Measured from the 90% point of the driver output (relative to its final value) to the waveform settling to within the specified limit.
- **Note 9:** Propagation delays are measured from the crossing point of the differential input signals to the 50% point of expected output swing.
- Note 10: Measured from crossing point of RCV_/NRCV_ to 50% point of the output waveform.
- Note 11: Four measurements are made: DHV_ to high impedance, DLV_ to high impedance, high impedance to DHV_, high impedance to DLV_. The worst difference is specified.
- Note 12: Four measurements are made: DHV_ to DTV_, DLV_ to DTV_, DTV_ to DHV_, DTV_ to DLV_. The worst difference is specified.
- Note 13: At this pulse width, the output reaches at least 95% of its nominal (DC) amplitude. The pulse width is measured at DATA_ and NDATA_.
- **Note 14:** Maximum data rate in transitions/second. A waveform that reaches at least 95% of its programmed amplitude may be generated at one-half of this frequency.
- Note 15: Change in offset at any voltage over operating range. Includes both gain (CMRR) and offset temperature effects.
- **Note 16:** Relative to straight line between 0 and 3V.
- Note 17: All propagation delays measured from V_{DUT} crossing calibrated CHV_/CLV_ threshold to crossing point of differential outputs.
- **Note 18:** Load is a 500ps transmission line terminated with 1pF and 50Ω .
- Note 19: All AC specifications are measured with DUT_ (comparator input) as the reference.
- **Note 20:** 40MHz, 0 to 2V input to comparator, reference = 1V, 50% duty cycle, 1ns rise/fall time, $Z_S = 50\Omega$, driver in term mode with $V_{DTV_{-}} = 0$, unless otherwise noted.
- **Note 21:** At this pulse width, the output reaches at least 90% of its nominal peak-to-peak swing. The pulse width is measured at the crossing points of the differential outputs. 500ps rise and fall time. Timing specs are not guaranteed.
- Note 22: $V_{DUT_} = 200mV_{P-P}$, rise/fall time = 150ps, overdrive = 100mV, $V_{DTV_} = V_{CM}$. Valid for common-mode ranges where the signal does not exceed the operating range. Specification is worst case (slowest to fastest) over the specified range.
- Note 23: Input to comparator is 40MHz at 0 to 1V, 50% duty cycle, 1ns rise time.
- Note 24: This specification is implicitly tested, by meeting the high-impedance leakage specification.
- **Note 25:** Resistance measurements are made using small-signal voltage changes in the loading instrument. Absolute value of the difference in measured resistance over the specified range, tested separately for each current polarity.
- Note 26: Ripple in the DUT_ signal after one round-trip delay. Stimulus is 0 to 3V, 2.5V/ns square wave from far end of 3ns transmission line with $R_S = 25\Omega$, clamps set to 0 and 3V.
- Note 27: Any deviation from 2.5V affects offset and gain of all levels.
- **Note 28:** Serial port timing specifications are measured at a logic supply voltage (V_{DD}) of +3.3V, ensuring operation of the serial port at rated speed for V_{DD} from +3.3V to +5.5V.
- **Note 29:** The maximum usable output operating voltage is limited to -1.5V to +6.5V. Externally forced voltages may exceed this range without damage to the device, provided that they are limited per the *Absolute Maximum Ratings*. External clamps must be provided to limit voltages in this range, or damage to the device is likely.
- Note 30: Total for dual device. $R_L \ge 10M\Omega$. Worst case of the following conditions: driver enabled, LLEAK = 0; driver disabled, LLEAK = 0; driver disabled, RCV_ = 1; driver disabled, LLEAK = 1.
- **Note 31:** Excludes dissipation of comparator output supply. A typical output configuration and V+ = 1.8V adds 30mW (typ) per channel to device power.

Typical Operating Characteristics

M/IXI/M

 $(T_J = +70^{\circ}C, unless otherwise noted.)$

MAX9973/MAX9974

Typical Operating Characteristics (continued)

M/IXI/M

Typical Operating Characteristics (continued)

M/IXI/M

 $(T_{1} = +70^{\circ}C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

 $(T_J = +70^{\circ}C, unless otherwise noted.)$

MAX9973/MAX9974

POSITIVE SUPPLY CURRENT vs. POSITIVE SUPPLY VOLTAGE 60.5 VDHV_= +3.0V, VDLV_= 0, VDTV_= +1.5V, VCPHV_= +7.2V, VCPLV_= -2.2V, HIGH IMPEDANCE, VEE = -5.25V 60.4 HIGH IMPEDANCE, VEE = -5.25V

NEGATIVE SUPPLY CURRENT vs. TEMPERATURE

NEGATIVE SUPPLY CURRENT

DRIVER LARGE-SIGNAL RESPONSE INTO 500Ω

POSITIVE SUPPLY CURRENT vs. TEMPERATURE

DRIVER 1V 600Mbps SIGNAL RESPONSE

DRIVER 1V 1200Mbps SIGNAL RESPONSE

DRIVER 3V 600Mbps SIGNAL RESPONSE

 $V_{DUT} = 100 mV/div$

Typical Operating Characteristics (continued)

 $(T_J = +70^{\circ}C, \text{ unless otherwise noted.})$

Pin Description

PIN (MAX9973)	NAME	F	UNCTION	
1, 16, 18, 33, 36, 39, 42, 45, 48, 63	VEE	Negative Power-Supply Input		
2, 15, 24, 35, 37, 44, 46, 57	V _{CC}	Positive Power-Supply Input		
3, 14	AGND	Analog Ground Connection		
4	REF	DAC Reference Input. Set to 2.5V with r	espect to DGS.	
5	DGS	DUT Ground Sense. DGS is the ground ground of the device-under-test.	reference for the DACs. Connect DGS to	
6	TEMP	Temperature Monitor Output		
7, 17, 32, 40, 41, 49, 64	GND	Ground		
8	CS	Chip-Select Input. Serial port activation	input.	
9	SCLK	Serial-Clock Input. Clock for serial port.		
10	DIN	Data Input. Serial port data input.		
11	V _{DD}	Digital Interface Power-Supply Input		
12	LOAD	Load Input. Latches serial register data	into DACs.	
13	RST	Reset Input. Asynchronous reset input f	or the serial register.	
19	NDATA1	Channel 1 Multiplexer Control Input N	Differential controls DATA1 and NDATA1 select driver 1's input from DHV1 or DLV1.	
20	DATA1	Channel 1 Multiplexer Control Input	Drive DATA1 above NDATA1 to select DHV1. Drive NDATA1 above DATA1 to select DLV1.	
21	VTERM1	Channel 1 RCV/NRCV and DATA/NDATA Termination Voltage Input. Termination voltage input for the RCV1, NRCV1, DATA1, and NDATA1 differential inputs.		

MAX9973/MAX9974

Pin Description (continued)

PIN (MAX9973)	NAME		UNCTION				
22	NRCV1	Channel 1 Multiplexer Control Input N	Differential controls RCV1 and NRCV1 place channel 1 in receive mode. Drive RCV1 above NRCV1 to place channel 1 into receive mode.				
23	RCV1	Channel 1 Multiplexer Control Input	Drive NRCV1 above RCV1 to place channel 1 into drive mode.				
25, 34, 47, 56	N.C.	No Connection. Make no connection.					
26	NCL1	Channel 1 Low Comparator Output N	Differential outputs of channel 1 low				
27	CL1	Channel 1 Low Comparator Output	comparator.				
28	V _{T1}	Comparator Termination Voltage Input. pullup resistors for channel 1.	Termination voltage for the comparator output				
29	NCH1	Channel 1 High Comparator Output N	Differential outputs of channel 1 high				
30	CH1	Channel 1 High Comparator Output	comparator.				
31	RHYST1	Comparator Hysteresis Programming Ir	nput for Channel 1				
38	DUT1	Channel 1 Device-Under-Test Input/Ou clamp, and load.	tput. Combined I/O for driver, comparator,				
43	DUTO	Channel 0 Device-Under-Test Input/Ou clamp, and load.	Channel 0 Device-Under-Test Input/Output. Combined I/O for driver, comparator, clamp, and load.				
50	RHYST0	Comparator Hysteresis Programming Ir	nput for Channel 0				
51	CH0	Channel 0 High Comparator Output	Differential outputs of channel 0 high				
52	NCH0	Channel 0 High Comparator Output N	comparator.				
53	V _{TO}	Comparator Termination Voltage Input. pullup resistors for channel 0.	Termination voltage for the comparator output				
54	CLO	Channel 0 Low Comparator Output	Differential outputs of channel 0 low				
55	NCL0	Channel 0 Low Comparator Output N	comparator.				
58	RCV0	Channel 0 Multiplexer Control Input	Differential controls RCV0 and NRCV0 place channel 0 in receive mode. Drive RCV0 above				
59	NRCV0	Channel 0 Multiplexer Control Input N	NRCV0 to place channel 0 into receive mode. Drive NRCV0 above RCV0 to place channel 0 into drive mode.				
60	VTERMO	Channel 0 RCV/NRCV and DATA/NDAT voltage input for the RCV0, NRCV0, DA	A Termination Voltage Input. Termination TA0, and NDATA0 differential inputs.				
61	DATA0	Channel 0 Multiplexer Control Input	Differential controls DATA0 and NDATA0 select driver 0's input from DHV0 or DLV0.				
62	NDATA0	Channel 0 Multiplexer Control Input N	Drive DATA0 above NDATA0 to select DHV0. Drive NDATA0 above DATA0 to select DLV0.				
_	EP	Exposed Heat Removal Paddle. The pa no electrical connection to EP.	ddle is electrically isolated from the die. Make				

Figure 1. Functional Diagram

Detailed Description

The MAX9973/MAX9974 are fully integrated, high-performance, dual-channel pin electronics driver/comparator/load (DCL) with built-in level-setting DACs. Each channel includes a three-level pin driver with three levelsetting DACs, a window comparator with two level-setting DACs, two dynamic clamps with two level-setting DACs, and a 1k Ω load driven by the driver's DTV_DAC. Figure 1 shows a functional diagram of the MAX9973/MAX9974.

The three-level pin driver features a wide -1.5V to +6.5V voltage range and includes high-impedance and active-termination (3rd-level drive) modes. High-speed differential multiplexer control inputs DATA and RCV with internal termination resistors switch the driver between the three input levels. Figure 2 shows a block diagram of the simplified driver channel.

The window comparators provide extremely low timing variation. The MAX9973G/MAX9974G comparator opencollector outputs sink 8mA (typ), while the MAX9973H/ MAX9974H comparator outputs sink 16mA (typ). Figure 3 shows the comparator function. The dynamic clamps provide damping of high-speed DUT waveforms when high-impedance receive mode is selected.

The loads facilitate fast contact testing when used in conjunction with the comparators. Loads also function as pullups for a device-under-test that has open-drain/collector outputs.

A serial interface configures the device and its functions. The MAX9973/MAX9974 are available in a 64-pin (10mm x 10mm x 1.00mm) TQFP-EP package with an exposed paddle on top (MAX9973) or bottom (MAX9974) for heat removal. Power dissipation is only 700mW per channel. The full operating voltage range is -1.5V to +6.5V. Operation is specified with an internal die temperature of +40°C to +100°C. The devices feature a temperature monitor output.

Output Driver

The driver input is a high-speed multiplexer that selects one of three DAC voltages: DHV_, DLV_, or DTV_. The high-speed differential inputs DATA_/NDATA_ and RCV_/NRVC_, and mode-control bit TMSEL_ control the

Figure 2. Simplified Driver Channel

///XI/M

Figure 3. Comparator Functional Diagram

Table 1. Driver Channel Logic

HIGH-SPEED INPUTS		MODE CON	ITROL BITS		
DATA_/NDATA_	RCV_/NRCV_	TMSEL_ (D3)	LLEAK_ (D2)	DUT_	
DATA_ > NDATA_	RCV_ < NRCV_	Х	0	DHV_	
DATA_ < NDATA_	RCV_ < NRCV_	Х	0	DLV_	
Х	RCV_ > NRCV_	1	0	DTV_	
Х	RCV_ > NRCV_	0	0	High impedance (clamps engaged)	
Х	Х	Х	1	Low leakage	

X = Don't care.

Table 2. Driver Slew-Rate Logic

MODE CON	TROL BITS	DDIVED	
S1_ (D1)	S0_ (D0)	DRIVER SLEW RATE (%)	
0	0	100 (fastest)	
0	1	75	
1	0	50	
1	1	25 (slowest)	

switching between the DAC voltages (Table 1). A slewrate circuit controls the slew rate of the buffer input with one of four possible slew rates selectable (Table 2). The 100% slew rate is a function of the inherent speed of the multiplexer (see the Driver Large-Signal Response graph

Table 3. Comparator Logic

COMPARAT	COMPARATOR OUTPUTS					
DUT_>CHV_	HIGH LOW DUT_>CLV_ COMPARATOR COMPARA		-		-	
		CH_	NCH_	CL_	NCL_	
0	0	0	1	0	1	
0	1	0	1	1	0	
1	0	1	0	0	1	
1	1	1	0	1	0	

in the *Typical Operating Characteristics*). DUT_ can be toggled at high speed between driver and high-impedance modes, or can be placed into low-leakage mode

using mode control bit LLEAK_ (Figure 2, Table 1). In high-impedance mode, the bias current at DUT_ is less than 5 μ A over the -1.5V to +6.5V range, while the node maintains its ability to track high-speed signals. In low-leakage mode, the bias current at DUT_ is further reduced to less than ±10nA, and signal tracking slows. See the *Low-Leakage Mode* section for more details.

The nominal driver output resistance is 50 Ω . Contact the factory for different resistance values within the 48Ω to 52Ω range.

Clamps

The voltage clamps (high and low) limit the voltage at DUT_ and suppress reflections when the channel is configured as a high-impedance receiver. The clamps behave as diodes with series 50Ω resistors connected to the outputs of high-current buffers. Internal circuitry compensates for the diode drop at 1mA clamp current. Set the clamp voltages using DACs CPHV_ and CPLV_. The clamps are enabled only when the driver is in high-

impedance mode (Figure 2). For transient suppression, set the clamp voltages to approximately the minimum and maximum expected DUT_ voltage range. The optimal clamp voltages are application-specific and must be empirically determined. If clamping is not desired, set the clamp voltages at least 0.7V outside the expected DUT_ voltage range; overvoltage protection remains active without loading DUT.

Comparators

The MAX9973/MAX9974 provide two independent highspeed comparators for each channel. Each comparator has one input connected internally to DUT_ and the other input connected to either DAC CHV_ or DAC CLV_ (see Figures 1 and 3). Comparator outputs are a logical result of the input conditions, as indicated in Table 3. The comparator differential outputs are opencollector to ease interfacing with a wide variety of logic families. The MAX9973G/MAX9974G switch an 8mA current sink between the two outputs, while the

Figure 4. Serial Interface Block Diagram

HIGH-SPEED INPUT	MOD			
RCV_/NRCV_	LLEAK_ (D2)	TMSEL_ (D3)	LDEN_ (D4)	LOAD
RCV_ < NRCV_	0	Х	Х	Off
Х	0	Х	0	Off
RCV_ > NRCV_	0	0	1	On
RCV_ > NRCV_	0	1	1	Off
Х	1	Х	Х	Off

Table 4. Load Logic

X = Don't care.

Table 5. Serial Interface Data BitDefinitions

DIN BIT	BIT FUNCTION
A7	Not used
A6	Not used
A5	Write enable channel 1
A4	Write enable channel 0
A3	
A2	Register address
A1	(Table 6)
AO	
D15-D0	Register data

MAX9973H/MAX9974H switch 16mA. The 50 Ω output termination resistors connect to voltage input VT_. Each output provides a nominal 400mVP-P swing and 50 Ω source termination.

Ik Ω load is a resistor connected to DUT_ from the output of an internal buffer. The buffer's input is DAC DTV_ (Figure 1). The buffer sinks and sources at least 6.9mA. A switch separates the resistor from the buffer. Operate the switch with serial control bits LDEN_, LLEAK_, and TMSEL_, and through high-speed differential input RCV_/NRCV_. Table 4 shows the truth table for the load-switch operation.

DUT Ground-Sense Input

The DUT ground-sense input (DGS) senses the ground potential of the device-under-test and allows the output and DAC levels of the MAX9973/MAX9974 to be set relative to that ground potential. Connect DGS to the ground of the device-under-test.

Table 6. Register Addresses

REG	SISTER A	DDRESS	REGISTER FUNCTION	
A3	A2	A1	A0	REGISTER FUNCTION
0	0	0	0	DCL mode
0	0	0	1	DHV_ level
0	0	1	0	DLV_ level
0	0	1	1	DTV_ level
0	1	0	0	CHV_ level
0	1	0	1	CLV_ level
0	1	1	0	CPHV_ level
0	1	1	1	CPLV_ level
1	Х	Х	Х	Not used

Table 7. DCL Mode Control Bits

BIT	NAME	FUNCTION	POWER-UP STATE
D4	LDEN	Load enable	0
D3	TMSEL	Terminate select	0
D2	LLEAK	Low-leakage enable	1
D1	S1	Slew-rate control	0
D0	S0	(Table 2)	0

Low-Leakage Mode

Asserting LLEAK_ through the serial interface or with the digital input RST places the MAX9973/MAX9974 in a very low-leakage state (see the *Electrical Characteristics* table). With LLEAK_ asserted, the comparators, driver, clamps, and active load are disabled. This mode is convenient for making IDDQ and PMU measurements without the need for an output disconnect relay. LLEAK_ is programmed independently for each channel, while RST acts on both channels simultaneously.

Serial Interface and Device Control

A CMOS-compatible serial interface controls the MAX9973/MAX9974 modes (Figure 4, Table 5). Control data flow into a 24-bit shift register and is latched when CS is taken high, as shown in Figure 5. The first eight bits, A7–A0, determine which of the two channels is being commanded, and which DAC or DCL the following 16 bits program. The 16 bits, D15–D0, set the DAC voltage or control the setup of the MAX9973/MAX9974 through the mode control bits, as shown in Tables 5, 6, 7, and Figure 6.

MAX9973/MAX9974

Figure 5. Serial-Interface Timing

High-speed differential inputs RCV_/NRCV_ and DATA_/NDATA_, in conjunction with control bits TMSEL_, LLEAK_, and LDEN_, manage the features of each channel. RST sets LLEAK = 1 for both channels, forcing both channels into low-leakage mode; all other bits are unaffected. At power-up, hold RST low until V_{CC} and V_{EE} have stabilized.

Serial Communication

Figure 5 and the serial port timing section of the *Electrical Characteristics* table show the serial interface timing requirements. Note that the first rising clock edge, after \overline{CS} goes low, shifts in bit A7, and the last rising clock edge latches in bit D0. Forcing LOAD low then transfers the data from the serial input register to the DACs and DCLs.

Figure 6. Register Data for DCL and DAC Programming

DACs as Driver Channel Inputs

Digital-to-analog converters, programmed through the serial interface, provide input voltages to the three input multiplexers (DHV_, DTV_, and DLV_), the clamps (CPHV_ and CPLV_), the comparators (CHV_ and CLV_), and the load (DTV_ doubles as the load input voltage source). Set the DAC output voltages as detailed in Figure 6.

Temperature Monitor

The MAX9973 supplies a temperature output signal, TEMP, that asserts a nominal output voltage of 3.43V at a die temperature of +70°C (343K). The output voltage changes proportionally with temperature at 10mV/°C, but is not calibrated.

Heat Removal

Under normal circumstances, the MAX9973 requires heat removal through the exposed paddle through the use of an external heat sink. The exposed paddle is electrically isolated from the die. Make no electrical connection to the exposed paddle.

Power-Supply Considerations

Bypass all V_{CC} and V_{EE} power pins each with a 0.01 μF capacitor, and use bulk bypassing of at least 10 μF on each supply.

Pin Configuration

Chip Information

PROCESS: BiCMOS

MAX9973/MAX9974

Package Information

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to **www.maxim-ic.com/packages**.)

Package Information (continued)

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)

NOTES

- NDTES: 1. ALL DIMENSIONS AND TOLERANCING CONFORM TO ANSI Y14.5-1982. 2. DATUM PLANE —H— IS LOCATED AT MOLD PARTING LINE AND COINCIDENT WITH LEAD, WHERE LEAD EXITS PLASTIC BODY AT BOTTOM OF PARTING LINE. 3. DIMENSIONS DI AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE MOLD PROTRUSION IS 0.25 MM ON DI AND E1 DIMENSIONS. 4. THE TOP OF PACKAGE IS SMALLER THAN THE BOTTOM OF PACKAGE BY AS MUCH AS 0.15 MILLIMETERS. 5. DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 MM TOTAL IN EXCESS OF THE & DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. CONTROLLING DIMENSION MILLIMETER. 7. MEET JEDEC MS-026 EXCEPT FOR COPLANARITY (SEE NOTE 8). 8. LEADS SHALL BE COPLANAR WITHIN 0.10 MM. 9. EXPOSED DIE PAD SHALL BE COPLANAR WITH BOTTOM OF PACKAGE WITHIN 2 MILS (.05 MM). 10. REFER TO PRODUCT DATA SHEET FOR PACKAGE CODE.

s	COMMON DIMENSIONS ALL DIMENSIONS IN MILLIMETERS				
S Y M B D L	JEDEC VARIATION ACD				
L	MIN.	MAX.			
Α	*	1.20			
A1	0.05	0.15			
Aa	0.95	1.05			
D	12.00 BSC.				
D1	10.00 BSC.				
Е	12.00 BSC.				
E1	10.00	BSC.			
L	0.45	0.75			
Ν	6	4			
e	0.50 BSC.				
ю	0.17	0.27			
b1	0.17	0.23			

EXPOSED PAD VARIATIONS						
	DS E5					
PKG CODE	MIN.	NDM.	MAX.	MIN.	NDM.	MAX.
C64E-4R	4.7	5.0	5.3	4.7	5.0	5.3
C64E-9R	5.7	6.0	6.3	5.7	6.0	6.3

	PACKAGE OUTLINE, 64L TQFP, T0XT0XT.00mm								
EXPOSED PAD OPTION, INVERTED DIE PAD APPROVAL DOCUMENT CONTROL NO. REV. 2/									
	21-0162	A	1/2						

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

is a registered trademark of Maxim Integrated Products, Inc.