Memory FRAM cmos

1 M Bit (64 K×16)

MB85R1002

■ DESCRIPTIONS

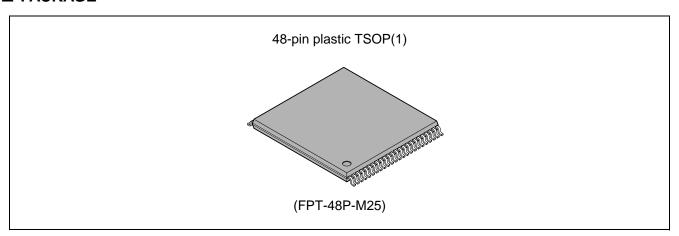
The MB85R1002 is an FRAM (Ferroelectric Random Access Memory) chip in a configuration of 65,536 words x 16 bits, using the ferroelectric process and silicon gate CMOS process technologies for forming the nonvolatile memory cells.

Unlike SRAM, MB85R1002 is able to retain data without back-up battery.

The memory cells used for the MB85R1002 has improved at least 10¹⁰ times of read/write access, significantly outperforming FLASH memory and E²PROM in endurance.

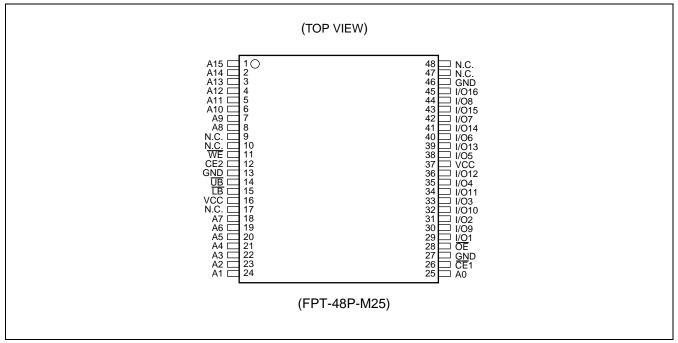
The MB85R1002 uses a pseudo - SRAM interface compatible with conventional asynchronous SRAM.

■ FEATURES

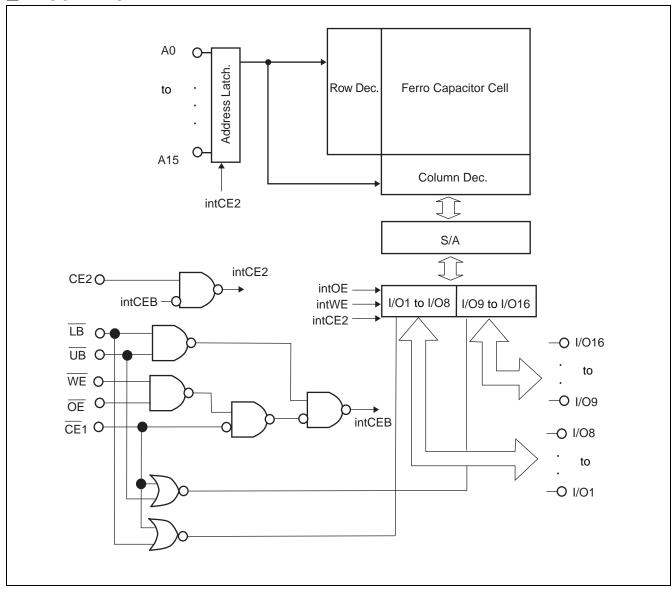

• Bit configuration: 65,536 words x 16 bits

• Read/write endurance: 1010 times

Operating power supply voltage : 3.0 V to 3.6 V
Operating temperature range : -20 °C to +85 °C


- LB and UB data byte control
- 48-pin, TSOP(1) plastic package

■ PACKAGE


■ PIN ASSIGNMENT

■ PIN DESCRIPTION

Pin name	Function			
A0 to A15	Adderss In			
I/O1 to I/O16	Data Input/Output			
CE1	Chip Enable 1 in			
CE2	Chip Enable 2 in			
WE	Write Enable in			
ŌĒ	Output Enable in			
ĪB, ŪB	Data Byte Control in			
VCC	Power Supply			
GND	Ground			

■ BLOCK DIAGRAM

■ FUNCTION TRUTH TABLE

Mode	CE1	CE2	WE	ŌĒ	LB	ŪB	I/O ₁ to I/O ₈	I/O ₉ to I/O ₁₆	Supply Current	
	Н	Х	Х	Х	Χ	Χ				
Standby Pre-charge	Х	L	Х	Х	Х	Х	High-Z	High-Z	Standby	
Standby Fre-charge	Х	Х	Н	Н	Х	Х	riigii-Z	riigii-Z	(IsB)	
	Х	Х	Х	Х	Н	Н				
	_				L	L	Dout	Dout		
Read	\ L	H	Н	L	L	Н	Dout	High-Z		
	_				Н	L	High-Z	Dout		
Read					L	L	Dout	Dout		
(Pseudo-SRAM,	L	Н	Н	Ł	L	Н	Dout	High-Z		
OE control)					Н	H L Hi		Dout		
	_				L	L	Din	Din	Operation (Icc)	
Write	_ L	H	L	Х	L	Н	Din	High-Z	(100)	
	_				Н	L	High-Z	Din		
Write					L	L	Din	Din		
(Pseudo-SRAM,	L	Н	Ł	Н	L	Н	Din	High-Z		
WE control)					Н	L	High-Z	Din		
Output Disable	L	Н	Н	Н	Χ	Х	High-Z	High-Z		

■ ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Ra	Unit	
rarameter	Symbol	Min	Max	Unit
Supply Voltage	Vcc	-0.5	+4.0	V
Input Voltage	Vin	-0.5	Vcc + 0.5	V
Output Voltage	Vouт	-0.5	Vcc + 0.5	V
Ambient Operating Temperature	TA	-20	+85	°C
Storage Temperature	T _{stg}	-40	+125	°C

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V}, T_A = -20 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$

Parameter	Symbol		Unit		
raiailletei	Symbol	Min	Тур	Max	Onn
Supply Voltage	Vcc	3.0	3.3	3.6	V
Input Voltage (high)	VIH	Vcc x 0.8		Vcc + 0.5	V
Input Voltage (low)	Vıl	-0.5	_	+0.6	V
Ambient Operating Temperature	TA	- 20	_	+85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

■ ELECTRICAL CHARACTERISTICS

1. DC CHARACTERISTICS

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V}, T_A = -20 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$

Parameter	Symbol	Test Conditions	V	Unit		
rarameter	Syllibol	rest Conditions	Min	Тур	Max	Ullit
Input Leakage Current	 LI	V _{IN} = 0 V to V _{CC}	_		10	μΑ
Output Leakage Current	I LO	Vout = 0 V to Vcc, $\overline{CE}1 = V_{IH}$ or $\overline{OE} = V_{IH}$	_		10	μΑ
Supply Current	Icc	$\overline{CE}1 = 0.2 \text{ V, } CE2 = Vcc-0.2 \text{ V, } I_{out} = 0 \text{ mA}^{*1}$	_		10	mA
		<u>CE</u> 1 ≥ Vcc-0.2 V				
Standby Current	Isa	CE2 ≤ 0.2 V*2		10	100	μА
	ISB	$\overline{\text{OE}} \ge \text{Vcc-0.2 V}, \ \overline{\text{WE}} \ge \text{Vcc-0.2 V}^{*2}$	_			
		$\overline{\text{LB}} \ge \text{Vcc-0.2 V}, \ \overline{\text{UB}} \ge \text{Vcc-0.2 V}^{*2}$				
Output Voltage (high)	Vон	lон = −2.0 mA	Vcc x 0.8		_	V
Output Voltage (low)	Vol	lo _L = 2.0 mA	_		0.4	V

^{*1 :} Iout : Output current

2. AC TEST CONDITIONS

Supply Voltage: 3.0 V to 3.6 V

Operating Temperature : -20 °C to +85 °C Input Voltage Amplitude : 0.3 V to 2.7 V

Input Rising Time: 10 ns Input Falling Time: 10 ns

Input Evaluation Level: 2.0 V / 0.8 V Output Evaluation Level: 2.0 V / 0.8 V

Output Impedance: 50 pF

(1) Read Operation

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V}, T_A = -20 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$

Devemeters	aumh al	Va	lue	
Parametere	symbol	Min	Max	unit
Read Cycle time	t RC	250	_	ns
CE1 Active Time	t _{CA1}	210	2,000	ns
CE2 Active Time	t _{CA2}	210	2,000	ns
OE Active Time	t RP	210	2,000	ns
LB, UB Active Time	t BP	210	2,000	ns
Pre-charge Time	t PC	40		ns
Address Setup Time	t as	10	_	ns
Address Hold Time	t ah	50	_	ns
OE Setup Time	t ES	10	_	ns
LB, UB Setup Time	t BS	10		ns
CE1 Access Time	t _{CE1}	_	100	ns
CE2 Access Time	t _{CE2}	_	100	ns
OE Access Time	t oe	_	100	ns
OE Output Floating Time	tонz	_	25	ns

^{*2 :} All other inputs ($\overline{CE}1$, $\overline{CE}2$, \overline{OE} , \overline{WE} , \overline{LB} , \overline{UB}) should be at CMOS levels, i.e., $H \ge Vcc - 0.2 \text{ V}$, $L \le 0.2 \text{ V}$.

(2) Write Operation

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V}, T_A = -20 \, ^{\circ}\text{C to } +85 \, ^{\circ}\text{C})$

Parameter	Symbol	Va	Value			
Farameter	Syllibol	Min	Max	Notes		
Write Cycle Time	t wc	250	_	ns		
CE1 Active Time	t CA1	210	2,000	ns		
CE2 Active Time	t _{CA2}	210	2,000	ns		
LB, UB Active Time	t BP	210	2,000	ns		
Pre-Charge Time	t PC	40	_	ns		
Address Setup Time	t as	10	_	ns		
Address Hold Time	t ah	50	_	ns		
LB, UB Setup Time	t BS	10	_	ns		
Write Pulse Width	t wp	210	_	ns		
Data Setup Time	tos	10	_	ns		
Data Hold Time	tон	50	_	ns		
Write Setup Time	tws	0		ns		

(3) Power ON/OFF Sequence

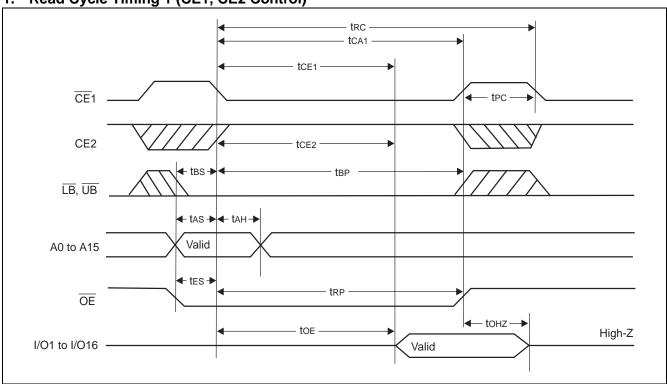
Parameter	Sym-		Units		
Farameter	bol	Min	Тур	Max	Units
CE1 LEVEL holding time in Power OFF	t pd	85	_	_	ns
CE1 LEVEL holding time in Power ON	t pu	85	_	_	ns
Power interval *	t pi	0.5	_	_	S

^{*:} Condition for power detection circuit to function

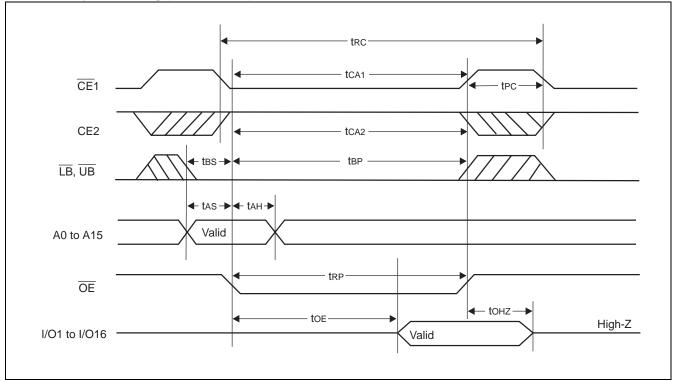
3. Pin Capacitance

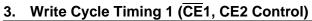
 $(f = 1 \text{ MHz}, T_A = +25 \text{ }^{\circ}\text{C})$

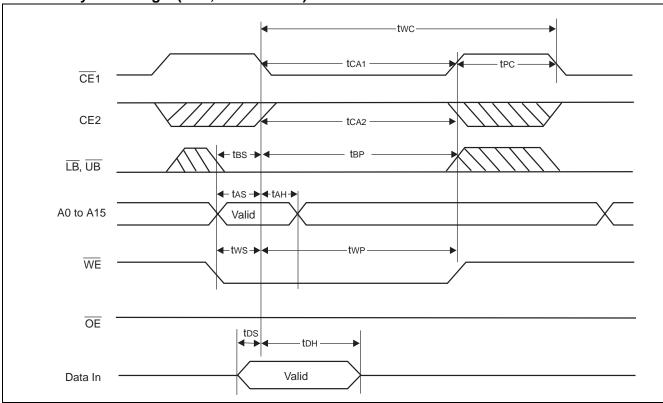
Parameter	Symbol	Test Condition		Value		Unit
Faranietei	Symbol	lest Condition	Min	Тур	Max	Oilit
Input Capacitance	Cin	V _{IN} = GND	_	_	10	pF
Output Capacitance	Соит	Vout = GND	_	_	10	pF

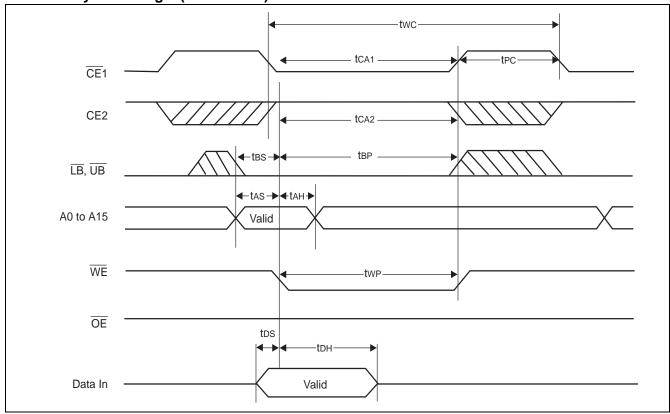

4. Reliability

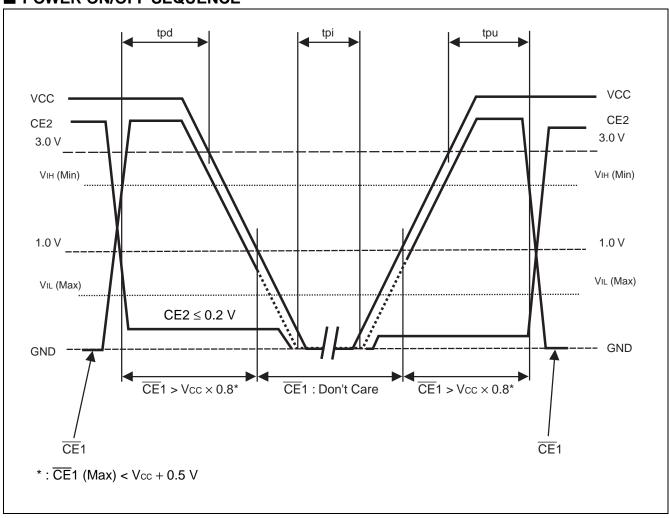
Data retention 10 years ($T_A = 0$ °C to +55 °C)


Access endurance 10^{10} times (T_A = -20 °C to +85 °C)


■ TIMING DIAGRAMS

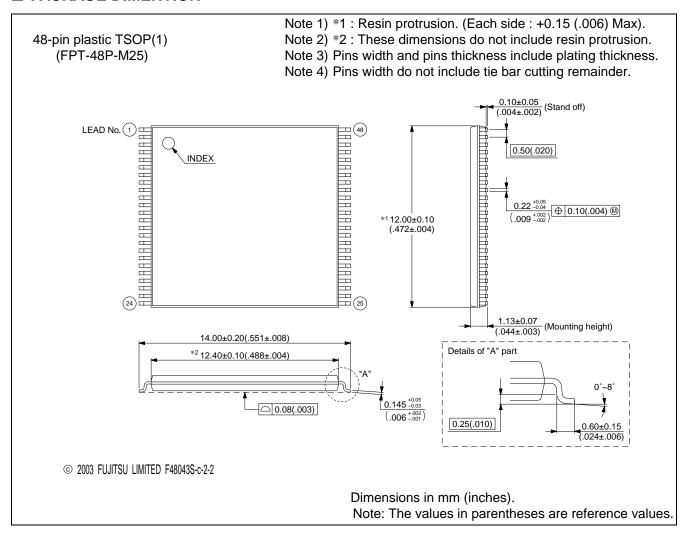

1. Read Cycle Timing 1 (CE1, CE2 Control)


2. Read Cycle Timing (OE Control)



4. Write Cycle Timing 1 (WE Control)

■ POWER ON/OFF SEQUENCE


■ NOTES ON USE

After IR reflow, the hold of data that was written before IR reflow is not guaranteed.

■ ORDERING INFOMATION

Part number	Package	Remarks
MB85R1002PFTN	48-pin plastic TSOP(1) (FPT-48P-M25)	

■ PACKAGE DIMENTION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0501