16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90580B Series

MB90583B/587/F583B/V580B

■ DESCRIPTION

The MB90580B series is a line of general-purpose, Fujitsu 16-bit microcontrollers designed for process control applications which require high-speed real-time processing, such as consumer products.
While inheriting the AT architecture of the $\mathrm{F}^{2} \mathrm{MC}^{\star 1}$ family, the instruction set for the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU core of the MB90580B series incorporates additional instructions for high-level languages, supports extended addressing modes, and contains enhanced multiplication and division instructions as well as a substantial collection of improved bit manipulation instructions. In addition, the MB90580B has an on-chip 32-bit accumulator which enables processing of long-word data.
The peripheral resources integrated in the MB90580B series include: an 8/10-bit A/D converter, an 8-bit D/A converter, UARTs (SCI) 0 to 4 , an $8 / 16$-bit PPG timer, 16 -bit I/O timers (16 -bit free-run timer, input capture units (ICUs) 0 to 3 , output compare units (OCUs) 0 and 1), and an IEBus ${ }^{T \mathrm{M}}$ controller ${ }^{* 2}$.
Notes: *1: F²MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.
*2: IEBus ${ }^{\text {TM }}$ is a trademark of NEC Corporation.
■ FEATURES

- Minimum execution time: $62.5 \mathrm{~ns} / 4 \mathrm{MHz}$ oscillation (Uses PLL clock multiplication) maximum multiplier $=4$
- Maximum memory space

16 Mbyte
Linear/bank access
(Continued)
PACKAGES
100 pin plastic LQFP

MB90580B Series

(Continued)

- Instruction set optimized for controller applications

Supported data types: bit, byte, word, and long-word types
Standard addressing modes: 23 types
32-bit accumulator enhancing high-precision operations
Signed multiplication/division and extended RETI instructions

- Enhanced high level language (C) and multitasking support instructions

Use of a system stack pointer
Symmetrical instruction set and barrel shift instructions

- Program patch function (for two address pointers)
- Enhanced execution speed: 4 byte instruction queue
- Enhanced interrupt function

Up to eight priority levels programmable
External interrupt inputs: 8 lines

- Automatic data transmission function independent of CPU operation

Up to 16 channels for the extended intelligent I/O service
DTP request inputs: 8 lines

- Internal ROM

FLASH: 128 Kbyte
MASKROM: 128 Kbyte (MB90583B) , 64 Kbyte (MB90587)

- Internal RAM

FLASH: 6 Kbyte
MASKROM: 6 Kbyte (MB90583B) , 4 Kbyte (MB90587)

- General-purpose ports

Up to 77 channels (Input pull-up resistor settable for: 24 channels. Output open drain settable for: 8 channels)

- IEBus ${ }^{\text {TM }}$ controller ${ }^{*}$

Three different data transfer rates selectable
Mode 0: 3.9 Kbps (16 bytes/frame)
Mode 1: 17.0 Kbps (32 bytes/frame)
Mode 2: 26.0 Kbps (128 bytes/frame)
*: IEBus ${ }^{\text {TM }}$ is a trademark of NEC Corporation.

- A/D Converter (RC) : 8 ch

8/10-bit resolution
Conversion time: $34.7 \mu \mathrm{~s}$ (Min.) , 12 MHz operation

- D/A Converter: 2 ch

8-bit resolutions
Setup time: $12.5 \mu \mathrm{~s}$

- UART : 5 ch
- 8/16 bit PPG : 1 ch 8 bits $\times 2$ channels: 16 bits $\times 1$ channel: Mode switching function provided
- 16 bit reload timer: 3 ch
- 16-bit PWC timer: 1 channel

Noise filter provided. Available to pulse width counter

- 16 bit I/O timer Input capture : 4 ch
Output compare : 2 ch
Free run timer: 1 ch
- Internal clock generator
- Time-base counter/watchdog timer: 18 -bit

MB90580B Series

(Continued)

- Clock monitor function integrated
- Low-power consumption mode Sleep mode
Stop mode
Hardware standby mode
CPU intermittent operation mode
- Package: LQFP-100 / QFP-100
- CMOS technology

MB90580B Series

PRODUCT LINEUP

Part number Item	MB90587	MB90583B	MB90F583B	MB90V580B
Classification	Mass-produced products (MASK ROM)		Mass-produced products (Flash ROM)	Development/ evaluation product
ROM size	64 Kbytes	128 Kbytes	128 Kbytes	None
RAM size	4 Kbytes	6 Kbytes	6 Kbytes	6 Kbytes
Emulator-specific power supply *1	-	-	-	None
CPU functions	The number of instructions: 340 Instruction bit length: 8 bits, 16 bits Instruction length: 1 byte to 7 bytes Data bit length: 1 bit, 8 bits, 16 bits Minimum execution time: 62.5 ns (at machine clock of 16 MHz) Interrupt processing time: 1.5 ms (at machine clock of 16 MHz , minimum value)			
Ports	General-purpose I/O ports (CMOS output) General-purpose I/O port (Can be set as open-drain) General-purpose I/O ports (Input pull-up resistors available) Total:			$\begin{aligned} & 24 \\ & 77 \end{aligned}$
IEBus ${ }^{\text {TM }}$ controller	None	Communication mode: Half-duplex, asynchronous communication Multi-master system Access control: CDMA/CD Three modes selectable for different transmission speeds Transmit buffer: 8-byte FIFO buffer Receive buffer: 8-byte FIFO buffer		
Timebase timer	18-bit counter Interrupt interval: $1.024 \mathrm{~ms}, 4.096 \mathrm{~ms}, 16.384 \mathrm{~ms}, 131.072 \mathrm{~ms}$ (At oscillation of 4 MHz)			
Watchdog timer	Reset generation interval: $3.58 \mathrm{~ms}, 14.33 \mathrm{~ms}, 57.23 \mathrm{~ms}, 458.75 \mathrm{~ms}$ (at oscillation of 4 MHz , minimum value)			
Clock timer	15-bit counterInterrupt interval: $1 \mathrm{~s}, 0.5 \mathrm{~s}, 0.25 \mathrm{~s}, 31.25 \mathrm{~ms}$ (At oscillation of 32.768 kHz)			
8/16-bit PPG timer	Number of channels: 1 (8 -bit $\times 2$ channels) PPG operation of 8-bit or 16-bit A pulse wave of given intervals and given duty ratios can be output. Pulse interval: 62.5 ns to 1 ms (at oscillation of 4 MHz , machine clock of 16 MHz)			
16-bit reload timer	Number of channels: 3 Event count provided Interval: 125 ns to 131 ms (at oscillation of 4 MHz , machine clock of 16 MHz)			
PWC timer	Number of channels: 1 Timer function (select the counter timer from three internal clocks.) Pulse width measuring function (select the counter timer from three internal clocks.)			

(Continued)
(Continued)

Part number Item		MB90587	MB90583B	MB90F583B	MB90V580B
$\begin{aligned} & 16-\mathrm{bit} \\ & 1 / \mathrm{O} \\ & \text { tim } \end{aligned}$	$\begin{aligned} & 16 \text {-bit } \\ & \text { free run timer } \end{aligned}$	Number of channels: 1 Overflow interrupts			
	Output compare (OCU)	Number of channels: 2 Pin input factor: A match signal of compare register			
	Input capture (ICU)	Number of channels: 4 Rewriting a register value upon a pin input (rising, falling, or both edges)			
DTP/external interrupt circuit		Number of inputs: 8 Started by a rising edge, a falling edge, an " H " level input, or an " L " level input. External interrupt circuit or extended intelligent I/O service (EIOS) can be used.			
Delayed interrupt generation module		An interrupt generation module for switching tasks used in real time operating systems.			
UARTO	2, 3, 4	Clock synchronized transmission (62.5 Kbps to 1 Mbps) Clock asynchronized transmission (1202 bps to 9615 bps) Transmission can be performed by bi-directional serial transmission or by master/ slave connection.			
A/D converter		Resolution: 8/10-bit changeable Number of inputs: 8 One-shot conversion mode (converts selected channel only once) Scan conversion mode (converts two or more successive channels and can program up to 8 channels.) Continuous conversion mode (converts selected channel repeatedly) Stop conversion mode (converts selected channel and stop operation repeatedly)			
D/A converter		8-bit resolution Number of channels: 2 channels Based on the R-2R system			
Low-power consumption (standby) mode		Sleep/stop/CPU intermittent operation/clock timer/hardware standby			
Process		CMOS			
Power supply voltage for operation*		4.5 V to 5.5 V *2			

*1 : It is setting of DIP switch S2 when Emulation pod (MB2145-507) is used.
Please refer to the MB2145-507 hardware manual (2.7 Emulator-specific Power Pin) about details.
*2 : Varies with conditions such as the operating frequency (See section "■ ELECTRICAL CHARACTERISTICS").
Assurance for the MB90V580B is given only for operation with a tool at a power supply voltage of 4.5 V to 5.5 V , an operating temperature of 0 to $+25^{\circ} \mathrm{C}$, and an operating frequency of 1 MHz to 16 MHz .

PACKAGE AND CORRESPONDING PRODUCTS

Package	MB90583B	MB90587	MB90F583B
FPT-100P-M05	\bigcirc	\bigcirc	\bigcirc
FTP-100P-M06	\bigcirc	\bigcirc	\bigcirc

\bigcirc : Available \times : Not available
Note: For more information about each package, see section "■ PACKAGE DIMENSIONS".

MB90580B Series

DIFFERENCES AMONG PRODUCTS

Memory Size

In evaluation with an evaluation product, note the difference between the evaluation product and the product actually used. The following items must be taken into consideration.

- The MB90V580B does not have an internal ROM, however, operations equivalent to chips with an internal ROM can be evaluated by using a dedicated development tool, enabling selection of ROM size by settings of the development tool.
- In the MB90V580B, images from FF4000н to FFFFFFн are mapped to bank 00, and FE0000н to FF3FFFH to mapped to bank FE and FF only. (This setting can be changed by configuring the development tool.)
- In the MB90583B/587/F583B, images from FF4000н to FFFFFFн are mapped to bank 00, and FF0000н to FF3FFF to bank FF only.

IEBus ${ }^{\text {TM }}$ Controller

- MB90587 does not have an IEBus ${ }^{T \mathrm{M}}$ Controller.

MB90580B Series

PIN ASSIGNMENT

MB90580B Series

(TOP VIEW)

(FPT-100P-M06)

MB90580B Series

PIN DESCRIPTION

Pin no.		Pin name	Circuit type	Function
QFP*1	LQFP*2			
82	80	X0	A	Oscillator pin
83	81	X1	A	Oscillator pin
52	50	HST	C	Hardware standby input pin
77	75	$\overline{\text { RST }}$	B	Reset input pin
85 to 92	83 to 90	P00 to P07	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O ports. A pull-up resistor can be assigned (RD07 to RD00="1") by the pullup resistor setting register (RDRO). [These pins are disabled with the output setting (DDR0 register: D07 to D00="1").]
		$\begin{aligned} & \text { AD00 to } \\ & \text { AD07 } \end{aligned}$		In external bus mode, the pins function as the lower data I/O or lower address outputs (AD00 to AD07).
$\begin{gathered} 93 \text { to } \\ 100 \end{gathered}$	91 to 98	$\begin{aligned} & \text { P10 to } \\ & \text { P17 } \end{aligned}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O ports. A pull-up resistor can be assigned (RD17 to RD10="1") by the pullup resistor setting register (RDR1). [These pins are disabled with the output setting (DDR1 register: D17 to D10 ="1").]
		$\begin{gathered} \text { AD08 to } \\ \text { AD15 } \end{gathered}$		In 16-bit external bus mode, the pins function as the upper data I/O or middle address outputs (AD08 to AD15).
1 to 8	$\begin{gathered} 99,100, \\ 1 \text { to } 6 \end{gathered}$	$\begin{aligned} & \text { P20 to } \\ & \text { P27 } \end{aligned}$	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O ports In external bus mode, pins for which the corresponding bit in the HACR register is " 1 " function as the A16 to A23 pins.
		$\begin{gathered} \text { A16 to } \\ \text { A23 } \end{gathered}$		In external bus mode, pins for which the corresponding bit in the HACR register is " 1 " function as the upper address output pins (A16 to A23).
9	7	P30	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port Functions as the ALE pin in external bus mode.
		ALE		Functions as the address latch enable signal pin (ALE) in external bus mode.
10	8	P31	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port Functions as the $\overline{\mathrm{RD}}$ pin in external bus mode.
		$\overline{\mathrm{RD}}$		Functions as the read strobe output pin ($\overline{\mathrm{RD}}$) in external bus mode.
12	10	P32	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port Functions as the WRL pin in external bus mode if the WRE bit is "1".
		$\overline{\text { WRL }}$		Functions as the lower data write strobe output pin ($\overline{\mathrm{WRL}}$) in external bus mode.
13	11	P33	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port Functions as the WRH pin in 16-bit external bus mode if the WRE bit in the EPCR register is " 1 "
		WRH		Functions as the upper data write strobe output pin (产RH) in external bus mode.

*1: FPT-100P-M06
*2: FPT-100P-M05
(Continued)

MB90580B Series

Pin no.		Pin name	Circuit type	Function
QFP*1	LQFP*2			
14	12	P34	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port Functions as the HRQ pin in external bus mode if the HDE bit in the EPCR register is " 1 ".
		HRQ		Functions as the hold request input pin (HRQ) in external bus mode.
15	13	P35	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port Functions as the HAK pin in external bus mode if the HDE bit in the EPCR register is " 1 ".
		$\overline{\text { HAK }}$		Functions as the hold acknowledge output pin ($\overline{\mathrm{HAK}}$) in external bus mode.
16	14	P36	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port Functions as the RDY pin in external bus mode if the RYE bit in the EPCR register is " 1 ".
		RDY		Functions as the external ready input pin (RDY) in external bus mode.
17	15	P37	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port Functions as the CLK pin in external bus mode if the CKE bit in the EPCR register is " 1 ".
		CLK		Functions as the machine cycle clock output pin (CLK) in external bus mode.
18	16	P40	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as an open-drain output port with OD40 in the opendrain control setting register (ODR4) set to " 1 ". [The pin is disabled with the input setting (DDR4 register: D40="0").]
		SIN0		UARTO serial data input (SINO) pin. When UARTO is operating for input, this input is used as required and thus the output from any other function to the pin must be off unless used intentionally.
19	17	P41	$\begin{gathered} \text { E } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as an open-drain output port with OD41 in the opendrain control setting register (ODR4) set to " 1 ". [The pin is disabled with the input setting (DDR4 register: D41="0").]
		SOT0		UARTO serial data output pin (SOTO). This pin is enabled with the UARTO serial data output enabled.
20	18	P42	$\begin{gathered} \text { E } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as an open-drain output port with OD42 in the opendrain control setting register (ODR4) set to " 1 ". [The pin is disabled with the input setting (DDR4 register: D42="0").]
		SCK0		UARTO serial clock I/O pin (SCKO). This pin is enabled with the UARTO clock output enabled.

[^0](Continued)

MB90580B Series

Pin no.		Pin name	Circuit type	Function
QFP*1	LQFP*2			
21	19	P43	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as an open-drain output port with OD43 in the opendrain control setting register (ODR4) set to " 1 ". [The pin is disabled with the input setting (DDR4 register: D43="0").]
		SIN1		UART1 serial data input (SIN1) pin. When UART1 is operating for input, this input is used as required and thus the output from any other function to the pin must be off unless used intentionally.
22	20	P44	$\begin{gathered} \mathrm{E} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as an open-drain output port with OD44 in the opendrain control setting register (ODR4) set to " 1 ". [The pin is disabled with the input setting (DDR4 register: D44="0").]
		SOT1		UART1 serial data output pin (SOT1). This pin is enabled with the UART1 serial data output enabled.
24	22	P45	$\begin{gathered} \text { E } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as an open-drain output port with OD45 in the opendrain control setting register (ODR4) set to " 1 ". [The pin is disabled with the input setting (DDR4 register: D45="0").]
		SCK1		UART1 serial clock I/O pin (SCK1). This pin is enabled with the UART1 clock output enabled.
25	23	P46	$\begin{gathered} \text { E } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as an open-drain output port with OD46 in the opendrain control setting register (ODR4) set to " 1 ". [The pin is disabled with the input setting (DDR4 register: D46="0").]
		ADTG		External trigger input pin (ADTG) for the A/D converter.
26	24	P47	$\begin{gathered} \text { E } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port. This pin serves as an open-drain output port with OD47 in the opendrain control setting register (ODR4) set to " 1 ". [The pin is disabled with the input setting (DDR4 register: D47="0").]
38	36	P50	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN0		Analog input pin (ANO) for use during A/D converter operation.
		SIN3		UART3 serial data input pin (SIN3). When UART3 is operating for input, this input is used as required and thus the output from any other function to the pin must be off unless used intentionally.
39	37	P51	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN1		Analog input pin (AN1) for use during A/D converter operation.
		SOT3		UART3 serial data output pin (SOT3). This pin is enabled with the UART3 serial data output enabled.

*1: FPT-100P-M06
*2: FPT-100P-M05
(Continued)

MB90580B Series

Pin no.		Pin name	Circuit type	Function
QFP*1	LQFP*2			
40	38	P52	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN2		Analog input pin (AN2) for use during A/D converter operation.
		SCK3		UART3 serial clock I/O pin (SCK3). This pin is enabled with the UART3 clock output enabled.
41	39	P53	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN3		Analog input pin (AN3) for use during A/D converter operation.
43	41	P54	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN4		Analog input pin (AN4) for use during A/D converter operation.
		SIN4		UART4 serial data input pin (SIN4). When UART4 is operating for input, this input is used as required and thus the output from any other function to the pin must be off unless used intentionally.
44	42	P55	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN5		Analog input pin (AN5) for use during A/D converter operation.
		SOT4		UART4 serial data output pin (SOT4). This pin is enabled with the UART4 serial data output enabled.
45	43	P56	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN6		Analog input pin (AN6) for use during A/D converter operation.
		SCK4		UART4 serial clock output pin (SCK4). This pin is enabled with the UART4 clock output enabled.
46	44	P57	$\begin{gathered} \mathrm{G} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		AN7		Analog input pin (AN7) for use during A/D converter operation.
27	25	C	-	$0.1 \mu \mathrm{~F}$ capacitor coupling pin for regulating the power supply.
28	26	P71	F (CMOS/H)	General-purpose I/O port.
29	27	P72	F (CMOS/H)	General-purpose I/O port.
32	30	P73	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as a D/A output pin (DA00) when the DAEO bit in the D/A control register (DACR) is " 1 ".
		DA00		D/A converter output 0 (DA00) pin.
33	31	P74	$\begin{gathered} \mathrm{H} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. This pin serves as a D/A output pin (DA01) when the DAE1 bit in the D/A control register (DACR) is " 1 ".
		DA01		D/A converter output 1 pin (DA01).
47	45	P80	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		IRQ0		Functions as external interrupt request input 0 pin (IRQO).

*1: FPT-100P-M06
*2: FPT-100P-M05
(Continued)

MB90580B Series

Pin no.		Pin name	Circuit type	Function
QFP**	LQFP*2			
48	46	P81	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		IRQ1		Functions as external interrupt request input 1 pin (IRQ1).
53	51	P82	F(CMOS/H)	General-purpose I/O port.
		IRQ2		Functions as external interrupt request input 2 pin (IRQ2).
54	52	P83	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		IRQ3		Functions as external interrupt request input 3 pin (IRQ3).
55	53	P84	F(CMOS/H)	General-purpose 1/O port.
		IRQ4		Functions as external interrupt request input 4 pin (IRQ4).
56	54	P85	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		IRQ5		Functions as external interrupt request input 5 pin (IRQ5).
57	55	P86	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		IRQ6		Functions as external interrupt request input 6 pin (IRQ6).
58	56	P87	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		IRQ7		Functions as external interrupt request input 7 pin (IRQ7).
59	57	P60	$\begin{gathered} \text { D } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port. A pull-up resistor can be assigned (RD60="1") by the pull-up resistor setting register (RDR6). [This pin is disabled with the output setting (DDR6 register: D60="1").]
		SIN2		UART2 serial data input pin (SIN2). When UART2 is operating for input, this input is used as required and thus the output from any other function to the pin must be off unless used intentionally.
60	58	P61	$\begin{gathered} \text { D } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. A pull-up resistor can be assigned (RD61="1") by the pull-up resistor setting register (RDR6). [This pin is disabled with the output setting (DDR6 register: D61="1").]
		SOT2		UART2 serial data output pin (SOT2). This pin is enabled with the UART2 serial data output enabled.
61	59	P62	$\begin{gathered} \mathrm{D} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. A pull-up resistor can be assigned (RD62="1") by the pull-up resistor setting register (RDR6). [This pin is disabled with the output setting (DDR6 register: D62="1").]
		SCK2		UART2 serial clock I/O pin (SCK2). This pin is enabled with the UART2 clock output enabled.

*1: FPT-100P-M06
*2: FPT-100P-M05
(Continued)

MB90580B Series

(Continued)

Pin no.		Pin name	Circuit type	Function
QFP* ${ }^{* 1}$	LQFP*2			
62	60	P63	$\begin{gathered} \text { D } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. A pull-up resistor can be assigned (RD63="1") by the pull-up resistor setting register (RDR6). [This pin is disabled with the output setting (DDR6 register: D63="1").]
		PPG1		The pin serves as the PPG1 output when PPGs are enabled.
63	61	P64	$\begin{gathered} \text { D } \\ \text { (CMOS/H) } \end{gathered}$	General-purpose I/O port. A pull-up resistor can be assigned (RD64="1") by the pull-up resistor setting register (RDR6). [This pin is disabled with the output setting (DDR6 register: D64="1").]
		PPG0		The pin serves as the PPG0 output when PPGs are enabled.
64	62	P65	$\begin{gathered} \text { D } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port. A pull-up resistor can be assigned (RD65="1") by the pull-up resistor setting register (RDR6). [This pin is disabled with the output setting (DDR6 register: D65="1").]
		CKOT		This pin serves as the CKOT output during CKOT operation.
65	63	TX*3	I	This pin serves as the IEBus ${ }^{\text {TM }}$ output.
66	64	RX*3	$\underset{(\mathrm{CMOS})}{\mathrm{J}}$	This pin serves as the IEBus ${ }^{\text {TM }}$ input.
67 to 69	65 to 67	$\begin{aligned} & \text { P90 to } \\ & \text { P92 } \end{aligned}$	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		TINO to TIN2		Event input pins for reload timers 0,1 , and 2. During reload timer input, these inputs are used continuously and thus the output from any other function to the pins must be avoided unless used intentionally.
		IN0 to IN2		Trigger inputs for input capture channels 0 to 2
70	68	P93	$\begin{gathered} \text { F } \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		TOT0		Reload timer output pin. This function is applied when the output for reload timer 0 is enabled.
		IN3		Trigger inputs for input capture channel 3.
71, 72	69, 70	P94, P95	$\begin{gathered} \mathrm{F} \\ (\mathrm{CMOS} / \mathrm{H}) \end{gathered}$	General-purpose I/O port.
		TOT1, TOT2		Reload timer output pins. This function is applied when the output for reload timer 1 and 2 are enabled.
		OUTO, OUT1		Event output for channel 0 and 1 of the output compare
73	71	P96	F (CMOS/H)	General-purpose I/O port.
		PWC		This pin serves as the PWC input with the PWC timer enabled.

*1: FPT-100P-M06
*2: FPT-100P-M05
*3: N.C. pin on the MB90587.

MB90580B Series

(Continued)

Pin no.		Pin name	Circuit type	Function
QFP*1	LQFP*2			
74	72	P97	F (CMOS/H)	General-purpose I/O port.
		POT		This pin serves as the PWC output with the PWC timer enabled.
75, 76	73, 74	PA0, PA1	F (CMOS/H)	General-purpose I/O port.
78	76	PA2	F (CMOS/H)	General-purpose I/O port.
79	77	X1A	A	Oscillation input pin.
80	78	X0A	A	Oscillation input pin.
34	32	AV ${ }_{\text {cc }}$	-	A/D converter power supply pin.
37	35	AVss	-	A/D converter power supply pin.
35	33	AVRH	-	A/D converter external reference power supply pin.
36	34	AVRL	-	A/D converter external reference power supply pin.
30	28	DVRH	-	D/A converter external reference power supply pin.
31	29	DVss	-	D/A converter power supply pin.
49 to 51	47 to 49	$\begin{gathered} \text { MD0 to } \\ \text { MD2 } \end{gathered}$	C	Input pin for specifying the operation mode. Connect these pins directly to Vcc or Vss.
23, 84	21, 82	Vcc	-	Power supply (5V) input pin.
$\begin{gathered} 11,42, \\ 81 \end{gathered}$	$\begin{gathered} 9,40, \\ 79 \end{gathered}$	Vss	-	Power supply (0 V) input pin.

*1: FPT-100P-M06
*2: FPT-100P-M05

MB90580B Series

I/O CIRCUIT TYPE

| Type | | Remarks |
| :--- | :--- | :--- | :--- | :--- |
| Oscillation feedback resistance | | |
| : Approx. $1 \mathrm{M} \Omega$ | | |

(Continued)

MB90580B Series

Type	Circuit	Remarks
E	Standby control signal	- CMOS level output - Hysteresis input with standby control - Incorporates open-drain control
F		- CMOS level output - Hysteresis input with standby control
G		- CMOS level output - Hysteresis input with standby control - Analog input

(Continued)

MB90580B Series

(Continued)

| Type | Circuit | Remarks

 • CMOS level output
 - DA output input with standby control |
| :---: | :---: | :---: | :---: |
| S | | |

MB90580B Series

■ HANDLING DEVICES

1. Preventing Latchup

CMOS ICs may cause latchup in the following situations:

- When a voltage higher than Vcc or lower than Vss is applied to input or output pins.
- When a voltage exceeding the rating is applied between Vcc and Vss.
- When AVcc power is supplied prior to the Vcc voltage.

If latchup occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Use meticulous care not to let it occur.
For the same reason, also be careful not to let the analog power-supply voltage exceed the digital power-supply voltage.

2. Handling unused input pins

Unused input pins left open may cause abnormal operation, or latch-up leading to permanent damage. Unused input pins should be pulled up or pulled down through at least $2 \mathrm{k} \Omega$ resistance.
Unused input/output pins may be left open in output state, but if such pins are in input state they should be handled in the same way as input pins.

3. Treatment of the TX and RX pins with the IEBus ${ }^{\text {TM }}$ unused

When the IEBus is not used, connect a pull-down resistor to the TX pin and a pull-down/pull-up resistor to the RX pin.

4. Use of the subclock mode and external clock

Even when the subclock mode is not used, connect an oscillator to the X0A or X1A pin.
When the device uses an external clock, drive only the X 0 pin while leaving the X 1 pin open (See the illustration below).

5. Power Supply Pins (Vcc/Vss)

In products with multiple V_{cc} or $\mathrm{V}_{\text {ss }}$ pins, the pins of a same potential are internally connected in the device to avoid abnormal operations including latch-up. However, connect the pins external power and ground lines to lower the electro-magnetic emission level to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total current rating.
Make sure to connect V_{cc} and V_{ss} pins via lowest impedance to power lines.

MB90580B Series

It is recommended to provide a bypass capacitor of around $0.1 \mu \mathrm{~F}$ between V_{cc} and V ss pin near the device.

6. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit not cross the lines of other circuits.
It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with an grand area for stabilizing the operation.
7. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A / D converter power supply ($\mathrm{AV} \mathrm{Vc}, \mathrm{AVss}, \mathrm{AVRH}, \mathrm{AVRL}$) and analog inputs (AN0 to AN7) after turning-on the digital power supply (V cc).
Turn-off the digital power after turning off the A/D converter supply and analog inputs. In this case, make sure that the voltage of AVRH dose not exceed AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).

8. Connection of Unused Pins of A/D Converter

Connect unused pin of A / D converter to $\mathrm{AV} \mathrm{cc}=\mathrm{V} c \mathrm{c}, \mathrm{AV} s \mathrm{~s}=\mathrm{AVRH}=\mathrm{AVRL}=\mathrm{V} s \mathrm{~s}$.
9. Connection of Unused Pins of D/A Converter

Connect unused pin of D/A converter to DVRH = Vss, DVss = Vss.
10. N.C. Pin

The N.C. (internally connected) pin must be opened for use.

11. Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at $50 \mu \mathrm{~s}$ or more (0.2 V to 2.7 V).

MB90580B Series

12. Indeterminate outputs from ports $\mathbf{0}$ and $\mathbf{1}$

The outputs from ports 0 and 1 become indeterminate during a power-on reset after the power is turned on. Pay attention to the port output timing shown as follow.

13. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers turning on the power again.

14. Return from standby state

If the power-supply voltage goes below the standby RAM holding voltage in the standby state, the device may fail to return from the standby state. In this case, reset the device via the external reset pin to return to the normal state.
15. Precautions for Use of 'DIV A, Ri,' and 'DIVW A, RWi' Instructions

The signed multiplication-division instructions 'DIV A, Ri,' and 'DIVW A, RWi' should be used when the corresponding bank registers (DTB, ADB, USB, SSB) are set to value ' 00 h.' If the corresponding bank registers (DTB, ADB, USB, SSB) are set to a value other than ' 00 h ,' then the remainder obtained after the execution of the instruction will not be placed in the instruction operand register.

16. Precautions for Use of REALOS

Extended intelligent I/O service (EI²OS) cannot be used, when REALOS is used.

MB90580B Series

BLOCK DIAGRAM

MB90580B Series

MEMORY MAP

Note: The ROM data of bank FF is reflected in the upper address of bank 00, realizing effective use of the C compiler small model. The lower 16 -bit is assigned to the same address, enabling reference of the table on the ROM without stating "far". For example, if an attempt has been made to access 00 COOOH , the contents of the ROM at FFCOOOн are accessed actually. Since the ROM area of the FF bank exceeds 48 Kbytes, the whole area cannot be reflected in the image for the 00 bank. The ROM data at FF4000 to FFFFFF looks, therefore, as if it were the image for 00400H to 00FFFFн. Thus, it is recommended that the ROM data table be stored in the area of FF4000 to FFFFFFн.

MB90580B Series

F²MC-16LX CPU PROGRAMMING MODEL

- Dedicated registers

MB90580B Series

- General-purpose registers

- Processor status (PS)

MB90580B Series

I/O MAP

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
00н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXXX ${ }^{\text {¢ }}$
01н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXXX ${ }_{\text {¢ }}$
02н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXXX ${ }_{\text {¢ }}$
03н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXXX ${ }_{\text {¢ }}$
04н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXXX ${ }_{\text {¢ }}$
05 н	Port 5 data register	PDR5	R/W	Port 5	11111111в
06н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXXX ${ }_{\text {¢ }}$
07	Port 7 data register	PDR7	R/W	Port 7	---XXXX -в
08н	Port 8 data register	PDR8	R/W	Port 8	XXXXXXXX
09н	Port 9 data register	PDR9	R/W	Port 9	XXXXXXXX
ОАн	Port A data register	PDRA	R/W	Port A	----- ХХХв
0Bh to 0F\%	(Disabled)				
10 H	Port 0 direction register	DDR0	R/W	Port 0	00000000 в
11н	Port 1 direction register	DDR1	R/W	Port 1	00000000 в
12н	Port 2 direction register	DDR2	R/W	Port 2	0000000 в
13н	Port 3 direction register	DDR3	R/W	Port 3	00000000в
14н	Port 4 direction register	DDR4	R/W	Port 4	0000000 в
15 н	Port 5 direction register	DDR5	R/W	Port 5	00000000 в
16н	Port 6 direction register	DDR6	R/W	Port 6	00000000 в
17 ${ }_{\text {H }}$	Port 7 direction register	DDR7	R/W	Port 7	---0000-в
18н	Port 8 direction register	DDR8	R/W	Port 8	00000000 в
19н	Port 9 direction register	DDR9	R/W	Port 9	00000000в
$1 \mathrm{AH}^{\text {}}$	Port A direction register	DDRA	R/W	Port A	-----000в
1 BH	Port 4 output pin register	ODR4	R/W	Port 4	00000000в
1 CH	Port 5 analog input enable register	ADER	R/W	Port 4, A/D	11111111в
1Dh to 1FH	(Disabled)				
$2 \mathrm{OH}^{\text {H}}$	Serial mode register 0	SMR0	R/W	UART0	00000000в
21H	Serial control register 0	SCR0	R/W		00000100 в
22н	Serial input data register $0 /$ serial output data register 0	$\begin{aligned} & \hline \text { SIDR0/ } \\ & \text { SODRO } \end{aligned}$	R/W		XXXXXXXX
23н	Serial status register 0	SSR0	R/W		00001-00в

(Continued)

MB90580B Series

Address	Register name	Abbreviated register name	Read/ write	Resource name	Initial value
24H	Serial mode register 1	SMR1	R/W	UART1	00000000в
25 H	Serial control register 1	SCR1	R/W		00000100в
26 +	Serial input data register 1/ serial output data register 1	$\begin{aligned} & \text { SIDR1/ } \\ & \text { SODR1 } \end{aligned}$	R/W		ХХХХХХХХХв
27 H	Serial status register 1	SSR1	R/W		00001-00в
28н	Serial mode register 2	SMR2	R/W	UART2	00000000в
29н	Serial control register 2	SCR2	R/W		00000100в
2 2н $^{\text {r }}$	Serial input data register 2/ serial output data register 2	$\begin{aligned} & \hline \text { SIDR2/ } \\ & \text { SODR2 } \end{aligned}$	R/W		ХХХХХХХХХв
2 BH	Serial status register 2	SSR2	R/W		00001-00в
2 C	Clock division control register 0	CDCR0	R/W	Communications prescaler 0	0---1111в
2D	(Disabled)				
2Ен	Clock division control register 1	CDCR1	R/W	Communications prescaler 1	0---1111в
$2 \mathrm{~F}_{\mathrm{H}}$	(Disabled)				
30н	DTP/interrupt enable register	ENIR	R/W	DTP/external interrupt	00000000 в
31н	DTP/interrupt factor register	EIRR	R/W		XXXXXXXX
32н	Request level setting register lower	ELVR	R/W		00000000 в
33н	Request level setting register upper				00000000 в
34	Clock division control register 2	CDCR2	R/W	Communications prescaler 2	0---1111в
35	(Disabled)				
36н	Control status register lower	ADCS1	R/W	A/D converter	00000000 в
37	Control status register upper	ADCS2	R/W		00000000 в
38н	Data register lower	ADCR1	R		XXXXXXXX
39н	Data register upper	ADCR2	R or W		00001-XX
ЗАн	D/A converter data register 0	DAT0	R/W	D/A converter	00000000 в
3Вн	D/A converter data register 1	DAT1	R/W		00000000 в
3С	D/A control register 0	DACR0	R/W		-------0в
3D	D/A control register 1	DACR1	R/W		-------0в
ЗЕн	Clock output enable register	CLKR	R/W	Clock monitor function	----0000в
3 FH	(Disabled)				

(Continued)

MB90580B Series

Address	Register name	Abbreviated register name	Read/ write	Resource name	Initial value
40	Reload register L (ch.0)	PRLLO	R/W	8/16 bit PPG0/1	XXXXXXXXв
41н	Reload register H (ch.0)	PRLH0	R/W		XXXXXXXX
42 H	Reload register L (ch.1)	PRLL1	R/W		XXXXXXXX
43-	Reload register H (ch.1)	PRLH1	R/W		XXXXXXXX
44н	PPG0 operating mode control register	PPGC0	R/W		0X000XX1в
45	PPG1 operating mode control register	PPGC1	R/W		0X000001в
46	PPG0 and 1 operating output control registers	PPGOE	R/W		00000000в
47 ${ }^{\text {r }}$	(Disabled)				
48н	Timer control status register lower	TMCSR0	R/W	$\begin{aligned} & 16 \text { bit } \\ & \text { reload timer } 0 \end{aligned}$	00000000в
49н	Timer control status register upper				----0000в
4Ан	16 bit timer register lower/ 16 bit reload register lower	TMRO/ TMRLRO	R/W		ХХХХХХХХХв
4Вн	16 bit timer register upper/ 16 bit reload register upper				ХХХХХХХХХв
4 CH	Timer control status register lower	TMCSR1	R/W	16 bit reload timer 1	00000000в
4D	Timer control status register upper				----0000в
4Ен	16bit timer register lower/ 16 bit reload register lower	TMR1/ TMRLR1	R/W		ХХХХХХХХХв
4FH	16 bit timer register upper/ 16 bit reload register upper				ХХХХХХХХХв
50	Timer control status register lower	TMCSR2	R/W	16 bit reload timer 2	00000000в
51н	Timer control status register upper				----0000в
52н	16 bit timer register lower/ 16 bit reload register lower	TMR2/ TMRLR2	R/W		ХХХХХХХХХв
53н	16 bit timer register upper/ 16 bit reload register upper				ХХХХХХХХХв
54	PWC control status register lower	PWCSR	R/W	16 bit PWC timer	00000000в
55н	PWC control status register upper				00000000в
56н	PWC data buffer register lower	PWCR	R/W		ХХХХХХХХХв
57\%	PWC data buffer register upper				XXXXXXXX
58н	Divide ratio control register	DIVR	R/W		------00в
59н	(Disabled)				

(Continued)

MB90580B Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
5Ан	Compare register lower	OCCP0	R/W	Output compare (ch.0)	XXXXXXXXв
5Вн	Compare register upper				XXXXXXXX ${ }_{\text {¢ }}$
5 CH	Compare register lower	OCCP1	R/W	Output compare (ch.1)	XXXXXXXXв
5D	Compare register upper				XXXXXXXX
5Ен	Compare control status register 0	OCS0	R/W	Output compare (ch.0)	0000--00в
5F\%	Compare control status register 1	OCS1	R/W	Output compare (ch.1)	---00000в
60н	Input capture register lower	IPCP0	R	Input capture (ch.0)	XXXXXXXXв
61н	Input capture register upper				XXXXXXXX
62н	Input capture register lower	IPCP1	R	Input capture (ch.1)	XXXXXXXXв
63н	Input capture register upper				XXXXXXXX
64	Input capture register lower	IPCP2	R	Input capture (ch.2)	XXXXXXXXв
65 н	Input capture register upper				XXXXXXXX ${ }_{\text {¢ }}$
66н	Input capture register lower	IPCP3	R	Input capture (ch.3)	ХХХХХХХХХв
67	Input capture register upper				XXXXXXXX
68н	Input capture control status register 01	ICS01	R/W	Input capture (ch.0, ch.1)	00000000 в
69н	(Disabled)				
6Ан	Input capture control status register 23	ICS23	R/W	Input capture (ch.2, ch.3)	00000000 в
6Вн	(Disabled)				
6С	Timer data register lower	TCDTL	R/W	Free-run timer	00000000 в
6D	Timer data register upper	TCDTH	R/W		00000000в
6Ен	Timer control status register	TCCS	R/W		00000000в
6Fн	ROM mirroring function selection register	ROMM	W	ROM mirror function	-------1в
70н	Local-office address setting register L	MAWL	R/W	IEBus ${ }^{\text {TM }}$ controller	ХХХХХХХХХв
71н	Local-office address setting register H	MAWH	R/W		ХХХХХХХХХв
72н	Slave address setting register L	SAWL	R/W		ХХХХХХХХХв
73	Slave address setting register H	SAWH	R/W		XXXXXXXX ${ }_{\text {¢ }}$
74	Message length bit setting register	DEWR	R/W		00000000в
75	Broadcast control bit setting register	DCWR	R/W		00000000 в

(Continued)

MB90580B Series

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
76н	Command register L	CMRL	R/W	IEBus ${ }^{\text {TM }}$ controller	11000000в
77	Command register H	CMRH	R/W		0000000 х
78н	Status register L	STRL	R		0011 XXXX
79н	Status register H	STRH	R/W		00XX0000в
7 7н $^{\text {¢ }}$	Lock read register L	LRRL	R		XXXXXXXX ${ }_{\text {¢ }}$
7Вн	Lock read register H	LRRH	R/W or R		$1110 \times X X X_{B}$
7 CH	Master address read register L	MARL	R		XXXXXXXX ${ }_{\text {¢ }}$
7D	Master address read register H	MARH	R		1111 XXXX ${ }_{\text {¢ }}$
7Ен	Message length bit read register	DERR	R		XXXXXXXX
7 F	Broadcast control bit read register	DCRR	R		000XXXXX ${ }^{\text {¢ }}$
80н	Write data buffer	WDB	W		XXXXXXXX
81н	Read data buffer	RDB	R		XXXXXXXX
82н	Serial mode register 3	SMR3	R/W	UART3	$00000000^{\text {B }}$
83н	Serial control register 3	SCR3	R/W		00000100 в
84н	Serial input register 3/ serial output register 3	$\begin{aligned} & \hline \text { SIDR3/ } \\ & \text { SODR3 } \end{aligned}$	R/W		ХХХХХХХХХв
85	Serial status register 3	SSR3	R/W		00001-00в
86н	PWC noise filter register	RNCR	R/W	PWC noisefilter	-----000в
87	Clock division control register 3	CDCR3	R/W	Communications prescaler 3	0---11118
88н	Serial mode register 4	SMR4	R/W	UART4	00000000в
89н	Serial control register 4	SCR4	R/W		00000100 в
8Ан	Serial input register 4/ serial output register 4	$\begin{aligned} & \hline \text { SIDR4/ } \\ & \text { SODR4 } \end{aligned}$	R/W		ХХХХХХХХХв
8Bн	Serial status register 4	SSR4	R/W		00001-00в
8С	Port 0 input pull-up resistor setup register	RDR0	R/W	Port 0	00000000 в
8D	Port 1 input pull-up resistor setup register	RDR1	R/W	Port 1	00000000 в
8Ен	Port 6 input pull-up resistor setup register	RDR6	R/W	Port 2	00000000в
8F\%	Clock division control register 4	CDCR4	R/W	Communications prescaler 4	0---1111в
$\begin{aligned} & \hline 90_{\mathrm{H}} \text { to } \\ & 9 \mathrm{DH}_{\mathrm{H}} \end{aligned}$	(Disabled)				

(Continued)

MB90580B Series

Address	Register name	Abbreviated register name	Read/ write	Resource name	Initial value
9Ен	Program address detection control/ status register	PACSR	R/W	Address match detection function	00000000в
9F\%	Delayed interrupt generation/release register	DIRR	R/W	Delayed interrupt generation module	-------0в
AOH	Low-power consumption mode control register	LPMCR	R/W or W	Low-power	0001100-в
A1н	Clock selection register	CKSCR	R/W or R		11111100в
$\begin{aligned} & \hline \text { A2H to } \\ & \text { A4H } \end{aligned}$	(Disabled)				
A5 ${ }^{\text {}}$	Auto-ready function selection register	ARSR	W	External bus pin control circuit	0011--00в
A6	External address output control register	HACR	W		00000000в
A7H	Bus control signal selection register	ECSR	W		0000000-в
A8H	Watch dog timer control register	WDTC	R or W	Watch dog timer	XXXXX111в
А9н	Time-base timer control register	TBTC	R/W, W	Timebase timer	1--00100в
ААн	Clock timer control register	WTC	R/W	Clock timer	1 $\times 000000{ }_{\text {B }}$
$\begin{aligned} & \text { ABн to } \\ & \text { ADH } \end{aligned}$	(Disabled)				
АЕн	Flash memory control status register	FMCS	R/W, R or W	Flash interface	000X0000в
AFH	(Disabled)				
B0н	Interrupt control register 00	ICR00	R/W	Interrupt controller	$00000111^{\text {b }}$
B1 ${ }^{\text {}}$	Interrupt control register 01	ICR01	R/W		$00000111^{\text {B }}$
В2н	Interrupt control register 02	ICR02	R/W		$00000111_{\text {в }}$
В3н	Interrupt control register 03	ICR03	R/W		$00000111_{\text {B }}$
B4	Interrupt control register 04	ICR04	R/W		$00000111_{\text {B }}$
В5	Interrupt control register 05	ICR05	R/W		$00000111^{\text {b }}$
В6н	Interrupt control register 06	ICR06	R/W		$00000111_{\text {B }}$
B7	Interrupt control register 07	ICR07	R/W		$00000111^{\text {b }}$
В8н	Interrupt control register 08	ICR08	R/W		$00000111_{\text {B }}$
B9	Interrupt control register 09	ICR09	R/W		$00000111^{\text {b }}$
ВАн	Interrupt control register 10	ICR10	R/W		$00000111_{\text {B }}$
BBH	Interrupt control register 11	ICR11	R/W		00000111_{B}
BC_{H}	Interrupt control register 12	ICR12	R/W		$00000111_{\text {B }}$
BD	Interrupt control register 13	ICR13	R/W		$00000111^{\text {B }}$
ВЕн	Interrupt control register 14	ICR14	R/W		$00000111^{\text {B }}$
BF_{H}	Interrupt control register 15	ICR15	R/W		00000111_{B}

MB90580B Series

(Continued)
(Continued)

Address	Register name	Abbreviated register name	Read/write	Resource name	Initial value
$\begin{aligned} & \mathrm{COH}_{\mathrm{H}} \text { to } \\ & \mathrm{FF}_{\mathrm{H}} \end{aligned}$	(External area)				
$\begin{gathered} 100 \mathrm{H} \text { to } \\ \# \mathrm{H} \end{gathered}$	(RAM area)				
$\begin{aligned} & \text { \#н to } \\ & \text { 1FEFF } \end{aligned}$	(Reserved area)				
1FFOH	Program address detection register 0 (lower)	PADR0	R/W	Address match detection function	
1FF1н	Program address detection register 1 (middle)		R/W		XXXXXXXX в $^{\text {¢ }}$
1FF2н	Program address detection register 2 (upper)		R/W		XXXXXXXХв
1FF3н	Program address detection register 3 (lower)	PADR1	R/W		XXXXXXXX в $^{\text {¢ }}$
1FF4н	Program address detection register 4 (middle)		R/W		
1FF5 ${ }_{\text {H }}$	Program address detection register 5 (upper)		R/W		XXXXXXXXв
$\begin{aligned} & \text { 1FF6н to } \\ & \text { 1FFFH } \end{aligned}$	(Reserved area)				

- Explanation of initial values \rightarrow " 0 " : initial value" 0 " /" 1 " : initial value" 1 "/" X " : undefined / "-" : undefined (not used)
- The addresses following 00FFн are reserved. No external bus access signal is generated.
- Boundary \#н between the RAM area and the reserved area varies with the product model.

Note: For bits that is initialized by an reset operation, the initial value set by the reset operation is listed as an initial value. Note that the values are different from reading results. For LPMCR/CKSCR/WDTC, there are cases where initialization is performed or not performed, depending on the types of the reset. However initial value for resets that initializes the value are listed.

MB90580B Series

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

๑ : Indicates that the interrupt request flag is cleared by the $\mathrm{El}^{2} \mathrm{OS}$ interrupt clear signal (stop request present).
O : Indicates that the interrupt request flag is cleared by the EI²OS interrupt clear signal.
\times : Indicates that the interrupt request flag is not cleared by the $\mathrm{EI}^{2} \mathrm{OS}$ interrupt clear signal.

MB90580B Series

PERIPHERAL RESOURCES

1. I/O Ports

(1) Outline of I/O ports

When a data register serving for control output is read, the data output from it as a control output is read regardless of the value in the direction register. Note that, if a read modify write instruction (such as a bit set instruction) is used to preset output data in the data register when changing its setting from input to output, the data read is not the data register latched value but the input data from the pin.
Ports 0 to 4 and 6 to A are input/output ports which serve as inputs when the direction register value is " 0 " or as outputs when the value is " 1 ".
On the MB90580B series, ports 0 to 3 also serve as external bus pins. When the device is used in external bus mode, therefore, these ports are restricted on use.
Ports 2 and 3 can be used as ports even in external bus mode depending on the setting of the corresponding function select bit.

(2) Register configuration

- Port 0 data register (PDRO)

- Port 1 data register (PDR1)

Address : 000001H
bit

15	14	13	12	11	10	9	8	7
P17	P16	P15	P14	P13	P12	P11	P10	(PDRO)
$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	

- Port 2 data register (PDR2)
bit
Address : 000002н
Access
Initial value

........... 8	7	6	5	4	3	2	1	0
(PDR3)	P27	P26	P25	P24	P23	P22	P21	P20
	$\begin{array}{cc} \hline \text { (R/W) } & (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) & (\mathrm{X}) \end{array}$		(R/W) (X)	(R/W)	(R/W)	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$

- Port 3 data register (PDR3)

Address : 000003H
Access

15	14	13	12	11	10	9	8	$\begin{gathered} 7 \text { 7......... } \\ \text { (PDR2) } \end{gathered}$
P37	P36	P35	P34	P33	P32	P31	P30	
$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	(W)	

- Port 4 data register (PDR4)

Address : 000004

15 …........ 8	7	6	5	4	3	2	1	0
(PDR5)	P47	P46	P45	P44	P43	P42	P41	P40
	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline(\mathrm{RW}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$

MB90580B Series

(Continued)

- Port 5 data register (PDR5)

Address : 000005

15	14	13	12	11	10	9	8	7 0
P57	P56	P55	P54	P53	P52	P51	P50	(PDR4)
(R/8)	(R/W)	(R/W) (1)	(R/W)	(R/W)	(R/W)	$(\mathrm{R} / \mathrm{W})$ (1)	(R/W (1)	

- Port 6 data register (PDR6)

Address : 000006
Initial value
(1) (1)
(1)
(1)
(1)
(1)
(1)
(1)

15 …....... 8	7	6	5	4	3	2	1	0
(PDR7)	P67	P66	P65	P64	P63	P62	P61	P60
	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \\ (\mathrm{X}) \end{gathered}$		(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)

- Port 7 data register (PDR7)
bit
Address : 000007H

- Port 8 data register (PDR8)
bit
Address : 000008н
Access
Initial value

15 8	7	6	5	4	3	2	1	0
(PDR9)	P87	P86	P85	P84	P83	P82	P81	P80
	$\begin{array}{cc} (\mathrm{R} / \mathrm{W}) & (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) & (\mathrm{X}) \end{array}$		(R/W)	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	(R/W)	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$

- Port 9 data register (PDR9)
bit
Address : 000009н
Access Initial value

15	14	13	12	11	10	9	8	7 …....... 0
P97	P96	P95	P94	P93	P92	P91	P90	(PDR8)
$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	

- Port A data register (PDRA)

$$
\begin{aligned}
& \text { Address :00000AH } \\
& \text { Access } \\
& \text { Initial value }
\end{aligned}
$$

- Port 0 direction register (DDRO)
bit

$15 \ldots \ldots$.	7	6	5	4	3	2	1	0
(DDR1)	D07	D06	D05	D04	D03	D02	D01	D00
	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\overline{(R / W)}$	$\overline{(R / W)}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R/W)	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\overline{(R / W)}$

(Continued)

MB90580B Series

(Continued)

- Port 1 direction register (DDR1)

Initial value
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
- Port 2 direction register (DDR2)

Address	: 000012H	bit	15 …....	7	6	5	4	3	2	1	0
			(DDR3)	D27	D26	D25	D24	D23	D22	D21	D20
				(R/W) (R/W)		(R/W)	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$

- Port 3 direction register (DDR3)
bit
Address : 000013H
Access Initial value

15	14	13	12	11	10	9	8	7 0
D37	P36	P35	P34	P33	P32	P31	P30	(DDR2)
$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	

- Port 4 direction register (DDR4)
bit
Address : 000014H
Access
Initial value

15	7	6	5	4	3	2	1	0
(DDR5)	D47	D46	D45	D44	D43	D42	D41	D40
	(R/W) (0)	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R/W)	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$

- Port 5 direction register (DDR5)
bit
Address : 000015 H

15
14

Initial value
(0)
(0)
(0) (0)
(0) (0)
(0)
(0)

- Port 6 direction register (DDR6)
Address : 000016

bit	$15 \cdots \cdots \cdots$	7	6	5	4	3	2	1	0
	(DDR7)	D67	D66	D65	D64	D63	D62	D61	D60
		$\begin{array}{cc} \text { (R/W) } & (\mathrm{R} / \mathrm{W}) \\ (0) & (0) \end{array}$		$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \\ (\mathrm{R} / \mathrm{W}) \end{gathered}$		$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \\ (0) \end{gathered}$		$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$

- Port 7 direction register (DDR7)
bit
Address : 000017H

15	14	13	12	11	10	9	8	7 0
-	-	-	D74	D73	D72	D71	-	(DDR6)
$\underset{(-)}{(-)}$	$\underset{(-)}{(-)}$	$\underset{(-)}{(-)}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\underset{(0)}{\text { (R)W) }}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\underset{(-)}{(-)}$	

(Continued)

MB90580B Series

- Port 8 direction register (DDR8)
bit
Address : 000018H

15	7	6	5	4	3	2	1	0
(DDR9)	D87	D86	D85	D84	D83	D82	D81	D80
	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$

- Port 9 direction register (DDR9)

Initial value
(0) (0)
(0) (0)
(0) (0)
(0)
(0)

- Port A direction register (DDRA)

- Port 4 output pin register (ODR4)
bit
Address : 00001Bн
Access

15
14
14

- Port 5 analog input enable register (ADER)
bit
Address : 00001 CH_{H}
Access

- Port 0 input pull-up resistor setup register (RDRO)

Address : 00008 $\mathrm{CH}_{\boldsymbol{H}}$

Access
Initial value
(0)
(0)
(0) (0)
(0)
(0)
(0)
(0)

- Port 1 input pull-up resistor setup register (RDR1)

Address	bit	15	14	13	12	11	10	9	8	7-........... 0
	: 00008D	RD17	RD16	RD15	RD14	RD13	RD12	RD11	RD10	(RDRO)
	Access Initial value	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	(R/W) (0)	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\underset{(0)}{(\mathrm{R} / \mathrm{W})}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	

- Port 6 input pull-up resistor setup register (RDR6)

Address	: 00008Ен	5 …....	7	6	5	4	3	2	1	0
		(CDCR4)	RD67	RD66	RD65	RD64	RD63	RD62	RD61	RD60
	Access Initial value		$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$

MB90580B Series

(3) Block Diagram

MB90580B Series

- Output pin register

MB90580B Series

2. Timebase Timer

The time-base timer consists of a 18 -bit timer and an interval interrupt control circuit. Note that the time-base timer uses the oscillation clock regardless of the setting of the MCS bit in the CKSCR.
(1) Register configuration

- Timebase timer control register

(2) Block Diagram

MB90580B Series

3. Watchdog Timer

The watchdog timer consists of a 2 -bit watchdog counter using carry signals from the 18-bit time-base timer as the clock source, a control register, and a watchdog reset control section.
(1) Register configuration

- Watchdog timer control register

(2) Block Diagram

MB90580B Series

4. Clock timer

The clock timer has the functions of a watchdog timer clock source, a subclock oscillation settling time wait timer, and of a periodically interrupt generating interval timer.

(1) Register configuration

- Clock timer control register

> Address : 0000ААн bit
> Access Initial value

WTC
(2) Block Diagram

MB90580B Series

5. External Memory Access (External Bus Pin Control Circuit)

The external bus pin control circuit controls external bus pins used to expand the address/data buses of the CPU outside.

(1) Register configuration

- Automatic ready function selection register

Address		15	14	13	12	11	10	9	8	ARSR
	: 0000A5H	IOR1	IOR0	HMR1	HMR0	-	-	LMR1	LMR0	
	Initi	$\begin{aligned} & \hline(\mathrm{W}) \\ & (0) \end{aligned}$	$\begin{aligned} & \hline(\mathrm{W}) \\ & (0) \end{aligned}$	(W) (1)	(W) (1)	(-)	(-)	$\begin{aligned} & (\mathrm{W}) \\ & (0) \end{aligned}$	$\begin{aligned} & (\mathrm{W}) \\ & (0) \end{aligned}$	

- External address output control register

Address : 0000A6н

bit	7	6	5	4	3	2	1	0	HACR
	E23	E22	E21	E20	E19	E18	E17	E16	
SS	(W)								
ue	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	

- Bus control signal selection register
bit
Address : 0000A7н
Access
Initial value

| 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CKE | RYE | HDE | IOBS | HMBS | WRE | LMBS | - | \cdots | ECSR |
| (W) | $(-)$ | | |
| (0) | (0) | (0) | (0) | (0) | (0) | (0) | $(-)$ | | |

(2) Block Diagram

MB90580B Series

6. PWC Timer

The PWC (pulse width count) timer is a 16-bit multifunction up-counter with reload timer functions and inputsignal pulse-width count functions as well.
The PWC timer consists of a 16-bit counter, a input pulse divider, a divide ratio control register, a count input pin, a pulse output pin, and a 16-bit control register.

(1) Features of the PWC timer

The PWC timer has the following features:

- Timer functions

Generates an interrupt request at set time intervals.
Outputs pulse signals synchronized with the timer cycle.
Selects the counter clock from among three internal clocks.

- Pulse-width count functions

Counts the time between external pulse input events.
Selects the counter clock from among three internal clocks.
Count mode
$\bullet H$ pulse width (rising edge to falling edge)/L pulse width (falling edge to rising edge)
-Rising-edge cycle (rising edge to falling edge)/Falling-edge cycle (falling edge to rising edge)
-Count between edges (rising or falling edge to falling or rising edge)
Capable of counting cycles by dividing input pulses by $2^{2}, 2^{4}, 2^{6}, 2^{8}$ using an 8 -bit input divider.
Generates an interrupt request upon the completion of count operation.
Selects single or consecutive count operation.

MB90580B Series

(2) Register configuration

- PWC control status register (Upper byte)

Address		15	14	13	12	11	10	9	8	PWCSR upper
	: 000055	STRT	STOP	EDIR	EDIE	OVIR	OVIE	ERR	POUT	
		(R/W)								
		(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	

- PWC control status register (Lower byte)

Initial value
(0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)
- PWC data buffer register (Upper byte)

PWCR upper
Initial value (X) (X) (X) (X) (X) \quad (X) \quad (X) \quad (X)

- PWC data buffer register (Lower byte)

Address : 000056

- Divide ratio control register

Address : 000058 H

bit	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	DIV1	DIV0
Ss	(-)	(-)	(-)	(-)	(-)	(-)	(R/W)	(R/W)
ue	(-)	(-)	(-)	(-)	(-)	(-)	(0)	(0)

DIVR

- PWC noise filter register

Address : 000086
Access
Initial value

MB90580B Series

(3) Block Diagram

MB90580B Series

7. 16-bit I/O timer

The 16 -bit I/O timer module consists of one 16 -bit free run timer, four input capture circuits, and two output comparators. This module allows two independent waveforms to be output on the basis of the 16 -bit free run timer. Input pulse width and external clock periods can, therefore, be measured.

(1) 16-bit free-run timer (1 channel)

The 16 -bit free run timer consists of a 16-bit up-counter, a control register, and a prescaler. The value output from this timer/counter is used as the base time for the input capture and output compare modules.

- Counter operation clock (Selectable from among the following four)

Four internal clock cycles: $\phi / 4, \phi / 16, \phi / 64, \phi / 256$
ϕ : Machine clock

- Interrupts

An interrupt can be generated when the 16 -bit free-run timer causes a counter overflow or by compare/match operation with compare register 0 . (The compare/match operation requires the mode setting).

- Counter value

An interrupt can be generated when the 16 -bit free-run timer causes a counter overflow or when a match with compare register 0 occurs (The compare/match function can be used by the appropriate mode setting).

- Initialization

The counter value can be initialized to "0000н" at a reset, soft clear operation, or a match with compare register 0 .

(2) Output compare module (2 channels)

The output compare module consists of two 16-bit compare registers, compare output latches, and control registers. When the 16 -bit free-run timer value matches the compare register value, this module generates an interrupt while inverting the output level.

- Two compare registers can operate independently.

Output pin and interrupt flag for each compare register

- A pair of compare registers can be used to control the output pin.

Two compare registers can be used to invert the output pin polarity.

- The initial value for each output pin can be set.
- An interrupt can be generated by compare/match operation.

(3) Input capture module (4 channels)

The input capture module consists of capture registers and control registers respectively associated with four independent external input pins. This module can hold the 16-bit free run timer value in the capture register. In addition, it can detect an arbitrary edge of the signal input from each external input pin to generate an interrupt.

- The external input signal edge to be detected can be selected.

One or both of the rising and falling edges can be selected.

- Four input capture channels can operate independently.
- An interrupt can be generated at a valid edge of the external input signal. The extended intelligent I/O service can be activated by the interrupt by the input capture module.

MB90580B Series

(4) Register configuration

- Timer data register (upper)
bit
Address : 00006D
Access
Initial value

15	14	13	12	11	10	9	8
T15	T14	T13	T12	T11	T10	T09	T08
(R/W) (0)	(0)	(0)	(0)	$\begin{gathered} \overline{(R / W} \\ (0) \end{gathered}$			(0)

TCDTH

TCDTL

TCCS

OCCPO OCCP1

OCCPO
OCCP1

OCS1

OCSO

MB90580B Series

(Continued)

- Input capture register (upper)

Address : ch0 000061н
: ch1 000063н : ch2 000065 : ch3 000067н

Access
Initial value

IPCP0 upper IPCP1 upper
IPCP2 upper IPCP3 upper

- Input capture register (lower)
bit
Address : ch0 000060 H : ch1 000062н
: ch2 000064н
: ch3 000066н
Access
Initial value

IPCPO lower IPCP1 lower IPCP2 lower IPCP3 lower

- Control status register 01

Address : 000068
bit

Access Initial value
(0) (0)

(0)
(0)
(0)
(0)
(0)
(0)

ICSO1

- Control status register 23

Address : 00006Ан
bit

Access

ICS23

Initial value
(0) (0)
(0)
(0)
(0)
(0)
(0)
(0)
(0)

MB90580B Series

(5) Block Diagram

MB90580B Series

8. 16-bit Reload Timer

The 16-bit reload timer has three channels, each of which consists of a 16-bit down counter, a 16-bit reload register, an input pin (TIN), an output pin (TOT), and a control register. The input clock can be selected from among three internal clocks and one external clock.

(1) Register configuration

- Timer control status register (upper)

- Timer control status register (lower)

- 16-bit timer register (upper) /16 bit reload register (upper)
$\begin{array}{ll} & \text { bit } \\ \text { Address } & \text { : ch0 00004Bн } \\ & \text { : ch1 00004FH } \\ & \text { : ch2 000053н }\end{array}$
Access
Initial value

$(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X}) \quad(\mathrm{X})$
(read)
TMRO upper TMR1 upper TMR2 upper (write)
TMRLR0 upper
TMRLR1 upper TMRLR2 upper
(read)
TMR0 lower TMR1 lower TMR2 lower (write) TMRLRO lower TMRLR1 lower TMRLR2 lower

MB90580B Series

(2) Block Diagram

Note: Reload timer channels and UART channels are connected as follows
-Reload timer channel 0 : UART0, UART3
-Reload timer channel 1 : UART1, UART4
-Reload timer channel 2 : UART2

MB90580B Series

9. 8/16-bit PPG

$8 / 16$-bit PPG is an $8 / 16$-bit reload timer module. The block performs PPG output in which the pulse output is controlled by the operation of the timer.
The hardware consists of two 8-bit down-counters, four 8 -bit reload registers, one 16 -bit control register, two external pulse output pins, and two interrupt outputs. The PPG has the following functions.

- 8-bit PPG output in two channels independent operation mode:

Two independent PPG output channels are available.

- 16-bit PPG output operation mode :

One 16-bit PPG output channel is available.

- $8+8$-bit PPG output operation mode :

Variable-period 8 -bit PPG output operation is available by using the output of channel 0 as the clock input to channel 1.

- PPG output operation :

Outputs pulse waveforms with variable period and duty ratio. Can be used as a D/A converter in conjunction with an external circuit.

(1) Register configuration

- PPGO operating mode control register

	bit	7	6	5	4	3	2	1	0	PPGC0
Address	: ch0 0000044	PEN0	-	POEO	0 PIEO	0 PUFO	0	-	$\mathrm{Re}-$ served	
	Access Initial value	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{aligned} & \hline(-) \\ & (-) \end{aligned}$	$\begin{gathered} 1 \\ -\quad(R / W) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { V) (R/W) } \\ (0) \end{gathered}$	$\sqrt{\text { V) }} \underset{(\mathrm{X})}{ }$	$(\overline{(X)}$	(R/W) (1)	
PPG1 operating mode control register bit 15 14 13 12 11 10 9										PPGC1
Address	: ch1 0000045	PEN1	-	POE1	PIE1	PUF1	MD1	MD0	$\begin{array}{\|c\|} \hline \begin{array}{c} \text { Re- } \\ \text { served } \end{array} \\ \hline \end{array}$	
	Access Initial value	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{aligned} & (-) \\ & (-) \end{aligned}$							

- PPG0 and 1 output control registers

	bit	7	6	5	4	3	2	1	0	PPGOE
Address	: ch0, 1 0000046н	PCS2	PCS1	PCS0	PCM2	PCM1	PCMO	$\begin{gathered} \text { Re- } \\ \text { served } \end{gathered}$	$\begin{gathered} \hline \text { Re- } \\ \text { served } \end{gathered}$	
	Access Initial value	$\frac{(\mathrm{R} / \mathrm{W})}{(0)}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (0) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (0) \end{gathered}$	

- Reload register H
bit
Address : ch0 000041н : ch1 000043н

Access
Initial value

PRLHO PRLH1

- Reload register L
bit
Address : ch0 000040н : ch1 000042н

Access
Initial value

PRLL0 PRLL1

MB90580B Series

(2) Block Diagram

- Block diagram (8 bit PPG (ch.0))

MB90580B Series

- Block Diagram (8/16 bit PPG (ch.1))

MB90580B Series

10. DTP/External Interrupts

The DTP (Data Transfer Peripheral) is a peripheral block that interfaces external peripherals to the F2MC-16LX CPU. The DTP receives DMA and interrupt processing requests from external peripherals and passes the requests to the $\mathrm{F}^{2} \mathrm{MC}$-16LX CPU to activate the intelligent I/O service or interrupt processing. Two request levels ("H" and "L") are provided for the intelligent I/O service. For external interrupt requests, generation of interrupts on a rising or falling edge as well as on " H " and " L " levels can be selected, giving a total of four types.

(1) Register configuration

- Interrupt/DTP enable register

Address : 0000030н
bit

Access
Initial value

- Interrupt/DTP source register
bit
Address :0000031H
Access
Initial value
- Request level setting register (lower)
bit
Address : 0000032н
Access
Initial value

7	6	5	4	3	2	1	0
LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0
(R/W)	R/W)	R/W)	(R/W)	(R/W)	(R/W)	R/W	W)

ELVR lower

- Request level setting register (upper)
bit
Address : 0000033H
Access

15	14	13	12	11	10	9	8	ELVR upper
LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4	
R/W)	W)	R/W)						

Initial value
(0) (0)
(0)
(0)
(0)
(0) (0)
(0)

(2) Block Diagram

F^{2} MC-16LX bus

MB90580B Series

11. Delayed Interrupt Generation Module

The delayed interrupt generation module is used to generate the task switching interrupt. Interrupt requests to the $\mathrm{F}^{2} \mathrm{MC}-16 \mathrm{LX}$ CPU can be generated and cleared by software using this module.

(1) Register configuration

The DIRR register controls generation and clearing of delayed interrupt requests. Writing " 1 " to the register generates a delayed interrupt request. Writing " 0 " to the register clears the delayed interrupt request. The register is set to the interrupt cleared state by a reset. Either " 0 " or " 1 " can be written to the reserved bits. However, considering possible future extensions, it is recommended that the set bit and clear bit instructions are used for register access.

- Delayed interrupt generation/release register

(2) Block Diagram
F^{2} MC-16LX bus

MB90580B Series

12. A/D Converter

The A/D converter converts analog input voltages to digital values. The A/D converter has the following features.

- Conversion time: Minimum of $34.7 \mu \mathrm{~s}$ per channel (for a 12 MHz machine clock)
- Uses RC-type successive approximation conversion with a sample and hold circuit.
- 8/10-bit resolution
- Eight program-selectable analog input channels Single conversion mode: Selectively convert one channel.
Scan conversion mode: Continuously convert multiple channels. Maximum of 8 program selectable channels. Continuous conversion mode : Repeatedly convert specified channels.
Stop conversion mode:Convert one channel then halt until the next activation. (Enables synchronization of the conversion start timing.)
- An A/D conversion completion interrupt request.

An A/D conversion completion interrupt request to the CPU can be generated on the completion of A / D conversion. This interrupt can activate $\mathrm{EI}^{2} \mathrm{OS}$ to transfer the result of A / D conversion to memory and is suitable for continuous operation.

- Activation by software, external trigger (falling edge), or timer (rising edge) can be selected.

(1) Register configuration

- Control status register (upper)
bit
Address : 000037H
Access Initial value

- Control status register (lower)
bit
Address : 000036
Access
Initial value
- Data register (upper)

Address : 000039н
Access
Initial value
bit

7	6	5	4	3	2	1	0
MD1	MDO	ANS2	ANS1	ANSO	ANE2	ANE1	ANE0
(R/W)							
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

$\begin{array}{llllll}(0) & (0) & (0) & (0) & (0) & (0)\end{array} \quad(0) \quad(0)$

15	14	13	12	11	10	9	8
SELB	ST1	STO	CT1	CTO	-	D9	D8
(W)	(W)	(W)	(W)	(W)	(-)	(R)	(R)
(0)	(0)	(0)	(0)	(1)	(-)	(X)	(X)

ADCS1

ADCR2

- Data register (lower)

Address : 000038
Access
Initial value
bit

7	6	5	4	3	2	1	0
D7	D6	D5	D4	D3	D2	D1	D0
(R)							
(X)							

MB90580B Series

(2) Block Diagram

MB90580B Series

13. D/A Converter

D/A converter is an R-2R type D/A converter with 8-bit resolution. The device contains two D/A converters. The D/A control register controls the output of the two D/A converters independently.

(1) Register configuration

- D/A converter data register 1

bit	15	14	13	12	11	10	9	8
	DA17	DA16	DA15	DA14	DA13	DA12	DA11	DA10
	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W)	(R/W	N)

DAT1

- D/A converter data register 0

DATO
- D/A control register 1

Address : 00003D

DACR1

- D/A control register 0

Address : 00003Сн

\square

DACRO
Access Initial value

MB90580B Series

(2) Block Diagram

MB90580B Series

14. Communication Prescaler

The register (clock division control register) of the communication prescaler controls division of the machine clock frequency. It is designed to provide a fixed baud rate for a variety of machine clock frequencies depending on the user setting.
The output from the communication prescaler is used by the UARTs.

(1) Register configuration

- Clock division control registers 0 to 4

Address: 00002CH 00002Ен Access 000034н Initial value 000087н bit 00008Fн

MB90580B Series

15. UART

The UART is a serial I/O port for asynchronous (start-stop) communication or clock-synchronous communication.
The UART has the following features:

- Full-duplex double buffering
- Capable of asynchronous (start-stop) and CLK-synchronous communications
- Support for the multiprocessor mode
- Dedicated baud rate generator integratedBaud rate

Operation	Baud rate
Asynchronous	$31250 / 9615 / 4808 / 2404 / 1202 \mathrm{bps}$
CLK synchronous	$2 \mathrm{M} / 1 \mathrm{M} / 500 \mathrm{~K} / 250 \mathrm{~K} / 125 \mathrm{~K} / 62.5 \mathrm{Kbps}$

* : Assuming internal machine clock frequencies of 6, 8, 10, 12, and 16 MHz
- Capable of setting an arbitrary baud rate using an external clock
- Error detection functions (parity, framing, overrun)
- HRz sign transfer signal

(1) Register configuration

- Serial mode register

Address: 0000020 0000024н 0000028н 0000082н bit 0000088н Initial value

7	6	5	4	3	2	1	0
MD1	MDO	CS2	CS1	CSO	Re-	SCKE	SOE
(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W							
(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)

0) (0) (0) (0) (0) (0) (0) (0) SMR4

- Serial control register

Address:0000021н 0000025 0000029н 0000083н 0000089н

bit	15	14	13	12	11	10	9	8	SCRO
	PEN	P	SBL	CL	A/D	REC	RXE	TXE	SCR1
Access	(R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)								SCR2
itial value	(0)	(0)	(0)	(0)	(0)	(1)	(0)	(0)	SCR4

- Serial input register/serial output register

Address : $0000002 \mathbf{H}_{\mathbf{H}}$
000002Ан 0000084 000008 Ан

(read) (write) SIDROSODR0 SIDR1 SODR1 SIDR2 SODR2 SIDR3SODR3 SIDR4 SODR4

- Serial status register

Address: 0000023н 0000027 H 000002Вн 0000085 н $000008 \mathrm{BH}_{\mathrm{H}}$ Initial value
bit
Access

15	14	13	12	11	10	9	8	SSR0SSR1
PE	ORE	FRE	,	DRE	-	RIE	TIE	
(R/W) (R/W)		(R/W)	(W)	R/W)	(-)	(R/W)	(R/W)	SSR2
(0)	(0)	(0)	(0)	(1)	(-)	(0)	(0)	SSR4

MB90580B Series

(2) Block Diagram

MB90580B Series

16. IEBus ${ }^{\text {TM }}$ Controller

The IEBus ${ }^{\top \mathrm{M}}$ (Inter-Equipment Bus) is a small-scale, two-wire serial bus interface designed for data transfer between pieces of equipment.
This interface is applicable, for example, as a bus interface for controlling vehicle-mounted devices.

IEBus ${ }^{\text {TM }}$ has the following features:

- Multitasking

Any of the units connected to the IEBus ${ }^{T \mathrm{M}}$ can transmit data to another one.

- Broadcast function (Communication from one unit to multiple units)

Group broadcast : Broadcast to a group of units
All-unit broadcast : Broadcast to all units

- Three modes can be selected for different transmission speeds.

	IEBus $^{\text {TM }}$ internal frequency	
	$\mathbf{6 ~ M H z}$	$\mathbf{6 . 2 9} \mathbf{~ M H z}$
Mode 0	About 3.9 Kbps	About 4.1 Kbps
Mode 1	About 17 Kbps	About 18 Kbps
Mode 2	About 26 Kbps	About 27 Kbps

- Data buffer for transmission

8-byte FIFO buffer

- Data buffer for reception

8-byte FIFO buffer

- CPU internal operating frequency (12 MHz, 12.58 MHz)
- Frequency tolerance In mode 0 or 1 : $\pm 1.5 \%$
In mode 2 : $\pm 0.5 \%$

(1) Register configuration

- Local-office address setting register H

Address		15	14	13	12	11	10	9	8	MAWH
	:000071H	Reserve	Reserved	Reserv	Reserved	MA11	MA10	MA09	MA08	
		$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \hline(\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	

- Local-office address setting register L

Address		7	6	5	4	3	2	1	0	MAWL
	:000070н	MA07	MA06	MA05	MA04	MA03	MA02	MA01	MA00	
		(R/W)								
	Initi	(X)								

- Slave address setting register H
bit
Address : 000073H

15	14	13	12	11	10	9	8
Reserve	Reserve	Reserve	Reserved	SA11	SA10	SA09	SA08
(R/W)	R/W						

SAWH

MB90580B Series

- Slave address setting register L

Address	bit	7	6	5	4	3	2	1	0	SAWL
	: 000072н	SA07	SA06	SA05	SA04	SA03	SA02	SA01	SA00	
	Access	(R/W)								
	Initial value	(X)								
- Broadcast control bit setting register										
	bit	15	14	13	12	11	10	9	8	DCWR
Address	: 000075	DO3	DO2	DO1	DO0	C3	C2	C1	C0	
	Access	(R/W)								
	Initial value	(0)	(0)	(0)	(0)	(0)	(0)	(0)	(0)	

- Broadcast control bit read register

Address		15	14	13	12	11	10	9	8	DCRR
	:00007FH	DO3	DO2	DO1	DO0	C3	C2	C1	C0	
		(R)	(R)	(R)	(R)	(R)	(R)	(R)	(R)	
	Initi	(0)	(0)	(0)	(X)	(X)	(X)	(X)	(X)	

- Message length bit setting register

- Message length bit read register

DERR

- Command register H

Address : 000077H

bit
15

CMRH
$\begin{array}{llllllll}\text { Access } & (R) & (0) & (0) & (0) & (0) & (0) & (0)\end{array}$

- Command register L

Address : 000076

Access (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W)
Initial value
(1)
(1)
(0)
(0)
(0)
(0) (0)
(0)

- Status register H

Address : 000079H

(0)
(0)
(X)
(X)
(0)
(0)
(0)
(0)

MB90580B Series

(Continued)

- Status register L

- Lock read register H

Address : 00007Bн

bit	15	14	13	12	11	10	9	8
	Reserved	Reserved	Reserved	LOC	LD11	LD10	LD09	LD08
	(R)	(R)	(R)	(R/W)	(R)	(R)	(R)	(R)
	(1)	(1)	(1)	(0)	(X)	(X)	(X)	(X)

LRRH

- Lock read register L

Address : 00007Ан

bit	7	6	5	4	3	2	1	0
	LD07	LD06	LD05	LD04	LD03	LD02	LD01	LD00
	(R)							
e	(X)							

LRRL

- Master address read register H

Address		15	14	13	12	11	10	9	8	MARH
	: 00007D	Reserved	Reserved	Reserved	Reserved	MA11	MA10	MA09	MA08	
		(R)								
		(1)	(1)	(1)	(1)	(X)	(X)	(X)	(X)	

- Master address read register L

Address		7	6	5	4	3	2	1	0	MARL
	:00007CH	MA07	MA06	MA05	MA04	MA03	MA02	MA01	MA00	
		(R)								
		(X)								

- Read data buffer

Address : 000081H

bit	15	14	13	12	11	10	9	8
	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0
	(R)							
倍	(X)							

RDB

- Write data buffer

Address : 000080н

bit	7	6	5	4	3	2	1	0
	WD7	WD6	WD5	WD4	WD3	WD2	WD1	WDO
	(W)							
	(X)							

WDB

MB90580B Series

(2) Block Diagram

The control circuit in the IEBus ${ }^{\top}$ M controller executes the following control functions:

- Controls the number of bytes in data to be transmitted and received.
- Controls the maximum number of bytes transmitted.
- Detects the results of arbitration.
- Evaluates the return of acknowledgment of each field.
- Generates interrupt signals.

MB90580B Series

17. Clock Monitor Function

The clock monitor function outputs the frequency-divided machine clock signal (for monitoring purposes) from the CKOT pin.
(1) Register configuration

- Clock output enable register

Address : 00003Ен

bit	7		6	5	4	3	2	1
	-	-	-	-	CKENFRQ2	FRQ1	FRQ0	
CLK								

(2) Block Diagram

MB90580B Series

18. Address Match Detection Function

When an address matches the value set in the address detection register, the instruction code to be loaded into the CPU is forced to be replaced with the INT9 instruction code (01H). When executing a set instruction, the CPU executes the INT9 instruction. The address match detection function is implemented by processing using the INT9 interrupt routine.
The device contains two address detection registers, each provided with a compare enable bit. When the value set in the address detection register matches an address and the interrupt enable bit is " 1 ", the instruction code to be loaded into the CPU is forced to be replaced with the INT9 instruction code.

(1) Register configuration

- Program address detection register 0 to 2 (PADRO)

		bit	7	6	5	4	3	2	1	0
PADR0 (lower)	Address	:001FFOH								
		Access Initial value	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\underset{(\mathrm{X})}{(\mathrm{R} / \mathrm{W})}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$
PADR0 (middle)		bit	17	16	15	14	13	12	11	10
	Address	:001FF1H								
		Access Initial value	$\begin{gathered} \text { (R/W) } \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\underset{(\mathrm{X})}{(\mathrm{R} / \mathrm{W})}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\underset{(\mathrm{R})}{(\mathrm{X})}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$
PADR0 (upper)		bit	7	6	5	4	3	2	1	0
	Address	: 001FF2н								
		Access Initial value	$\underset{(\mathrm{X})}{(\mathrm{R} / \mathrm{W})}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\underset{(\mathrm{X})}{(\mathrm{R} / \mathrm{W})}$	$\begin{gathered} (\mathrm{R} / \mathrm{W}) \\ (\mathrm{X}) \end{gathered}$	$\underset{(\mathrm{X})}{(\mathrm{R} / \mathrm{W})}$	$\underset{(\mathrm{X})}{(\mathrm{R} / \mathrm{W})}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$	$\begin{gathered} \text { (R/W) } \\ (X) \end{gathered}$

- Program address detection register 3 to 5 (PADR1)

PADR1 (middle) Address : 001FF4
Access Initial value

PADR1 (upper) Address : 001FF5
Access (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) (R/W) Initial value
(X)
(X)
(X)
(X)
(X) (X)
(X)
(X)

- Program address detection control/status register (PACSR)

Address : 00009Ен

MB90580B Series

(2) Block Diagram

MB90580B Series

19. ROM Mirroring Function Selection Module

The ROM mirroring function selection module can select what the FF bank allocated the ROM sees through the 00 bank according to register settings.
(1) Register configuration

- ROM mirroring function selection register

(2) Block Diagram

MB90580B Series

20. One-Megabit Flash Memory

The 1Mbit flash memory is allocated in the FEн to FFн banks on the CPU memory map. Like masked ROM, flash memory is read-accessible and program-accessible to the CPU using the flash memory interface circuit. The flash memory can be programmed/erased by the instruction from the CPU via the flash memory interface circuit. The flash memory can therefore be reprogrammed (updated) while still on the circuit board under integrated CPU control, allowing program code and data to be improved efficiently.
Note that sector operations such as "enable sector protect" cannot be used.
Features of 1Mbit flash memory

- 128 K words $\times 8$ bits or 64 K words $\times 16$ bits ($16 \mathrm{~K}+512 \times 2+7 \mathrm{~K}+8 \mathrm{~K}+32 \mathrm{~K}+64 \mathrm{~K}$) sector configuration
- Automatic program algorithm (Embedded Algorithm*: Same as the MBM29F400TA)
- Erasure suspend/resume function integrated
- Detection of programming/erasure completion using the data polling or toggle bit
- Detection of programming/erasure completion using CPU interrupts
- Compatible with JEDEC standard commands
- Capable of erasing data sector by sector (arbitrary combination of sectors)
- Minimum number of times of programming/erasure: 100,000
* : Embedded Algorithm is a trademark of Advanced Micro Devices, Inc.

(1) Register configuration

- Flash memory control status register

FMCS

MB90580B Series

(2) Sector configuration of 1Mbit flash memory

The 1 Mbit flash memory has the sector configuration illustrated below. The addresses in the illustration are the upper and lower addresses of each sector.
When accessed from the CPU, SA0 and SA1 to SA4 are allocated in the FE and FF bank registers, respectively.

Flash memory	CPU address	Programmer address *
SA4 (16 Kbytes)		${ }^{\text {7 }}$ FFFFFFF- ${ }^{-1}$
	FFC000 ${ }^{\text {H}}$	$7 \mathrm{C000}$ н
SA3 (8 Kbytes)	FFFBFFFF-	7 $\overline{\text { BFFFF- }}$
	FFA000 ${ }^{\text {H }}$	7A000H
SA2 (8 Kbytes)		79\%FFF-
	FF8000	78000
SA1 (32 Kbytes)		7 $\overline{\text { FFFFFF- }}$
	FF0000	70000H
SA0 (64 Kbytes)	FEFFFF\%	6FFFF\%
	FE0000	60000 ${ }_{\text {H }}$

* : Programmer addresses correspond to CPU addresses when data is programmed in flash memory by a parallel programmer. Programmer addresses are used to program/erase data using a general-purpose programmer.

MB90580B Series

21. Low-Power Consumption Control Circuit

The operation modes of the MB90580B series are the PLL clock, PLL sleep, watch, main clock, main sleep, stop, and hardware standby modes. The operation modes excluding the PLL clock mode are classified as lowpower consumption modes.
The low power consumption circuit has the following functions.

- Main clock mode/Main sleep mode

In either mode, the microcontroller operates only with the main clock (OSC oscillation clock), using the main clock as the operating clock while suspending the PLL clock (VCO oscillation clock).

- PLL sleep mode/Main sleep mode

These modes stop only the operation clock of the CPU, leaving the other clocks active.

- Watch mode

The watch mode allows only the time-base timer to operate.

- Stop mode/Hardware standby mode

These modes stop oscillation while retaining data at the lowest power consumption. The CPU intermittent operation function causes the clock supplied to the CPU to operate intermittently when the CPU accesses a register, internal memory, internal resource, or external bus. This function saves power consumption by decreasing the execution speed of the CPU while providing high-speed clock signals to the internal resources. The PLL clock multiplication factor can be selected from among 1, 2, 3, and 4 using the CS1 and CSO bits in the clock selection register.
The WS1 and WS0 bits can be used to set the oscillation settling time for the main clock, which is taken to wake up from the stop or hardware standby mode.
(1) Register configuration

- Low-power consumption mode control register

Address		7	6	5	4	3	2	1	0
	: 0000A0H	STP	SLP	SPL	RST	TMD	CG1	CG0	-
		(W)	(W)	(R/W)	(W)	(-)	(R/W)	(R/W)	(-)
		(0)	(0)	(0)	(1)	(1)	(0)	(0)	(-)

LPMCR

- Clock selection register
bit
Address : 0000A1H
Access
Initial value

CKSCR

MB90580B Series

(2) Block Diagram

MB90580B Series

- ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Rating		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	Vss -0.3	Vss +6.0	V	
	AV ${ }_{\text {cc }}$	Vss - 0.3	Vss +6.0	V	$\mathrm{V}_{\mathrm{cc}} \geq \mathrm{AV} \mathrm{cc}^{* 1}$
	AVRH, AVRL	Vss - 0.3	Vss +6.0	V	AVcc \geq AVRH/L, AVRH \geq AVRL
	DV ${ }_{\text {cc }}$	Vss - 0.3	Vss +6.0	V	$\mathrm{V}_{\mathrm{cc}} \geq$ DV ${ }_{\text {cc }}$
Input voltage	V	Vss -0.3	Vss +6.0	V	*2
Output voltage	Vo	Vss - 0.3	Vss +6.0	V	*2
"L" level maximum output current	lob	-	15	mA	*3
"L" level average output current	lolav	-	4	mA	Average output current = operating current \times operating efficiency
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	Average output current = operating current \times operating efficiency
" H " level maximum output current	Іон	-	-15	mA	*3
"H" level average output current	lohav	-	-4	mA	Average output current = operating current \times operating efficiency
" H " level total maximum output current	$\Sigma \mathrm{lon}$	-	-100	mA	
" H " level total average output current	Elohav	-	-50	mA	Average output current = operating current \times operating efficiency
Power consumption	PD	-	300	mW	
Operating temperature	T_{A}	-40	+85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55	+150	${ }^{\circ} \mathrm{C}$	

*1 : AV cc shall never exceed V_{cc} when power on.
*2 : V_{1} and V_{0} shall never exceed $\mathrm{V}_{c c}+0.3 \mathrm{~V}$.
*3 : The maximum output current is a peak value for a corresponding pin.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90580B Series

2. Recommended Operating Conditions

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value		Unit	Remarks
		Min.	Max.		
Power supply voltage	Vcc	3.0	5.5	V	Normal operation (MB90583B, MB90587, MB90V580)
		4.5	5.5	V	Normal operation (MB90F583B)
	Vcc	3.0	5.5	V	Retains status at the time of operation stop
"H" level input voltage	$\mathrm{V}_{\text {IH }}$	0.7 Vcc	V cc+0.3	V	CMOS input pin
	$\mathrm{V}_{\text {HS }}$	0.8 Vcc	V cc+0.3	V	CMOS hysteresis input pin
	Vінм	Vcc -0.3	$\mathrm{Vcc}+0.3$	V	MD pin input
"L" level input voltage	VIL	Vss -0.3	0.3 Vcc	V	CMOS input pin
	Vıs	Vss - 0.3	0.2 Vcc	V	CMOS hysteresis input pin
	VILm	Vss - 0.3	Vss+0.3	V	MD pin input
Smoothing capacitor	Cs	0.1	1.0	$\mu \mathrm{F}$	Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. The smoothing capacitor to be connected to the Vcc pin must have a capacitance value higher than Cs.
Operating temperature	TA	-40	+85	${ }^{\circ} \mathrm{C}$	

- C pin connection circuit

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90580B Series

3. DC Characteristics

$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{Vss}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
"H" level output voltage	Vон	All output pins	$\begin{aligned} & \mathrm{V} \mathrm{CC}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-2.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
"L" level output voltage	VoL	All output pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Input leakage current	IIL	All input pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{V}_{\mathrm{l}}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	-5	-	5	$\mu \mathrm{A}$	
Power supply current*	Icc	V co	$\begin{aligned} & \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \text {, } \\ & \text { Internal operation } \\ & \text { at } 16 \mathrm{MHz} \text {, } \\ & \text { Normal operation } \end{aligned}$	-	27	33	mA	MB90583B, MB90587
				-	40	50	mA	MB90F583B
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internal operation at 12.58 MHz , Normal operation	-	22	26	mA	MB90583B
				-	35	45	mA	MB90F583B
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V},$ Internal operation at 16 MHz , When data written in flash mode programming of erasing	-	45	60	mA	MB90F583B
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internal operation at 12.58 MHz , When data written in flash mode programming of erasing	-	40	50	mA	
	Iccs		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internal operation at 16 MHz , In sleep mode	-	7	12	mA	MB90587
				-	15	20	mA	MB90583B, MB90F583B
			$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$ Internal operation at 12.58 MHz , In sleep mode	-	6	10	mA	MB90587
				-	12	18	mA	MB90583B, MB90F583B
	Iccı		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internal operation at 8 kHz , Subsystem operatin, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	0.1	1.0	mA	MB90583B, MB90587
				-	4	7	mA	MB90F583B

(Continued)

MB90580B Series

(Continued)
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Power supply current*	Iccıs	Vcc	$\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V}$, Internal operation at 8 kHz , In subsleep mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	30	50	$\mu \mathrm{A}$	MB90583B, MB90587, MB90F583
	Ісст		$\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}$, Internal operation at 8 kHz , In clock mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	15	30	$\mu \mathrm{A}$	MB90583B, MB90587, MB90F583B
	Іссн		In stop mode, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	-	5	20	$\mu \mathrm{A}$	MB90583B MB90587, MB90F583B
Input capacitance	Cin	Except AVcc , AVss, C, Vcc and $V_{s s}$	-	-	10	80	pF	
Open-drain output leakage current	lleak	P40 to P47	-	-	0.1	5	$\mu \mathrm{A}$	Open-drain output setting
Pull-up resistance	Rup	P00 to P07 P10 to P17 P60 to P65 RST	-	25	50	100	$\mathrm{k} \Omega$	
Pull-down resistance	Roown	MD2	-	25	50	100	k Ω	

* The current value is preliminary value and may be subject to change for enhanced characteristics without previous notice. The power supply current is measured with an external clock.

MB90580B Series

4. AC Characteristics

(1) Clock Timings
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min.	Typ.	Max.		
Clock frequency	fc_{c}	X0, X1	-	3	-	16	MHz	
	fcı	X0A, X1A		-	32.768	-	kHz	
Clock cycle time	thcy	$\mathrm{X0} 0 \mathrm{X1}$		62.5	-	333	ns	
	tLCyL	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	
Frequency fluctuation rate locked*	Δf	-		-	-	5	\%	
Input clock pulse width	$\begin{aligned} & \text { Pwh } \\ & \text { PwL } \end{aligned}$	X0		10	-	-	ns	Recommened duty ratio of 30% to 70%
	PwLh Pwll	X0A		-	15.2	-	$\mu \mathrm{s}$	
Input clock rise/fall time	$\begin{aligned} & \text { tcr } \\ & \text { tcF } \end{aligned}$	X0		-	-	5	ns	External clock operation
Internal operating clock frequency	fcp	-		1.5	-	16	MHz	Main clock operation
	flcp	-		-	8.192	-	kHz	Subclock operation
Internal operating clock cycle time	top	-		62.5	-	666	ns	Main clock operation
	tıcp	-		-	122.1	-	$\mu \mathrm{s}$	Subclock operation

*: The frequency fluctuation rate is the maximum deviation rate of the preset center frequency when the multiplied PLL signal is locked.

$\Delta f=\frac{\|\alpha\|}{f o} \times 100(\%)$	$\begin{array}{cl} \text { Center } & \begin{array}{l} +\alpha \\ \text { frequency } \end{array} \\ \text { fo } \\ -\alpha \end{array}$	

- X0, X1 clock timing

- X0A, X1A clock timing

MB90580B Series

- PLL operation guarantee range

Relationship between internal operating clock frequency and power supply voltage

Relationship between oscillating frequency and internal operating clock frequency

The AC ratings are measured for the following measurement reference voltages

- Input signal waveform

Hystheresis input pin
0.8 Vcc
0.2 Vcc

- Output signal waveform

Output pin

Pins other than hystheresis input/MD input

MB90580B Series

(2) Clock Output Timings

$$
\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Clock cycle time							
tcyc	CLK	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$	62.5	-	ns		
			20	-	ns		

\square
(3) Reset, Hardware Standby Input Timing
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Reset input time	trstL	$\overline{\text { RST }}$	-	4 tcp	-	ns	
Hardware standby input time	thstL	$\overline{\text { HST }}$		4 tcp	-	ns	

MB90580B Series

(4) Power-on Reset

$$
\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Power supply rising time	tR	Vcc	-	0.05	30	ms	
Power supply cut-off time	toff	Vcc		4	-	ms	Due to repeated operations

Note : - VCC must be kept lower than 0.2 V before power-on.

- The above values are used for causing a power-on reset.
- If $\overline{\mathrm{HST}}=$ " L ", be sure to turn the power supply on using the above values to cause a power-on reset whether or not the power-on reset is required.
- Some registers in the device are initialized only upon a power-on reset. To initialize these registers, turn the power supply using the above values.

Sudden changes in the power supply voltage may cause a power-on reset. To change the power supply voltage while the device is in operation, it is recommended to raise the voltage smoothly to suppress fluctuations as shown below. In this case, change the supply voltage with the PLL clock not used. If the voltage drop is 1 mV or fewer per second, however, you can use the PLL clock.

MB90580B Series

(5) Bus Timing (Read)
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
ALE pulse width	tıнLL	ALE	-	tcp/2-20	-	ns	
Effective address \rightarrow ALE \downarrow time	tavll	ALE, A23 to A16, AD15 to AD00		tcp/2-20	-	ns	
ALE $\downarrow \rightarrow$ address effective time	tLlax	ALE, AD15 to AD00		tcp/2-15	-	ns	
Effective address \rightarrow $\overline{\mathrm{RD}} \downarrow$ time	tavgl	A23 to A16, AD15 to AD00, $\overline{\mathrm{RD}}$		tcp - 15	-	ns	
Effective address \rightarrow valid data input	tavov	A23 to A16, AD15 to AD00		-	$5 \mathrm{tcp} / 2-60$	ns	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$		$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ valid data input	trLDv	$\overline{\mathrm{RD}}$, AD15 to AD00		-	$3 \mathrm{tcp} / 2-60$	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ data hold time	trhdx	$\overline{\mathrm{RD}}$, AD15 to AD00		0	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ ALE \uparrow time	trHLL	$\overline{\mathrm{RD}}, \mathrm{ALE}$		tcp/2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \rightarrow$ address effective time	trhax	ALE, A23 to A16		tcp/2-10	-	ns	
Effective address \rightarrow CLK \uparrow time	tavch	A23 to A16, AD15 to AD00, CLK		tcp/2-20	-	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ CLK \uparrow time	trLch	$\overline{\mathrm{RD}}$, CLK		tcp/2-20	-	ns	
ALE $\downarrow \rightarrow \overline{\mathrm{RD}} \downarrow$ time	tLLRL	ALE, $\overline{\mathrm{RD}}$		tcp/2-15	-	ns	

MB90580B Series

MB90580B Series

(6) Bus Timing (Write)

$$
\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Effective address \rightarrow $\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}} \downarrow$ time	tavwL	A23 to A16, AD15 to AD00, WRH, WRL	-	tcp - 15	-	ns	
$\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}}$ pulse width	twıwh	$\overline{\text { WRH, }}$ WRL		$3 \mathrm{tcp} / 2-20$	-	ns	
Effective data output $\rightarrow \overline{\mathrm{WRH}}, \overline{\mathrm{WRL}} \uparrow$ time	tovw	AD15 to AD00, WRH, WRL		$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}} \uparrow \rightarrow$ data hold time	twhox	$\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}}$, AD15 to AD00		20	-	ns	
$\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}} \uparrow \rightarrow$ address effective time	twhax	WRH, WRL, A23 to A16		tcp/2-10	-	ns	
$\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}} \uparrow \rightarrow$ ALE \uparrow time	twнLH	$\overline{\text { WRH, }}$, $\overline{\text { RLL }}$, ALE		tcp/2-15	-	ns	
$\overline{\mathrm{WRH}}, \overline{\mathrm{WRL}} \downarrow \rightarrow$ CLK \uparrow time	twLCH	WRH, WRL, CLK		tcp/2-20	-	ns	

- Bus Timing (Write)

MB90580B Series

(7) Ready Input Timing
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter		Symbol	Pin name	Condition	Value		Unit
RDY setup time				Min.	Max.		
RDY hold time	RDY	-	45	-	ns		
			-	0	-	ns	

Note: Use the automatic ready function when the setup time for the rising edge of the RDY signal is not sufficient.

MB90580B Series

(8) Hold Timing
$\left(\mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Pins in floating status \rightarrow HAK \downarrow time	txhaL	HAK	-	30	tcp	ns	
$\overline{\text { HAK }} \uparrow \rightarrow$ pin valid time	thatv	$\overline{\text { HAK }}$		tcp	2 tcp	ns	

Note: More than 1 machine cycle is needed before $\overline{\mathrm{HAK}}$ changes after HRQ pin is fetched.

MB90580B Series

(9) UART0 to UART4
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} s \mathrm{ss}=\mathrm{AV}\right.$ ss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Serial clock cycle time	tscyc	SCK0 to SCK4	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for an output pin of internal shift clock mode	8 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tsıov	SCK0 to SCK4, SOT0 to SOT4		-80	80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK4, SIN0 to SIN4		100	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK4, SIN0 to SIN4		60	-	ns	
Serial clock "H" pulse width	tshsL	SCK0 to SCK4	$\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$ for an output pin of external shift clock mode	4 tcp	-	ns	
Serial clock "L" pulse width	tsısh	SCK0 to SCK4		4 tcp	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to SCK4, SOT0 to SOT4		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivs	SCK0 to SCK4, SIN0 to SIN4		60	-	ns	
SCK $\uparrow \rightarrow$ valid SIN hold time	tsHIX	SCK0 to SCK4, SIN0 to SIN4		60	-	ns	

Note: •These are AC ratings in the CLK synchronous mode.
\bullet CL is the load capacitance value connected to pins while testing.
\bullet-tcp is machine cycle time (unit:ns).

MB90580B Series

- Internal shift clock mode

- External shift clock mode

MB90580B Series

(10)Timer Input Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
Input pulse width	tтiwh ttiwn	IN0 to IN3, TIN0 to TIN2	-	4 tcp	-	ns	

(11) Timer Output Timing
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
CLK $\uparrow \rightarrow$ Tout transition time	tтo	$\begin{aligned} & \text { OUTO, OUT1, } \\ & \text { PPG0, PPG1, } \\ & \text { TOT0 to TOT2 } \end{aligned}$	-	30	-	ns	

MB90580B Series

(12) Trigger Input Timimg
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Max.			
Input pulse width	tTRGL	IRQ0 to IRQ7, ADTG	-	5 tcp	-	ns	

MB90580B Series

(13) IEBus ${ }^{\text {TM }}$ Timing

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min.	Max.		
$\mathrm{TX} \rightarrow \mathrm{RX}$ delay time (rise)	toly 1	TX, RX	-	0	1000	ns	
TX \rightarrow RX delay time (fall)	toly2	TX, RX		0	1000	ns	

MB90580B Series

5. A/D Converter Electrical Characteristics

$\left(3.0 \mathrm{~V} \leq \mathrm{AVRH}-\mathrm{AVRL}, \mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	10	-	bit	
Total error	-	-	-	-	± 5.0	LSB	
Non-linear error	-	-	-	-	± 2.5	LSB	
Differential linearity error	-	-	-	-	± 1.9	LSB	
Zero transition voltage	Vot	ANO to AN7	AVss - 3.5	+0.5	AV ss +4.5	mV	
Full-scale transition voltage	Vfst	ANO to AN7	AVRH - 6.5	AVRH - 1.5	AVRH + 1.5	mV	
Conversion time	-	-	-	176 tcp	-	ns	
Sampling period	-	-	-	64 tcp	-	ns	
Analog port input current	Iain	ANO to AN7	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	Vain	ANO to AN7	AVRL	-	AVRH	V	
Reference voltage	-	AVRH	AVRL + 2.7	-	AVcc	V	
	-	AVRL	0	-	AVRH - 2.7	V	
Power supply current	I_{A}	AVcc	-	5	-	mA	
	Іah	AVcc	-	-	5	$\mu \mathrm{A}$	*
Reference voltage supply current	IR	AVRH	-	400	-	$\mu \mathrm{A}$	
	IRH	AVRH	-	-	5	$\mu \mathrm{A}$	*
Offset between channels	-	ANO to AN7	-	-	4	LSB	

* : The current when the A/D converter is not operating or the CPU is in stop mode (for $\mathrm{V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{cc}=\mathrm{AVRH}=5.0 \mathrm{~V}$)

Note:

- The error increases proportionally as |AVRH - AVRL| decreases.
-The output impedance of the external circuits connected to the analog inputs should be in the following range.
-The output impedance of the external circuit : $15.5 \mathrm{k} \Omega$ (Max.) (Sampling time $=4.0 \mu \mathrm{~s}$)
-If the output impedance of the external circuit is too high, the sampling time might be insufficient.

MB90580B Series

6. A/D Converter Glossary

Resolution : Analog changes that are identifiable with the A/D converter
Linearity error : The deviation of the straight line connecting the zero transition point ("00 00000000 " \leftrightarrow "00 00000001 ") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics
Differential linearity error : The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error : The total error is defined as a difference between the actual value and the theoretical value, which includes zero-transition error/full-scale transition error and linearity error.

(Continued)

MB90580B Series

(Continued)

MB90580B Series

7. Notes on Using A/D Converter

Select the output impedance value for the external circuit of analog input according to the following conditions.
Output impedance values of the external circuit of $7 \mathrm{k} \Omega$ or lower are recommended.
When capacitors are connected to external pins, the capacitance of several thousand times the internal capacitor value is recommended to minimized the effect of voltage distribution between the external capacitor and internal capacitor.
When the output impedance of the external circuit is too high, the sampling period for analog voltages may not be sufficient (sampling period = $4.00 \mu \mathrm{~s}$ @machine clock of 16 MHz)

- Equipment of analog input circuit model

Note: Listed values must be considered as standards.

- Error

The smaller the | AVRH - AVRL |, the greater the error would become relatively.
8. D/A Converter Electrical Characteristics
$\left(\mathrm{Vcc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=\mathrm{AV} s \mathrm{~s}=\mathrm{DV} \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min.	Typ.	Max.		
Resolution	-	-	-	8	-	bit	
Differential linearity error	-	-	-	-	± 0.9	LSB	
Absolute accuracy	-	-	-	-	± 1.2	\%	
Linearity error	-	-	-	-	± 1.5	LSB	
Conversion time	-	-	-	10	20	$\mu \mathrm{s}$	*1
Analog reference voltage	-	DVRH	Vss +3.0	-	AV ${ }_{\text {cc }}$	V	
Reference voltage supply current	Iove	DVRH	-	120	300	$\mu \mathrm{A}$	
	loves		-	-	10	$\mu \mathrm{A}$	*2
Analog output impedance	-	-	-	20	-	k Ω	

[^1]*2 : In sleep mode

MB90580B Series

EXAMPLE CHARACTERISTICS

- Power Suppy Current of MB90F583B

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, external clock input

Iccs vs. Vcc
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, external clock input

Iccls vs. Vcc
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, external clock input

Icct vs. Vcc

MB90580B Series

(Continued)

MB90580B Series

Power Suppy Current of MB90583B
$\square{ }^{\text {Icc Vs. Vcc }}$
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, external clock input

Iccl vs. Vcc
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, external clock input

Icct vs. Vcc
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, external clock input

Iccs vs. Vcc
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, external clock input

Iccls vs. Vcc
$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, external clock input

MB90580B Series

(Continued)

INSTRUCTIONS (351 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction code.
\#	Indicates the number of bytes.
~	Indicates the number of cycles. m : When branching n : When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
B	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the " \sim " column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z : Transfers " 0 ". X : Extends with a sign before transferring. - : Transfers nothing.
AH	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00 н to AH . X : Transfers 00 н or $F F$ to $A H$ by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit), N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction. - : No change. S: Set by execution of instruction. R : Reset by execution of instruction.
S	
T	
N	
Z	
V	
C	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

- Number of execution cycles

The number of cycles required for instruction execution is acquired by adding the number of cycles for each instruction, a corrective value depending on the condition, and the number of cycles required for program fetch. Whenever the instruction being executed exceeds the two-byte (word) boundary, a program on an internal ROM connected to a 16 -bit bus is fetched. If data access is interfered with, therefore, the number of execution cycles is increased.
For each byte of the instruction being executed, a program on a memory connected to an 8 -bit external data bus is fetched. If data access in interfered with, therefore, the number of execution cycles is increased. When a general-purpose register, an internal ROM, an internal RAM, an internal I/O device, or an external bus is accessed during intermittent CPU operation, the CPU clock is suspended by the number of cycles specified by the CG1/0 bit of the low-power consumption mode control register. When determining the number of cycles required for instruction execution during intermittent CPU operation, therefore, add the value of the number of times access is done \times the number of cycles suspended as the corrective value to the number of ordinary execution cycles.

MB90580B Series

Table 2 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte : Lower 8 bits of AL Word : 16 bits of AL Long : 32 bits of AL and AH
$\begin{aligned} & \mathrm{AH} \\ & \mathrm{AL} \end{aligned}$	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFr)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
$\begin{gathered} \hline \text { disp8 } \\ \text { disp16 } \end{gathered}$	8-bit displacement 16-bit displacement
bp	Bit offset
$\begin{aligned} & \text { vct4 } \\ & \text { vct8 } \end{aligned}$	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address
rel	PC relative addressing
$\begin{aligned} & \hline \text { ear } \\ & \text { eam } \end{aligned}$	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

MB90580B Series

Table 3 Effective Address Fields

Code	Notation			Address format	Number of bytes in address extension *
00	R0	RW0	RLO	Register direct	
01	R1	RW1	(RLO)		
02	R2	RW2	RL1	"ea" corresponds to byte, word, and	
03	R3	RW3	(RL1)	long-word types, starting from the left	
04	R4	RW4	RL2		-
05	R5	RW5	(RL2)		
06	R6	RW6	RL3		
07	R7	RW7	(RL3)		
08	@RW0 @RW1 @RW2 @RW3			Register indirect	
09					0
0A					0
0B					
OC	@RW0 + @RW1 + @RW2 + @RW3 +			Register indirect with post-increment	
OD				Register indired wih post-ncrement	
OE					0
OF					
10	@RW0 + disp8			Register indirect with 8-bit	
11	@RW1 + disp8			displacement	
12	@RW2 + disp8				
13	@RW3 + disp8				1
14	@RW4 + disp8				1
15	@RW5 + disp8				
16	@RW6 + disp8 @RW7 + disp8				
17					
18	@RW0 + disp16			Register indirect with 16-bit	
19	@RW1 + disp16			displacement	2
1A	@RW2 + disp16@RW3 + disp16				2
1B					
	@RW0 + RW7			Register indirect with index	0
1 D	@RW1 + RW7			Register indirect with index	0
1 E	@PC + disp16addr16			PC indirect with 16 -bit displacement	2
1F				Direct address	2

Note : The number of bytes in the address extension is indicated by the " + " symbol in the "\#" (number of bytes) column in the tables of instructions.

MB90580B Series

Table 4 Number of Execution Cycles for Each Type of Addressing

Code	Operand	(a)	Number of register accesses for each type of addressing
		Number of execution cycles for each type of addressing	
00 to 07	$\begin{aligned} & \hline \mathrm{Ri} \\ & \mathrm{RWi} \\ & \mathrm{RLi} \end{aligned}$	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
OC to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1 C 1 D 1 E 1 F	$\begin{aligned} & @ R W 0+\mathrm{RW} 7 \\ & @ \mathrm{RW} 1+\mathrm{RW} 7 \\ & \text { @PC + disp16 } \\ & \text { addr16 } \end{aligned}$	4 4 2 1	$\begin{aligned} & 2 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$

Note : "(a)" is used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.
Table 5 Compensation Values for Number of Cycles Used to Calculate Number of Actual Cycles

Operand	(b) byte		(c) word		(d) long	
	Cycles	Access	Cycles	Access	Cycles	Access
Internal register	+0	1	+0	1	+0	2
Internal memory even address	+0	1	+0	1	+0	2
Internal memory odd address	+0	1	+2	2	+4	4
Even address on external data bus (16 bits)	+1	1	+1	1	+2	2
Odd address on external data bus (16 bits)	+1	1	+4	2	+8	4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the " \sim " (number of states) column and column B (correction value) in the tables of instructions.

- When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	-	+2
External data bus (16 bits)	-	+3
External data bus (8 bits)	+3	-

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

- Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

MB90580B Series

Table 7 Transfer Instructions (Byte) [41 Instructions]

	Mnemonic	\#	\sim	RG	B	Operation	LH	- AH	н	1	s	T	N	z	v	c	RMw
MOV	A, dir	2	3	0	(b)	byte (A) \leftarrow (dir)	Z			-	-	-					
MOV	A, addr16	3	4	0	(b)	byte $($ A $) \leftarrow$ (addr16)	Z		*	-	-	-			-	- -	-
MOV	A, Ri	1	2	1	0	byte $(\mathrm{A}) \leftarrow(\mathrm{Ri})$	Z			-	-	-			-	-	-
MOV	A, ear	2	2	1	0	byte $(\mathrm{A}) \leftarrow$ (ear)	Z			-	-				-	- -	-
MOV	A, eam	2+	$3+$ (a)	0	(b)	byte (A) \leftarrow (eam)	Z			-	-	-			-	-	_
MOV	A, io	2	3	0	(b)	byte $($ A $) \leftarrow$ (io)	Z			-	-	-			-	-	-
MOV	A, \#imm 8	2	2	0	0	byte $($ A $) \leftarrow$ imm8	Z			-	-	-			-	-	-
MOV	A, @A	2		0	(b)	byte $(A) \leftarrow((A))$	Z	-	-	-	-	-			-	- -	-
MOV	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow(($ RLi) + disp8)	Z			-	-	-			-	- -	-
MOVN	A, \#imm4	1	1	0	,	byte (A) \leftarrow imm4	Z			-	-	-	R		-	-	-
MOVX	A, dir	2	3	0	(b)	byte $($ A $) \leftarrow$ (dir)	X			-	-	-				- -	-
MOVX	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	X			-	-	-				-	-
MOVX	A, Ri	2	2	1	(byte (A) \leftarrow (Ri)	X			-	-	-				- -	-
MOVX	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	X			-	-	-				- -	-
MOVX	A, eam	2+	$3+$ (a)	0	(b)	byte (A) \leftarrow (eam)	X			-	-	-				-	-
MOVX	A, io	2	,	0	(b)	byte (A) \leftarrow (io)	X			-	-	-				-	-
MOVX	A, \#mm8	2		0	0	byte $(A) \leftarrow$ imm8	X			-	-	-				-	-
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow((A))$	X		-	-	-	-				-	-
MOVX	A,@RWi+disp8	2	5	1	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RWW})+$ disp8)	x			-	-	-				-	-
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(\mathrm{A}) \leftarrow((\mathrm{RLL})+$ disp8)	X			-	-	-				-	-
MOV	dir, A	2	3	0	(b)	byte (dir) \leftarrow (A)	-			-	-	-					-
MOV	addr16, A	3	4	0	(b)	byte (addr16) $\leftarrow($ A $)$	-	-	-	-	-	-				-	-
MOV	Ri, A	1	2	1	0	byte $($ Ri) $\leftarrow(A)$	-	-	-	-	-	-			-	-	-
MOV	ear, A	2	2	1	0	byte (ear) $\leftarrow(\mathrm{A})$	-	-		-	-	-			-	-	-
MOV	eam, A	2+	$3+$ (a)	0	(b)	byte (eam) $\leftarrow(A)$	-	-	-	-	-	-			-	-	-
MOV	io, A		3	0	(b)	byte (io) \leftarrow (A)	-	-		-	-	-			-	- -	-
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) +disp8) \leftarrow (A)	-	-		-	-	-			-	-	-
MOV	Ri, ear	2	3	2	0	byte (Ri) \leftarrow (ear)	-	-		-	-	-			-	- -	-
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte $(\mathrm{Ri}) \leftarrow$ (eam)	-	-		-	-	-			-	- -	-
MOV	ear, Ri		4	2	0	byte (ear) \leftarrow (Ri)	-			-	-	-				-	-
MOV	eam, Ri	$2+$	5+ (a)	1	(b)	byte (eam) \leftarrow (Ri)	-			-	-	-				-	-
MOV	Ri, \#imm8	2	(a)	1	0	byte (Ri) \leftarrow imm8	-	-		-	-	-				-	-
MOV	io, \#imm8	3	5	0	(b)	byte (io) \leftarrow imm8	-			-	-	-	-			-	-
MOV	dir, \#imm8	3	5	0	(b)	byte (dir) \leftarrow imm8	-			-	-	-	-			-	-
MOV	ear, \#imm8	3	2	1	0	byte (ear) \leftarrow imm8	-			-	-	-				-	-
MOV	eam, \#imm8	$3+$	4+ (a)	0	(b)	byte (eam) \leftarrow imm8	-	-		-		-	-		-	-	-
$\begin{aligned} & \mathrm{MOV} \\ & \mathrm{MOV} \end{aligned}$	@AL, AH @A, T	2	3	0	(b)	byte $((\mathrm{A})) \leftarrow(\mathrm{AH})$	-	-		-		-					-
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	z	-		-	-	-	-	-			-
XCH	A, eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (A) \leftrightarrow (eam)	z	-		-	-	-	-	-	-	-	_
XCH	Ri, ear		7		0	byte (Ri) \leftrightarrow (ear)	-	-		-	-	-	-	-	-	-	-
XCH	Ri, eam	2+	9+ (a)	2	$2 \times$ (b)	byte (Ri) \leftrightarrow (eam)	-	-		-	-	-	-	-	-	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	H	1	s	T	N	z	v	C	вм
MOVW A, dir	2	3	0	(c)	word (A) \leftarrow (dir)	-			-							
MOVW A,	3	4	0	(c)	word $(A) \leftarrow$ (addr16)	-			-	-	-				-	-
MOVW A, SP	1	1	0	0	word $(A) \leftarrow(S P)$	-		-	-	-	-			-	-	-
MOVW A, RWi	1	2	1	0	word $(A) \leftarrow($ RWi)	-		-	-	-	-			-	-	-
MOVW A, ear		2	1	0	word (A) $\leftarrow($ ear $)$	-		-	-	-	-	*		-	-	-
MOVW A, eam	$2+$	$3+$ (a)	0	(c)	word $(A) \leftarrow($ eam $)$	-		-	-	-	-	*		-	-	-
MOVW A, io	2	3	0	(c)	word $(A) \leftarrow$ (io)	-		-	-	-	-	*			-	
MOVW A, @A	2	3	0	(c)	word $(A) \leftarrow((A))$	-	-	-	-	-	-	*			-	
MOVW A, \#imm16	3	2	0	0	word (A) \leftarrow imm16	-			-	-	-	*			-	-
MOVW A, @RWi+disp8	2	5	1	(c)	word (A) $\leftarrow($ (RWi) +disp8)	-			-	-	-	*			-	-
MOVW A, @RLi+disp8	3	10	2	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{RLi})+$ disp8)	-			-	-	-				-	-
MOVW dir, A	2	3	0	(c)	word (dir) \leftarrow (A$)$				-		-				-	
MOVW addr16, A	3	4	0	(c)	word (addr16) $\leftarrow(A)$	-		-	-	-	-				-	
MOVW SP, A	1	1	0		word (SP) $\leftarrow(\mathrm{A})$	-		-	-	-	-				-	
MOVW RWi, A	1	2	1	0	word (RWi) $\leftarrow(A)$	-	-	-	-	-	-	*		-	-	
MOVW ear, A	2	2	1	0	word (ear) $\leftarrow(A)$	-	-	-	-	-	-				-	
MOVW eam, A	2+	$3+$ (a)	0	(c)	word (eam) $\leftarrow(A)$	-		-	-	-	-			-	-	
MOVW io, A	2	3	0	(c)	word (io) \leftarrow (A)				-	-	-				-	
MOVW @RWi+disp8,A	2	5	1	(c)	word ($($ RWi) + disp8) \leftarrow (A)				-	-	-				-	-
MOVW @RLi+disp8, A	3	10	2	(c)	word ((RLi) +disp8) $\leftarrow(\mathrm{A})$		-		-	-	-				-	-
MOVW RWi, ear	2	3	2	(0)	word (RWi) \leftarrow (ear)			-	-	-	-				-	
MOVW RWi, eam	$2+$	4+ (a)	1	(c)	word (RWi) \leftarrow (eam)		-	-	-	-	-			-	-	-
MOVW ear, RWi	2	4	2	0	word (ear) $\leftarrow(\mathrm{RWi})$				-	-	-				-	
MOVW eam, RWi	$2+$	5+ (a)	1	(c)	word (eam) $\leftarrow($ RWi)				-	-	-				-	
MOVW RWi, \#imm16	3	2	1	(c)	word $($ RWi $) \leftarrow$ imm16	-		-	-	-	-				-	-
MOVW io, \#imm16	4	5	0	(c)	word (io) \leftarrow imm16				-		-	-			-	
MOVW ear, \#imm16		2	1	(c)	word (ear) \leftarrow imm16				-							
MOVW eam, \#imm16	4+	4+ (a)	0	(c)	word (eam) \leftarrow imm16	-		-	-						-	-
$\begin{aligned} & \text { MOVW @AL, } \\ & \text { MOVWAA } \end{aligned}$	2	3	0	(c)	word $((A)) \leftarrow(A H)$	-	-	- -	-							
XCHW A, ear	2	4	2	0	word (A) \leftrightarrow (ear)		-	-	-	-	-	-				
XCHW A, eam	2+	5+ (a)	0	$2 \times$ (c)	word (A) $\leftrightarrow($ eam $)$	-		-	-	-	-	-	-	-	-	
XCHW RWi, ear	+	7	4	0	word (RWi) \leftrightarrow (ear)	-	-	-	-	-	-	-	-	-	-	
XCHW RWi, eam	2+	9+ (a)	2	$2 \times$ (c)	word (RWi) \leftrightarrow (eam)				-	-	-	-				-
MOVL A, ear		4	2	(d)	long (A) \leftarrow (ear)	-			-	-	-				-	-
MOVL A, eam	$2+$	5+ (a)	0	(d)	long $(A) \leftarrow($ eam $)$	-	-	-	-	-	-	*			-	-
MOVL A, \#imm32	5	3	0	0	long $(A) \leftarrow$ imm32	-	-	- -	-	-	-			-	-	-
MOVL ear, A	2	4	2	0	long (ear) $\leftarrow(\mathrm{A})$	-	-	-	-	-	-	*		-	-	-
MOVL eam, A	2+	5+ (a)	0	(d)	long (eam) $\leftarrow(\mathrm{A})$	-	-	-	-	-	-			-		-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
ADD A,\#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+$ imm8	Z	-	-	-	-	*	*	*	*	-
ADD A, dir	2	5	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})+$ (dir)	Z	-	-	-	-	*	*	*		
ADD A, ear	2	3	1	0	byte $(A) \leftarrow(A)+($ ear $)$	Z	-	-	-	-	*				-
ADD A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)$	Z	-	-	-	-	*	*	*		-
ADD ear, A	2	3	2	0	byte (ear) \leftarrow (ear) + (A)	-	-	-	-	-	*	*	*	*	-
ADD eam, A	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)+(\mathrm{A})$	Z	-	-	-	-	*	*	*	*	*
ADDC A	1	,	0	0	byte $(A) \leftarrow(A H)+(A L)+(C)$	Z	-	-	-	-	*	*	*	*	-
ADDC A, ear	2	3	1	0	byte $(A) \leftarrow(A)+($ ear $)+(C)$	Z	-	-	-	-	*	*	*	*	-
ADDC A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)+($ eam $)+(C)$	Z	-	-	-	-	*	*	*	*	-
ADDDC A	1	3	0	0	byte (A) $\leftarrow(\mathrm{AH})+(\mathrm{AL})+(\mathrm{C})$ (decimal)	Z	-	-	-	-	*	*	*	*	-
SUB A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$-imm8	Z	-	-	-	-	*	*	*	*	-
SUB A, dir	2	5	0	(b)	byte $(A) \leftarrow(A)-$ (dir)	Z	-	-	-	-	*	*	*	*	-
SUB A, ear	2	3	1	0	byte $(A) \leftarrow(A)-$ (ear)	Z	-	-	-	-	*	*	*	*	-
SUB A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)-$ (eam)	Z	-	-	-	-	*	*	*	*	-
SUB ear, A	2	3	2	0	byte (ear) \leftarrow (ear) - (A)	-	-	-	-	-	*	*	*	*	-
SUB eam, A	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow (eam) - (A)	-	-	-	-	-	*	*	*	*	
SUBC A	1	2	0	0	byte $(A) \leftarrow(A H)-(A L)-(C)$	Z	-	-	-	-	*	*	*	*	-
SUBC A, ear	2	3	1	0	byte $(A) \leftarrow(A)-($ ear $)-(C)$	Z	-	-	-	-	*	*	*	*	-
SUBC A, eam	2+	4+ (a)	0	(b)	byte $(\mathrm{A}) \leftarrow(\mathrm{A})-($ eam $)-(\mathrm{C})$	Z	-	-	-	-	*	*	*	*	-
SUBDC A	1	3	0	0	byte (A) $\leftarrow(\mathrm{AH})-(\mathrm{AL})-(\mathrm{C})$ (decimal)	Z	-	-	-	-	*	*	*	*	-
ADDW A	1	2	0	0	word $(A) \leftarrow(A H)+(A L)$	-	-	-	-	-	*	*	*	*	-
ADDW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)$	-	-	-	-	-	*	*	*	*	-
ADDW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-	*	*	*	*	-
ADDW A, \#imm16	3	(0	0	word $(A) \leftarrow(A)+$ imm16	-	-	-	-	-	*	*	*	*	-
ADDW ear, A	2	3	2	0	word (ear) $\leftarrow($ ear $)+(\mathrm{A})$	-	-	-	-	-	*	*	*	*	-
ADDW eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) \leftarrow (eam) + (A)	-	-	-	-	-		*	*	*	
ADDCW A, ear	2	3	1	0	word $(A) \leftarrow(A)+($ ear $)+(C)$	-	-	-	-	-		*	*	*	-
ADDCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)+($ eam $)+(C)$	-	-	-	-	-	*	*	*	*	-
SUBW A	1	2	0	0	word $(A) \leftarrow(A H)-(A L)$	-	-	-	-	-		*	*	*	-
SUBW A, ear	2	3	1	0	word $(A) \leftarrow(A)-$ ear)	-	-	-	-	-	*	*	*	*	-
SUBW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)$	-	-	-	-	-		*	*	*	
SUBW A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$-imm16	-	-	-	-	-		*	*	*	-
SUBW ear, A	2	3	2	0	word (ear) \leftarrow (ear) - (A)	-	-	-	-	-	*	*	*	*	-
SUBW eam, A	2+	5+ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)-(A)$	-	-	-	-	-	*	*	*	*	*
SUBCW A, ear	2	3	1	0	word $(A) \leftarrow(A)-($ ear $)-(C)$	-	-	-	-	-	*	*	*	*	-
SUBCW A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)-($ eam $)-(C)$	-	-	-	-	-	*	*	*	*	
ADDL A, ear	2	6	2	0	long $(A) \leftarrow(A)+$ (ear)	-	-	-	-	-		*	*	*	-
ADDL A, eam	2+	$7+(a)$	0	(d)	long $(A) \leftarrow(A)+($ eam $)$	-	-	-	-	-		*		*	-
ADDL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)+$ imm32	-	-	-	-	-	*	*	*	*	-
SUBL A, ear	2	6	2	0	long $(A) \leftarrow(A)-$ (ear)	-	-	-	-	-		*	*	*	-
SUBL A, eam	2+	$7+(a)$	0	(d)	long $(A) \leftarrow(A)-$ eam $)$	-	-	-	-	-	*	*	*	*	-
SUBL A, \#imm32	5	4	0	0	long $(A) \leftarrow(A)$-imm32	-	-	-	-	-	*	*	*	*	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	S	T	N	Z	v	C	RMW
CMP A	1	1	0	0	byte (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMP A, ear	2	2	1	0	byte $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMP A, eam	2+	$3+(a)$	0	(b)	byte $(A) \leftarrow$ (eam)	-	-	-	-	-	*	*	*	*	-
CMP A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ imm8	-	-	-	-	-	*	*	*	*	-
CMPW A	1	1	0	0	word (AH) - (AL)	-	-	-	-	-	*	*	*	*	-
CMPW A, ear	2	2	1	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPW A, eam	2+	$3+$ (a)	0	(c)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPW A, \#imm16	3	2	0	0	word $(A) \leftarrow$ imm16	-	-	-	-	-	*	*	*	*	-
CMPL A, ear	2	6	2	0	word $(A) \leftarrow$ (ear)	-	-	-	-	-	*	*	*	*	-
CMPL A, eam	2+	$7+(\mathrm{a})$	0	(d)	word $(A) \leftarrow($ eam $)$	-	-	-	-	-	*	*	*	*	-
CMPL A, \#imm32	5	3	0	0	word $(A) \leftarrow$ imm32	-	-	-	-	-	*	*	*	*	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH		I	s	T	N		z	v	c	RMW
DIVU A	1	*	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	-	-		-	-	-	-		-	*		-
DIVU A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	-	-		-	-	-	-		-	*	*	-
DIVU A, eam	2+	*3	0	* 6	word (A)/byte (eam)	-	-		-	-		-		-	*	*	-
DIVUW A, ear	2	* 4	1	0	long (A)/word (ear)	-			-	-		-		-	*	*	-
DIVUW A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-			-	-		-		-	*	*	-
MULU A	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-		-	-	-	-		-	-	-	-
MULU A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-		-	-	-	-		-	-	-	-
MULU A, eam	2+	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-		-	-	-	-		-	-	-	-
MULUW A	1	*11	-	0	word (AH) *word (AL) \rightarrow long (A)	-	-		-	-	-	-		-	-	-	-
MULUW A, ear	2	*12	1	0	word (A) *word (ear) \rightarrow long (A)	-	-		-	-	-	-		-	-	-	-
MULUW A, eam	2+	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-		-	-	-	-		-	-	-	-

*1: 3 when the result is zero, 7 when an overflow occurs, and 15 normally.
*2: 4 when the result is zero, 8 when an overflow occurs, and 16 normally.
*3: $6+$ (a) when the result is zero, $9+$ (a) when an overflow occurs, and $19+$ (a) normally.
*4: 4 when the result is zero, 7 when an overflow occurs, and 22 normally.
*5: $6+$ (a) when the result is zero, $8+$ (a) when an overflow occurs, and $26+$ (a) normally.
*6: (b) when the result is zero or when an overflow occurs, and $2 \times(\mathrm{b})$ normally.
*7: (c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.
*8: 3 when byte (AH) is zero, and 7 when byte (AH) is not zero.
*9: 4 when byte (ear) is zero, and 8 when byte (ear) is not zero.
*10: $5+$ (a) when byte (eam) is zero, and $9+(\mathrm{a})$ when byte (eam) is not 0 .
*11: 3 when word (AH) is zero, and 11 when word (AH) is not zero.
*12: 4 when word (ear) is zero, and 12 when word (ear) is not zero.
*13: $5+$ (a) when word (eam) is zero, and $13+$ (a) when word (eam) is not zero.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 13 Signed Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	onic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
DIV	A	2	${ }^{*} 1$	0	0	word (AH) /byte (AL) Quotient \rightarrow byte (AL) Remainder \rightarrow byte (AH)	Z	-	-	-	-	-	-	*	*	-
DIV	A, ear	2	*2	1	0	word (A)/byte (ear) Quotient \rightarrow byte (A) Remainder \rightarrow byte (ear)	Z	-	-	-	-	-	-	*	*	-
DIV	A, eam	$2+$	*3	0	*6	word (A)/byte (eam) Quotient \rightarrow byte (A) Remainder \rightarrow byte (eam)	Z	-	-	-	-	-	-	*	*	-
DIVW	A, ear	2	*4	1	0	long (A)/word (ear) Quotient \rightarrow word (A) Remainder \rightarrow word (ear)	-	-	-	-	-	-	-	*	*	-
DIVW	A, eam	2+	*5	0	*7	long (A)/word (eam) Quotient \rightarrow word (A) Remainder \rightarrow word (eam)	-	-	-	-	-	-	-	*	*	-
MULU	A	2	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, ear	2	*9	1	0	byte (A) *byte (ear) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULU	A, eam	$2+$	*10	0	(b)	byte (A) *byte (eam) \rightarrow word (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A A, ear	2	**11	0	0	word (AH) *word (AL) \rightarrow long (A) word (A) *word (ear) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-
MULUW	A, eam	$2+$	*13	0	(c)	word (A) *word (eam) \rightarrow long (A)	-	-	-	-	-	-	-	-	-	-

*1: Set to 3 when the division-by-0, 8 or 18 for an overflow, and 18 for normal operation.
*2: Set to 3 when the division-by-0, 10 or 21 for an overflow, and 22 for normal operation.
*3: Set to $4+$ (a) when the division-by- $0,11+$ (a) or $22+$ (a) for an overflow, and $23+$ (a) for normal operation.
*4: Positive dividend: Set to 4 when the division-by- 0,10 or 29 for an overflow, and 30 for normal operation.
Negative dividend: Set to 4 when the division-by- 0,11 or 30 for an overflow and 31 for normal operation.
*5: Positive dividend: Set to $4+$ (a) when the division-by- $0,11+$ (a) or $30+(a)$ for an overflow, and $31+$ (a) for normal operation.
Negative dividend: Set to $4+$ (a) when the division-by- $0,12+$ (a) or $31+$ (a) for an overflow, and $32+$ (a) for normal operation.
*6: When the division-by-0, (b) for an overflow, and $2 \times$ (b) for normal operation.
*7: When the division-by-0, (c) for an overflow, and $2 \times$ (c) for normal operation.
*8: Set to 3 when byte (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*9: Set to 3 when byte (ear) is zero, 12 when the result is positive, and 13 when the result is negative.
*10: Set to $4+$ (a) when byte (eam) is zero, $13+$ (a) when the result is positive, and $14+$ (a) when the result is negative.
*11: Set to 3 when word (AH) is zero, 12 when the result is positive, and 13 when the result is negative.
*12: Set to 3 when word (ear) is zero, 16 when the result is positive, and 19 when the result is negative.
*13: Set to $4+(a)$ when word (eam) is zero, $17+$ (a) when the result is positive, and $20+(a)$ when the result is negative.

Notes: - When overflow occurs during DIV or DIVW instruction execution, the number of execution cycles takes two values because of detection before and after an operation.

- When overflow occurs during DIV or DIVW instruction execution, the contents of AL are destroyed.
- For (a) to (d), refer to "Table 4 Number of Execution Cycles for Effective Address in Addressing Modes" and "Table 5 Correction Values for Number of Cycles for Calculating Actual Number of Cycles."

MB90580B Series

Table 14 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mnemonic		\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
AND	A, \#imm8	2	2	0	0	byte $(\mathrm{A}) \leftarrow(\mathrm{A})$ and imm8	-	-	-	-	-	*		R	-	-
AND	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
AND	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-	*	*	R	-	-
AND	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
AND	eam, A	2+	$5+(a)$	0	$2 \times(\mathrm{b})$	byte (eam) $\leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
OR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ or imm8	-	-	-	-	-	*	*	R	-	-
OR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*	*	R	-	-
OR	A, eam	2+	$4+(a)$	0	(b)	byte $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*	*	R	-	-
OR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
OR	eam, A	2+	$5+$ (a)	0	$2 \times(\mathrm{b})$	byte (eam $) \leftarrow($ eam $)$ or (A)	-	-	-	-	-	*		R	-	*
XOR	A, \#imm8	2	2	0	0	byte $(A) \leftarrow(A)$ xor imm8	-	-	-	-	-	*	*	R	-	-
XOR	A, ear	2	3	1	0	byte $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XOR	A, eam	2+	4+ (a)	0	(b)	byte $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XOR	ear, A	2	3	2	0	byte (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*		R	-	-
XOR	eam, A	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow (eam) xor (A)	-	-	-	-	-	*		R	-	*
NOT	A	1	2	0	0	byte $(\mathrm{A}) \leftarrow$ not (A)	-	-	-	-	-	*		R	-	-
NOT	ear	2	3	2	0	byte (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOT	eam	2+	$5+(a)$	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*
ANDW	A	1	2	0	0	word $(A) \leftarrow(A H)$ and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ and imm16	-	-	-	-	-	*		R	-	-
ANDW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ and (ear)	-	-	-	-	-	*	*	R	-	-
ANDW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-			R	-	-
ANDW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) and (A)	-	-	-	-	-	*	*	R	-	-
ANDW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word $($ eam $) \leftarrow($ eam $)$ and (A)	-	-	-	-	-	*	*	R	-	*
ORW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow(\mathrm{AH})$ or (A)	-	-	-	-	-	*	*	R	-	-
ORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ or imm16	-	-	-	-	-	*	*	R	-	-
ORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-	*		R	-	-
ORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-	*		R	-	-
ORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) or (A)	-	-	-	-	-	*	*	R	-	-
ORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam $)$ or (A)	-	-	-	-	-	*	*	R	-	*
XORW	A	1	2	0	0	word $(A) \leftarrow(A H)$ xor (A)	-	-	-	-	-	*	*	R	-	-
XORW	A, \#imm16	3	2	0	0	word $(A) \leftarrow(A)$ xor imm16	-	-	-	-	-	*		R	-	-
XORW	A, ear	2	3	1	0	word $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	-
XORW	A, eam	2+	4+ (a)	0	(c)	word $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-	*	*	R	-	-
XORW	ear, A	2	3	2	0	word (ear) \leftarrow (ear) xor (A)	-	-	-	-	-	*		R	-	-
XORW	eam, A	2+	$5+$ (a)	0	$2 \times$ (c)	word (eam) $\leftarrow($ eam) $\operatorname{xor}(A)$	-	-	-	-	-	*	*	R	-	*
NOTW	A	1	2	0	0	word $(\mathrm{A}) \leftarrow \operatorname{not}(\mathrm{A})$	-	-	-	-	-	*	*	R	-	-
NOTW	ear	2	3	2	0	word (ear) \leftarrow not (ear)	-	-	-	-	-	*	*	R	-	-
NOTW	eam	2+	$5+(\mathrm{a})$	0	$2 \times$ (c)	word (eam) \leftarrow not (eam)	-	-	-	-	-	*	*	R	-	*

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 15 Logical 2 Instructions (Long Word) [6 Instructions]

Mnemonic		\#	~	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	Rmw
ANDL	A, ear	2	6	2	0	10	-	-	-	-	-			R	-	
ANDL	A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ and (eam)	-	-	-	-	-		*	R	-	-
ORL	A, ear	2	\% 6	2	0	long $(A) \leftarrow(A)$ or (ear)	-	-	-	-	-		*	R	-	-
ORL	A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ or (eam)	-	-	-	-	-		*	R	-	-
XORL	A, ea	2	6	2	0	long $(A) \leftarrow(A)$ xor (ear)	-	-	-	-	-	*	*	R	-	
XORL	A, eam	2+	7+ (a)	0	(d)	long $(A) \leftarrow(A)$ xor (eam)	-	-	-	-	-			R	-	-

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 16 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 17 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	I	s	T	N	Z	v	C	RMw
NRML A, RO	2	$* 1$	1	0	long $($ A $) \leftarrow$ Shift until first digit is "1" byte $($ RO $) ~$ \leftarrow	-	-	-	-	-	-	$*$	-	-	-

*1: 4 when the contents of the accumulator are all zeroes, $6+(\mathrm{RO})$ in all other cases (shift count).
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 18 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
RORC A	2	2	0	0	byte $(\mathrm{A}) \leftarrow$ Right rotation with carry	-	-	-	-	-	*	*	-	*	-
ROLC A	2	2	0	0	byte $(A) \leftarrow$ Left rotation with carry	-	-	-	-	-	*	*	-	*	-
RORC ear	2	3	2	0	byte (ear) \leftarrow Right rotation with carry	-	-	-	-	-	*		-	*	-
RORC eam	2+	5+ (a)	0	$2 \times(\mathrm{b})$	byte (eam) \leftarrow Right rotation with carry	-	-	-	-	-	*	*	-		*
ROLC ear	2	3	2	0	byte (ear) \leftarrow Left rotation with carry	-	-	-	-	-	*		-	*	-
ROLC eam	2+	$5+$ (a)	0	$2 \times$ (b)	byte (eam) \leftarrow Left rotation with carry	-	-	-	-	-	*	*	-	*	*
ASR A, R0	2	*1	1	0	byte $(\mathrm{A}) \leftarrow$ Arithmetic right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSR A, R0	2	*1	1	0	byte (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSL A, R0	2	*1	1	0	byte (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-
ASRW A	1	2	0	0	word (A) \leftarrow Arithmetic right shift (A, 1 bit)	-	-	-	-	*	*	*	-	*	-
LSRW ASHRW A	1	2	0	0	word $(A) \leftarrow$ Logical right shift (A, 1 bit)	-	-	-	-	*	R	*	-	*	-
LSLW A/SHLW A	1	2	0	0	word $(A) \leftarrow$ Logical left shift (A, 1 bit)	-	-	-	-	-			-		-
ASRW A, R0	2	${ }^{*}$,	0	word $(\mathrm{A}) \leftarrow$ Arithmetic right barrel shift (A,	-	-	-	-	*	*	*	-	*	-
LSRW A, R0	2	*1	1	0	R0)	-	-	-	-	*	*	*	-	*	-
LSLW A, R0	2	*1	1	0	word $(A) \leftarrow$ Logical right barrel shift (A, RO) word $(A) \leftarrow$ Logical left barrel shift (A, RO)	-	-	-	-	-			-		-
ASRL A, R0	2	*2	1	0	long $(A) \leftarrow$ Arithmetic right shift (A, RO)	-	-	-	-	*			-	*	-
LSRL A, R0	2	*2	1	0	long (A) \leftarrow Logical right barrel shift (A, R0)	-	-	-	-	*	*	*	-	*	-
LSLL A, R0	2	*2	1	0	long (A) \leftarrow Logical left barrel shift (A, R0)	-	-	-	-	-	*	*	-	*	-

*1: 6 when R0 is $0,5+(R 0)$ in all other cases.
*2: 6 when R0 is $0,6+(R 0)$ in all other cases.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 19 Branch 1 Instructions [31 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	A		1	s	s ${ }^{\text {T }}$	T N	N	z	v	c	RMw
BZ/BEQ	2	*1	0	0	Branch when (Z) = 1	-			-	-	- -				-	-	
BNZ/BNE rel	2	*1	0	0	Branch when (Z) $=0$	-			-	-	-	-	-	-	-	-	-
BC/BLO rel	2	*1	0	0	Branch when (C) = 1	-	-		-	-	-	- -	-	-	-	-	-
BNC/BHS rel	2	*1	0	0	Branch when (C) $=0$	-	-		-	-	-	-	-	-	-	-	-
BN rel	2	${ }^{*}$	0	0	Branch when (N) $=1$	-	-		-	-	-	-	-	-	-	-	-
BP rel	2	*1	0	0	Branch when (N) $=0$	-	-		-	-	-	-	-	-	-	-	-
BV rel	2	*1	0	0	Branch when (V) $=1$	-	-		-	-	-	-	-	-	-	-	-
BNV rel	2	*1	0	0	Branch when (V) $=0$	-			-	-	-	-	-	-	-	-	-
BT rel	2	*1	0	0	Branch when (T) = 1	-			-	-	-	-	-	-	-	-	-
BNT rel	2	*1	0	0	Branch when (T) $=0$	-	-		-	-	-	-	-	-	-	-	-
BLT rel	2	*1	0	0	Branch when (V) xor (N) $=1$	-	-		-	-	-	-	-	-	-	-	-
BGE rel	2	*1	0	0	Branch when (V) $\operatorname{xor}(\mathrm{N})=0$	-	-		-		-	-	-	-	-	-	-
BLE rel	2	*1	0	0	Branch when ((V) xor (N)) or (Z$)=1$	-	-		-		-	-	-	-	-	-	-
BGT rel	2	${ }^{*}$	0	0	Branch when ((V) xor (N$)$) or (Z) $=0$	-	-		-		-	-	-	-	-	-	-
BLS rel	2	${ }^{*} 1$	0	0	Branch when (C) or $(Z)=1$	-	-		-		-	-	-	-	-	-	-
BHI	2	${ }^{*} 1$	0	0	Branch when (C) or (Z) $=0$	-	-		-		-	-	-	-	-	-	-
BRA rel	2	${ }^{*}$	0	0	Branch unconditionally	-	-		-	-			-	-	-	-	-
JMP @A	1	2	0	0	word (PC) \leftarrow (A)	-			-					-	-		-
JMP addr16	3	3	0	0	word $(\mathrm{PC}) \leftarrow$ addr16	-	-		-	-	-	-	-	-	-	-	-
JMP @ear	2	3	1	0	word (PC) \leftarrow (ear)	-	-		-					-	-	-	
JMP @eam	2+	$4+$ (a)	0	(c)	word $(\mathrm{PC}) \leftarrow(\mathrm{eam})$	-	-		-					-	-	-	
JMPP @ear*3	2	5	2	0	word (PC) \leftarrow (ear), (PCB) $\leftarrow($ ear +2)	-	-		-	-	-		-	-	-	-	
JMPP @eam*3	2+	6+ (a)	0	(d)	word (PC) $\leftarrow($ eam), (PCB$) \leftarrow($ eam +2$)$	-	-		-	-	-	-	-	-	-	-	
JMPP addr24	4	(a)	0	(word $(\mathrm{PC}) \leftarrow$ ad24 0 to 15, $(\mathrm{PCB}) \leftarrow \operatorname{ad} 2416$ to 23	-			-					-			
CALL @ear*4	2	6	1	(c)	word (PC) \leftarrow (ear)	-	-		-	-	-	-	-	-	-	-	-
CALL @eam*4	$2+$	$7+$ (a)	0	$2 \times$ (c)	word (PC) \leftarrow (eam)	-	-		-	-	-	-		-	-	-	-
CALL addr16*5	3	6	0	(c)	word $(\mathrm{PC}) \leftarrow$ addr 16	-	-			-	-	-		-	-	-	-
CALLV \#vct4*5	1	7	0	$2 \times$ (c)	Vector call instruction	-	-		-	-	-	-		-	-	-	-
CALLP @ear*6	2	10	2	2× (c)	word $(\mathrm{PC}) \leftarrow$ (ear) 0 to 15 , $(\mathrm{PCB}) \leftarrow(\mathrm{ear}) 16$ to 23	-			-					-		-	
CALLP @eam *6	2+	11+ (a)	0	*2	word $(\mathrm{PC}) \leftarrow($ eam $) 0$ to 15 , $(\mathrm{PCB}) \leftarrow($ eam $) 16$ to 23	-			-					-		-	-
CALLP addr24*7	4	10	0	$2 \times$ (c)	word (PC) \leftarrow addr0 to 15, $(\mathrm{PCB}) \leftarrow \operatorname{addr} 16$ to 23	-			-					-	-	-	-

*1: 4 when branching, 3 when not branching.
*2: (b) $+3 \times$ (c)
*3: Read (word) branch address.
*4: W: Save (word) to stack; R: read (word) branch address.
*5: Save (word) to stack.
*6: W: Save (long word) to W stack; R: read (long word) R branch address.
*7: Save (long word) to stack.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 20 Branch 2 Instructions [19 Instructions]

*1: 5 when branching, 4 when not branching
*2: 13 when branching, 12 when not branching
*3: $7+$ (a) when branching, $6+(a)$ when not branching
*4: 8 when branching, 7 when not branching
*5: 7 when branching, 6 when not branching
*6: $8+$ (a) when branching, $7+$ (a) when not branching
*7: Set to $3 \times$ (b) $+2 \times$ (c) when an interrupt request occurs, and $6 \times$ (c) for return.
*8: Retrieve (word) from stack
*9: Retrieve (long word) from stack
*10: In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 21 Other Control Instructions (Byte/Word/Long Word) [28 Instructions]

Mnemonic	\#	\sim	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
PUSHW A	1	4	0	(c)	word (SP) $\leftarrow(\mathrm{SP})-2,((\mathrm{SP})) \leftarrow(\mathrm{A})$	-	-	-	-	-	-	-	-	-	-
PUSHW AH	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((S P)) \leftarrow(\mathrm{AH})$	-	-	-	-	-	-	-	-	-	-
PUSHW PS	1	4	0	(c)	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})-2,((S P)) \leftarrow(\mathrm{PS})$	-	-	-	-	-	-	-	-	-	-
PUSHW rlst	2	*3	*5	*4	$(\mathrm{SP}) \leftarrow(\mathrm{SP})-2 \mathrm{n},((\mathrm{SP})) \leftarrow(\mathrm{rlst})$	-	-	-	-	-	-	-	-	-	-
POPW A	1	3	0	(c)	word $(\mathrm{A}) \leftarrow((\mathrm{SP}))$, (SP) $\leftarrow(\mathrm{SP})+2$	-	*	-	-	-	-	-	-	-	-
POPW AH	1	3	0	(c)	word $(\mathrm{AH}) \leftarrow((\mathrm{SP})), \mathrm{SP}) \leftarrow(\mathrm{SP})+2$	-	-	-	-	-	-	-	-	-	-
POPW PS	1	4	0	(c)	word $(\mathrm{PS}) \leftarrow((\mathrm{SP})$), (SP) $\leftarrow(\mathrm{SP})+2$	-	-	*	*	*	*	*	*	*	-
POPW rlst	2	*2	*5	*4	$(\mathrm{rlst}) \leftarrow((\mathrm{SP})),(\mathrm{SP}) \leftarrow(\mathrm{SP})+2 \mathrm{n}$	-	-	-	-	-	-	-	-	-	-
JCTX @A	1	14	0	$6 \times$ (c)	Context switch instruction	-	-	*	*	*	*	*	*	*	-
AND CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ and imm8	-	-	*	*	*	*	*	*	*	-
OR CCR, \#imm8	2	3	0	0	byte $(\mathrm{CCR}) \leftarrow(\mathrm{CCR})$ or imm8	-	-	*	*	*	*	*	*	*	-
MOV RP, \#imm8	2	2	0	0	byte (RP) ↔imm8	-	-	-	-	-	-	-	-	-	-
MOV ILM, \#imm8	2	2	0	0	byte (ILM) \leftarrow imm8	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, ear	2	3	1	0	word (RWi) ¢ear	-	-	-	-	-	-	-	-	-	-
MOVEA RWi, eam	2+	$2+(\mathrm{a})$	1	0	word (RWi) ¢eam	-	-	-	-	-	-	-	-	-	-
MOVEA A, ear	2	1	0	0	word $(A) \leftarrow$ ear	-	*	-	-	-	-	-	-	-	-
MOVEA A, eam	2+	$1+(\mathrm{a})$	0	0	word $(A) \leftarrow$ eam	-	*	-	-	-	-	-	-	-	-
ADDSP \#imm8	2	3	0	0	word (SP) $\leftarrow(\mathrm{SP})+$ ext (imm8)	-	-	-	-	-	-	-	-	-	-
ADDSP \#imm16	3	3	0	0	word $(\mathrm{SP}) \leftarrow(\mathrm{SP})+$ +imm16	-	-	-	-	-	-	-	-	-	-
MOV A, brgl	2	*1	0	0	byte $($ A $) \leftarrow($ brgl)	Z	*	-	-	-	*	*	-	-	-
MOV brg2, A	2	1	0	0	byte $($ brg2 $) \leftarrow(A)$	-	-	-	-	-	*		-	-	-
NOP	1	1	0	0	No operation	-	-	-	-	-	-	-	-	-	-
ADB	1	1	0	0	Prefix code for accessing AD space	-	-	-	-	-	-	-	-	-	-
DTB	1	,	0	0	Prefix code for accessing DT space	-	-	-	-	-	-	-	-	-	-
PCB	1	1	0	0	Prefix code for accessing PC space	-	-	-	-	-	-	-	-	-	-
SPB	1	1	0	0	Prefix code for accessing SP space	-	-	-	-	-	-	-	-	-	-
NCC	1	1	0	0	Prefix code for no flag change	-	-	-	-	-	-	-	-	-	-
CMR	1	1	0	0	Prefix code for common register bank	-	-	-	-	-	-	-	-	-	-

*1: PCB, ADB, SSB, USB, and SPB : 1 state
DTB, DPR : 2 states
*2: $7+3 \times$ (pop count) $+2 \times$ (last register number to be popped), 7 when rlst $=0$ (no transfer register)
*3: $29+3 \times$ (push count) $-3 \times$ (last register number to be pushed), 8 when rlst $=0$ (no transfer register)
*4: Pop count \times (c), or push count \times (c)
*5: Pop count or push count.
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 22 Bit Manipulation Instructions [21 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMW
MOVB A, dir:bp	3	5	0	(b)	byte $(\mathrm{A}) \leftarrow$ (dir:bp) b	Z		-	-	-	*	*	-	-	
MOVB A, addr16:bp	4	5	0	(b)	byte $(A) \leftarrow$ (addr16:bp) b	Z	*	-	-	-	*	*	-	-	-
MOVB A, io:bp	3	4	0	(b)	byte $(\mathrm{A}) \leftarrow($ io:bp) b	Z		-	-	-	*	*	-	-	-
MOVB dir:bp, A	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
MOVB addr16:bp, A	4	7	0	$2 \times(\mathrm{b})$	bit (addr16:bp) $b \leftarrow(A)$	-	-	-	-	-	*	*	-	-	*
MOVB io:bp, A	3	6	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow(\mathrm{A})$	-	-	-	-	-	*	*	-	-	*
SETB dir:bp	3	7	0	$2 \times(\mathrm{b})$	bit (dir:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
SETB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $b \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
SETB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 1$	-	-	-	-	-	-	-	-	-	*
CLRB dir:bp	3	7	0	$2 \times$ (b)	bit (dir:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
CLRB addr16:bp	4	7	0	$2 \times$ (b)	bit (addr16:bp) $b \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
CLRB io:bp	3	7	0	$2 \times$ (b)	bit (io:bp) $\mathrm{b} \leftarrow 0$	-	-	-	-	-	-	-	-	-	*
BBC dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBC addr16:bp, rel	5	$*_{1}$	0	(b)	Branch when (addr16:bp) $b=0$	-	-	-	-	-	-	*	-	-	-
BBC io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $\mathrm{b}=0$	-	-	-	-	-	-	*	-	-	-
BBS dir:bp, rel	4	*1	0	(b)	Branch when (dir:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
BBS addr16:bp, rel	5	*1	0	(b)	Branch when (addr16:bp) $\mathrm{b}=1$	-	-	-	-	-	-	*	-	-	-
BBS io:bp, rel	4	*2	0	(b)	Branch when (io:bp) $b=1$	-	-	-	-	-	-	*	-	-	-
SBBS addr16:bp, rel	5	*3	0	$2 \times(\mathrm{b})$	Branch when (addr16:bp) $\mathrm{b}=1$, bit $=1$	-	-	-	-	-	-	*	-	-	*
WBTS io:bp	3	*4	0	*5	Wait until (io:bp) $b=1$	-	-	-	-	-	-	-	-	-	-
WBTC io:bp	3	*4	0	*5	Wait until (io:bp) $b=0$	-	-	-	-	-	-	-	-	-	-

*1: 8 when branching, 7 when not branching
*2: 7 when branching, 6 when not branching
*3: 10 when condition is satisfied, 9 when not satisfied
*4: Undefined count
*5: Until condition is satisfied
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 23 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	\#	~	RG	B	Operation	LH	AH	1	s	T	N	z	v	c	RMw
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow(A) 8$ to 15	-	-	-	-	-	-	-	-	-	-
SWAPW/XCHW A,T	1	2	0	0	word (AH) ↔(AL)	-	*	-	-	-	-	-	-	-	-
EXT	1	1	0	0	byte sign extension	X	-	-	-	-	*	*	-	-	-
EXTW	1	2	0	0	word sign extension	-	X	-	-	-	*	*	-	-	-
ZEXT	1	1	0	0	byte zero extension	Z	-	-	-	-	R	*	-	-	-
ZEXTW	1	1	0	0	word zero extension	-	Z	-	-	-	R	*	-	-	-

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

Table 24 String Instructions [10 Instructions]

m : RW0 value (counter value)
n: Loop count
*1: 5 when RW0 is $0,4+7 \times($ RW0 $)$ for count out, and $7 \times \mathrm{n}+5$ when match occurs
*2: 5 when RW0 is $0,4+8 \times($ RW0) in any other case
*3: (b) $\times($ RWO $)+($ b $) \times($ RWO $)$ when accessing different areas for the source and destination, calculate (b) separately for each.
*4: (b) $\times \mathrm{n}$
*5: $2 \times$ (RW0)
*6: (c) $\times($ RW0 $)+(c) \times($ RW0) when accessing different areas for the source and destination, calculate (c) separately for each.
*7: (c) $\times n$
*8: $2 \times(\mathrm{RW} 0)$
Note : For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

MB90580B Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F583BPFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB90583BPFV	100-pin Plastic QFP (FPT-100P-M06)	
MB90F583BPF MB90583BPF MB90587PF		

MB90580B Series

PACKAGE DIMENSIONS

Note : The external dimensions show here are for reference only.
For official dimensions, contact a FUJITSU representative.

MB90580B Series

Note : The external dimensions show here are for reference only. For official dimensions, contact a FUJITSU representative.

FUJITSU LIMITED

For further information please contact:

 JapanFUJITSU LIMITED
Corporate Global Business Support Division Electronic Devices
Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0721, Japan
Tel: +81-3-5322-3347
Fax: +81-3-5322-3386
http://edevice.fuitsu.com/
North and South America
FUJITSU MICROELECTRONICS, INC. 3545 North First Street, San Jose, CA 95134-1804, U.S.A.
Tel: +1-408-922-9000
Fax: +1-408-922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: +1-800-866-8608
Fax: +1-408-922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Am Siebenstein 6-10,
D-63303 Dreieich-Buchschlag, Germany
Tel: +49-6103-690-0
Fax: +49-6103-690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE. LTD. \#05-08, 151 Lorong Chuan,
New Tech Park,
Singapore 556741
Tel: +65-281-0770
Fax: +65-281-0220
http://www.fmap.com.sg/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 1702 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280
Korea
Tel: +82-2-3484-7100
Fax: +82-2-3484-7111

All Rights Reserved.
The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

The contents of this document may not be reproduced or copied without the permission of FUJITSU LIMITED.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipments, industrial, communications, and measurement equipments, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.

F0010
© FUJITSU LIMITED Printed in Japan

[^0]: *1: FPT-100P-M06
 *2: FPT-100P-M05

[^1]: *1 : Load capacitance: 20 pF

