32-bit Proprietary Microcontrollers

CMOS

FR30 MB91F158

MB91F158

■ DESCRIPTION

The MB91F158 is a microcontroller for CD/DVD using a RISC-CPU (FR 30 series) as its core.

■ FEATURES

1. CPU

- 32-bit RISC (FR30), load/store architecture, 5-stage pipeline
- General-purpose registers : 32 bits × 16
- 16-bit fixed-length instructions (basic instructions), 1 instruction/ 1 cycle
- · Memory-to-memory transfer, bit processing, barrel shift processing : Optimized for embedded applications
- Function entrance/exit instructions, and multiple load/store instructions of register contents, instruction systems supporting high level languages
- Register interlock functions, efficient assembly language description
- · Branch instructions with delay slots : Reduced overhead time in branching executions
- Internal multiplier/supported at instruction level Signed 32-bit multiplication: 5 cycles
 - Signed 16-bit multiplication: 3 cycles
- Interrupt (PC and PS saving) : 6 cycles, 16 priority levels
- · Support for little endian mode

2. Bus Interface

- 24-bit address output, 8/16-bit data input and output
- Basic bus cycle : 2-clock cycle
- Support for interface for various types of memory
- Unused data/address pins can be configured us input/output ports
- Support for little endian mode

(Continued)

PACKAGE 120-pin plastic LQFP (FPT-120P-M05)

3. Internal ROM

FLASH products: 510 Kbytes

4. Internal RAM

2 Kbytes

5. Internal Data RAM

6 Kbytes

6. Bit Search Module

Searches in one cycle for the position of the bit that changes from the MSB in one word to the initial I/O.

7. Timers

- 16-bit OCU × 4 channels, ICU × 4 channels, Free-run timer × 1 channel
- 8/16-bit up/down timer/counter (8-bit × 2 channels or 16-bit × 1 channel)
- 16-bit PPG timer × 4 channels. The output pulse cycle and duty can be varied as desired
- 16-bit reload timer × 2 channels

8. D/A Converter

• 8-bit × 3 channels

9. A/D Converter (Sequential Comparison Type)

- 10-bit × 8 channels
- Sequential conversion method (conversion time : 5.2 μs@32 MHz)
- Single conversion or scan conversion can be selected, and one-shot or continuous or stop conversion mode can be set respectively.
- · Conversion starting function by hardware/software.

10. Serial I/O

- UART × 2 channels. Any of them is capable of serial transfer in sync with clock attached with the LSB/MSB switching function.
- Serial data output and serial clock output are selectable by push-pull/open drain software.
- A 16-bit timer (U-timer) is contained as a dedicated baud rate generator allowing any baud rate to be generated.

11. Clock Switching Function

• Gear function: Operating clock ratios to the basic clock can be set independently for the CPU and peripherals from four types, 1:1, 1:2, 1:4 or 1:8.

12. Interrupt Controller

External interrupt input (16 channels in total):

Allows the rising edge/falling edge/H level/L level to be set.

Internal interrupt factors:

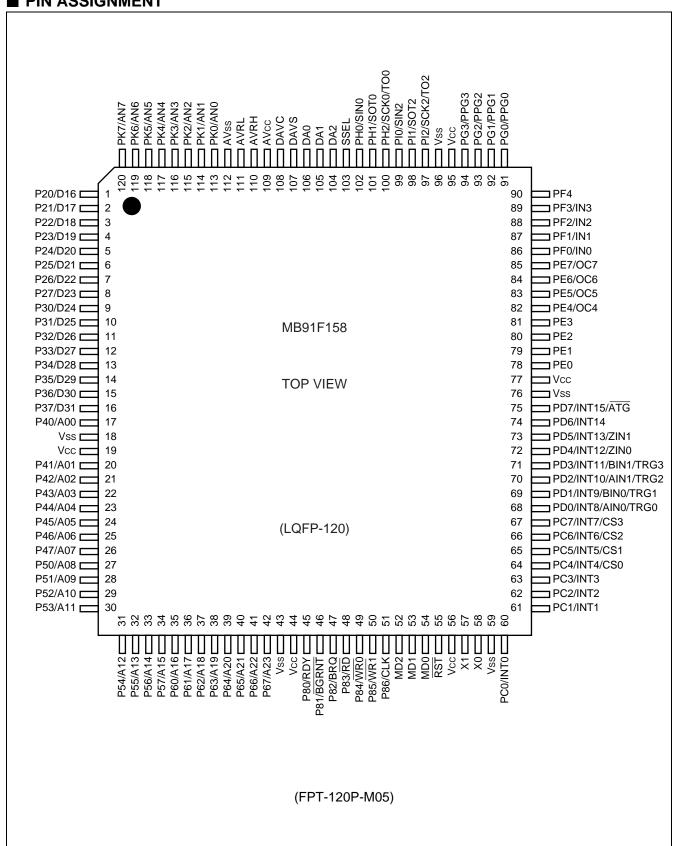
Interrupt by resources and delay interrupt

13. Others

• Reset cause: Power on reset/watchdog timer/software reset/external reset

Low power consumption mode : Sleep/stop

• Package: 120-pin LQFP


• CMOS technology (0.35 μm)

• Power supply voltage: 3.2 V to 3.5 V

Operation frequency upper limit

CPU: 32 MHz
Peripheral circuit: 32 MHz
External bus: 25 MHz

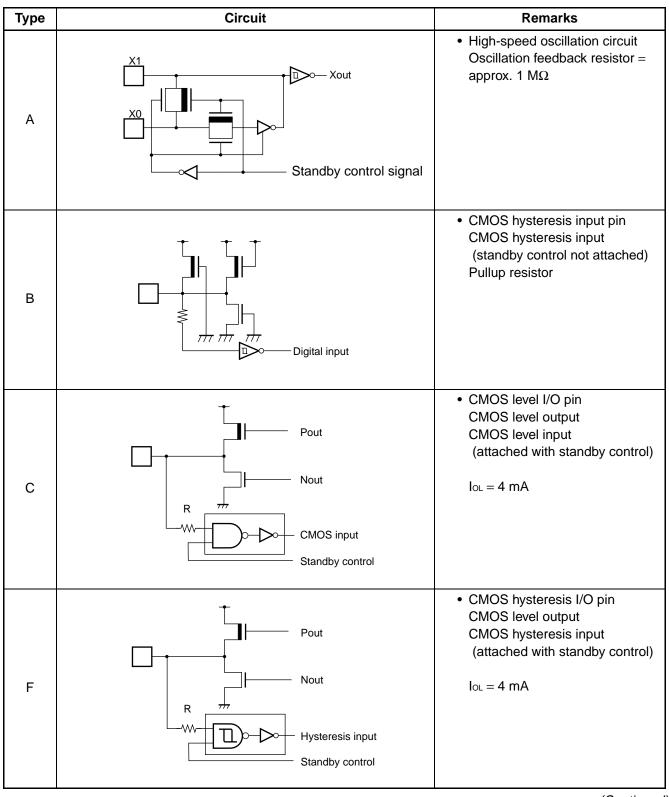
■ PIN ASSIGNMENT

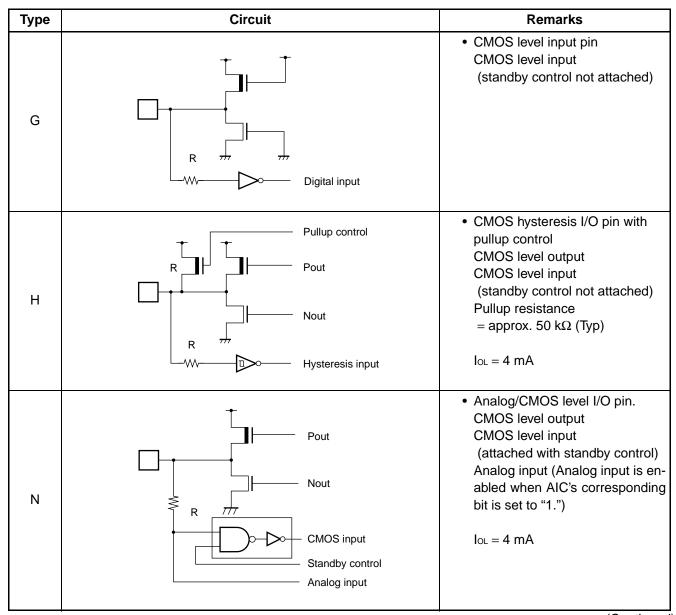
■ PIN DESCRIPTION

1		type	Function
	D16/P20		
2	D17/P21		
3	D18/P22		Bit 16 to bit 23 of external data bus
4	D19/P23		These pins are enabled only in 16-bit external bus mode.
5	D20/P24	С	These pins are available as ports in single-chip and 8-bit external bus
6	D21/P25		modes.
7	D22/P26		
8	D23/P27		
9	D24/P30		
10	D25/P31		
11	D26/P32		
12	D27/P33	_	Bit 24 to bit 31 of external data bus
13	D28P34	С	These pins are available as ports in single-chip mode.
14	D29/P35		Those pine are available de pene in onigie onip mede.
15	D30/P36		
16	D31/P37		
17	A00/P40		
20	A01/P41		
21	A02/P42		
22	A03/P43		
23	A04/P44		
24	A05/P45		
25	A06/P46		
26	A00/P40 A07/P47		Bit 0 to bit 15 of external address bus
27	A08/P50	F	These pins are enabled in external bus mode.
28	A08/P50 A09/P51		These pins are available as ports in single-chip mode.
29	A10/P52		
30	A10/P52 A11/P53		
31	A11/P53 A12/P54		
32	A12/P54 A13/P55		
33	A13/P55 A14/P56		
34	A14/P30 A15/P57		
35	A16/P60		
36			
36	A17/P61 A18/P62		
			Bit 16 to bit 22 of oytornal address has
38	A19/P63	0	Bit 16 to bit 23 of external address bus
39	A20/P64		These pins are available as ports when the address bus is not in use.
40	A21/P65		
41 42	A22/P66 A23/P67		
44	M23/F01		Estamal DDV in a st
			External RDY input This function is applied when external RDV input is allowed.
45	RDY/P80	С	This function is enabled when external RDY input is allowed. Input "0" when the bus cycle being executed does not end.
			This pin is available as a port when external RDY input is not in use.

Pin No.	Pin name	Circuit type	Function
46	BGRNT/P81	F	External bus release acceptance output This function is enabled when external bus release acceptance output is allowed. Output "L" upon releasing of the external bus. This pin is available as a port when external bus release acceptance output is not allowed.
47	BRQ/P82	С	External bus release request input This function is enabled when external bus release request input is allowed. Input "1" when the release of the external bus is desired. This pin is available as a port when external bus release request input is not in use.
48	RD/P83	F	External bus read strobe output This function is enabled when external bus read strobe output is allowed. This pin is available as a port when external bus read strobe output is not allowed.
49	WR0/P84	F	External bus write strobe output This function is enabled in external bus mode. This pin is available as a port in single chip mode.
50	WR1/P85	F	External bus write strobe output This function is enabled in external bus mode when the bus width is 16 bits. This pin is available as a port in single chip mode or when the external bus width is 8 bits.
51	CLK/P86	F	System clock output The pin outputs the same clock as the external bus operating frequency. The pin is available as a port when it is not used to output the clock.
52 53 54	MD2 MD1 MD0	G	Mode pins To use these pins, connect them directly to either Vcc or Vss. Use these pins to set the basic MCU operating mode.
55	RST	В	External reset input
57 58	X1 X0	А	High-speed clock oscillation pins
60 61 62 63	INT0/PC0 INT1/PC1 INT2/PC2 INT3/PC3	Н	External interrupt request input 0-3 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. Since this port is allowed to input also in standby mode, it can be used to reset the standby state. These pins are available as ports when external interrupt request input is not in use.

Pin No.	Pin name	Circuit type	Function
64 65 66 67	INT4/PC4/CS0 INT5/PC5/CS1 INT6/PC6/CS2 INT7/PC7/CS3	Н	These pins also serve as the chip select output and external interrupt request input 4-7. When the chip select output is not allowed, these pins are available as external interrupt requests or ports. Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. Since this port is also allowed to input in standby mode, the port can be used to reset the standby state. These pins are available as ports when external interrupt request input and chip select output are not in use.
68 69 70 71 72 73	PD0/AIN0/INT8/TRG0 PD1/BIN0/INT9/TRG1 PD2/AIN1/INT10/TRG2 PD3/BIN1/INT11/TRG3 PD4/ZIN0/INT12 PD5/ZIN1/INT13	Н	External interrupt request input 8-13 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. [AIN, BIN] Up/down timer input. [TRG] PPG external trigger input. Since this input is used more or less continuously while input is allowed, output by the port needs to be stopped except when it is performed deliberately. These pins are available as ports when the external interrupt request input, up timer counter input, and PPG external trigger input are not in use.
74	PD6/INT14	н	External interrupt request input 14 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately.
75	PD7/ ATG /INT15	Н	External interrupt request input 15 Since this input is used more or less continuously when the corresponding external interrupt is allowed, output by the port needs to be stopped except when it is performed deliberately. [ATG] A/D converter external trigger input Since this input is used more or less continuously when selected as an A/D activation factor, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when it is not in use as the external interrupt request input or DMA external transfer end output.
78 79 80 81	PE0 PE1 PE2 PE3	F	General-purpose I/O ports
82 83 84 85	PE4/OC4 PE5/OC5 PE6/OC6 PE7/OC7	F	Output compare output These pins are available as ports when output compare output is not allowed.


Pin No.	Pin name	Circuit type	Function
86 87 88 89	PF0/IN0 PF1/IN1 PF2/IN2 PF3/IN3	F	Input capture input This function is enabled when the input capture operation is input. These pins are available as ports when input capture input is not in use.
90	PF4	F	General purpose I/O port
91 92 93 94	PG0/PPG0 PG1/PPG1 PG2/PPG2 PG3/PPG3	F	PPG timer output This function is enabled when PPG timer output is allowed. These pins are available as ports when PPG timer output is not allowed.
97	PI2/SCK2/TO2	Р	UART2 clock I/O, Reload timer 2 output When UART2 clock output is not allowed, reload timer 2 can be output by allowing it. This pin is available as a port when neither UART2 clock output nor reload timer output is allowed.
98	PI1/SOT2	Р	UART2 data output This function is enabled when UART2 data output is allowed. This pin is available as a port when UART2 clock output is not allowed.
99	PI0/SIN2	Р	UART2 data input Since this input is used more or less continuously while UART2 is engaged in input operations, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when UART2 data input is not in use.
100	PH2/SCK0/TO0	Р	UART0 clock I/O, Reload timer 0 output When UART0 clock output is not allowed, reload timer 0 can be output by allowing it. This pin is available as a port when neither UART0 clock output nor reload timer output is allowed.
101	PH1/SOT0	Р	UART0 data output This function is enabled when UART0 data output is allowed. This pin is available as a port when UART0 clock output is not allowed.
102	PH0/SIN0	Р	UART0 data input Since this input is used more or less continuously while UART0 is engaged in input operations, output by the port needs to be stopped except when it is performed deliberately. This pin is available as a port when UART0 data input is not in use.
103	SSEL	G	Sector mode switching pin of FLASH This pin should be connected to Vcc or Vss.
104 105 106	DA2 DA1 DA0	_	D/A converter output This function is enabled when D/A converter output is allowed.
107	DAVS		Power supply pin for D/A converter
108	DAVC	_	Power supply pin for D/A converter
109	AVCC		Vcc power supply pin for A/D converter (Continued


(Continued)

Pin No.	Pin name	Circuit type	Function
110	AVRH	_	A/D converter reference voltage (high potential side) Be sure to turn on/off this pin with potential higher than AVRH applied to Vcc.
111	AVRL		A/D converter reference voltage (low potential side)
112	AVSS		Vss pin for A/D converter.
113 114 115 116 117 118 119 120	AN0/PK0 AN1/PK1 AN2/PK2 AN3/PK3 AN4/PK4 AN5/PK5 AN6/PK6 AN7/PK7	N	A/D converter analog input These pins are enabled when the AIC register is designated for analog input. These pins are available as ports when A/D converter analog input is not in use.
19, 44, 56, 77, 95	Vcc	_	Power supply pin (Vcc) for digital circuit Always power supply pin (Vcc) must be connected to the power supply.
18, 43, 59, 76, 96	Vss	_	Earth level (Vss) for digital circuit Always power supply pin (Vss) must be connected to the power supply.

Note: On the majority of pins listed above, the I/O port and the resource I/O are multiplexed, such as XXXX/Pxx. When the port and the resource output compete against each other on these pins, priority is given to the resource.

■ I/O CIRCUIT TYPE

Type	Circuit	Remarks
	Pullup control	CMOS hysteresis I/O pin with pullup control
	R Pout	CMOS level output CMOS hysteresis input (attached with standby control)
0	Nout	Pullup resistance = approx. $50 \text{ k}\Omega$ (Typ)
	Hysteresis input Standby control	IoL = 4 mA
	Standay Control	
	Pullup control	 CMOS hysteresis I/O pin with pullup control. CMOS level output
	R P Open drain control	(attached with open drain control)
Р	Nout	CMOS hysteresis input (attached with standby control) Pullup resistance
	R /// Hysteresis input	= approx. 50 k Ω (Typ)
	Standby control	IoL = 4 mA

HANDLING DEVICES

1. Preventing Latchup

In CMOS ICs, applying voltage higher than Vcc or lower than Vss to input/output pin or applying voltage over rating across Vcc and Vss may cause latchup.

This phenomenon rapidly increases the power supply current, which may result in thermal breakdown of the device. Make sure to prevent the voltage from exceeding the maximum rating.

2. Treatment of Pins

· Treatment of unused pins

Unused pins left open may cause malfunctions. Make sure to connect them to pull-up or pull-down resistors.

Treatment of open pins

Be sure to use open pins in open state.

· Treatment of output pins

Shortcircuiting an output pin with the power supply or with another output pin or connecting a large-capacity load may causes a flow of large current. If this conditions continues for a lengthy period of time, the device deteriorates. Take great care not to exceed the absolute maximum ratings.

• Mode pins (MD0-MD2)

These pins should be used directly connected to either Vcc or Vss. In order to prevent noise from causing accidental entry into test mode, keep the pattern length as short as possible between each mode pin and Vcc or Vss on the board and connect them with low impedance.

· Power supply pins

When there are several Vcc and Vss pins, each of them is equipotentially connected to its counterpart inside of the device, minimizing the risk of malfunctions such as latch up. To further reduce the risk of malfunctions, to prevent EMI radiation, to prevent strobe signal malfunction resulting from creeping-up of ground level and to observe the total output current standard, connect all Vcc and Vss pins to the power supply or GND.

It is preferred to connect Vcc and Vss of MB91F158 to power supply with minimal impedance possible.

It is also recommended to connect a ceramic capacitor as a bypass capacitor of about 0.1 μ F between Vcc and Vss at a position as close as possible to MB91F158.

Crystal oscillator circuit

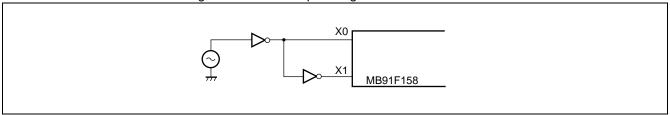
Noises around X0 and X1 pins may cause malfunctions of MB91F158. In designing the PC board, layout X0, X1 and crystal oscillator (or ceramic oscillator) and bypass capacitor for grounding as close as possible.

It is strongly recommended to design PC board so that X0 and X1 pins are surrounded by grounding area for stable operation.

The MB91F158 device do not contain a feedback resistor. To use the clock function, you need to connect an external resistor.

3. Precautions

External Reset Input


It takes at least 5 machine cycle to input "L" level to the RST pin and to ensure inner reset operation properly.

External Clocks

When using an external clock, normally, a clock of which the phase is opposite to that of X0 must be supplied to the X0 and X1 pins simultaneously. However, when using the clock along with STOP (oscillation stopped) mode, the X1 pin stops when "H" is input in STOP mode. To prevent one output from competing against another, an external resistor of about 1 $k\Omega$ should be provided.

The following figure shows an example usage of an external clock.

Figure 3.1 An example usage of an external clock

Care during operating of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.

· Watchdog timer function

The watchdog timer supported by the FR family monitors the program that performs the reset delay operation for a specified time. If the program hangs and the reset delay operation is not performed, the watchdog timer resets the CPU. Therefore, once the watchdog timer is enabled, operation continues until the CPU is reset. As an exception, a reset delay automatically occurs if the CPU stops program execution. For the conditions that apply to this exception, refer to the section that describes the watchdog function.

4. Care During Powering Up

· When powering up

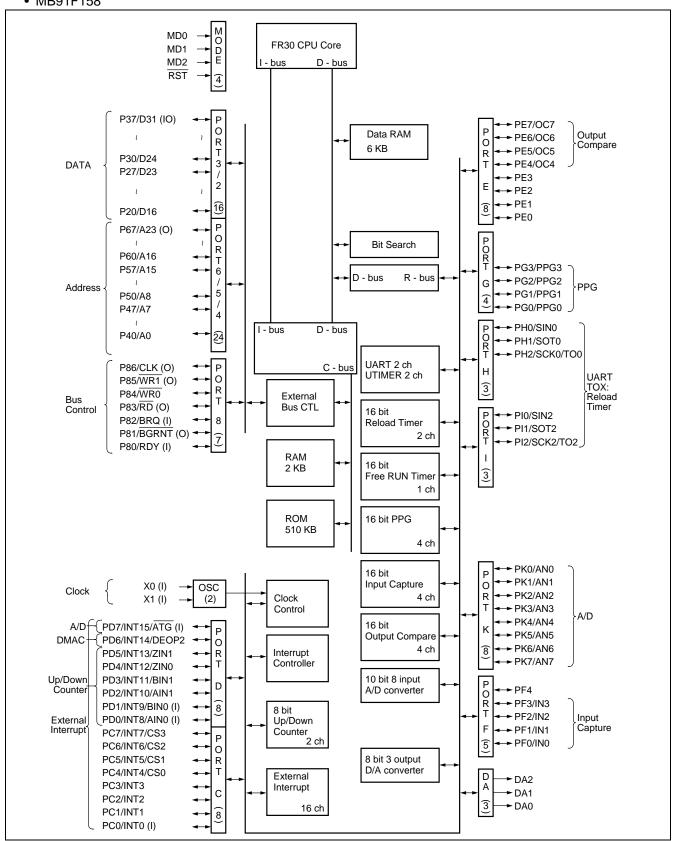
When turning on the power supply, never fail to start from setting the \overline{RST} pin to "L" level. And after the power supply voltage goes to Vcc level, at least after ensuring the time for 5 machine cycle, then set to "H" level.

• Source oscillation input

At turning on the power supply, never fail to input the clock before cancellation of the oscillation stabilizing waiting.

· Power on resetting

When powering up or when turning the power back on after the supply voltage drops below the operation assurance range, be sure to reset the power.


· Power on sequence

Turn on the power in the order of Vcc, AVcc and AVRH. The power should be disconnected in inverse order.

- Even when an A/D converter is not in use, connect AVcc to the Vcc level and AVss to the Vss level.
- Even when a D/A converter is not in use, connect DAVC to the Vcc level and DAVS to the Vss level.

■ BLOCK DIAGRAM

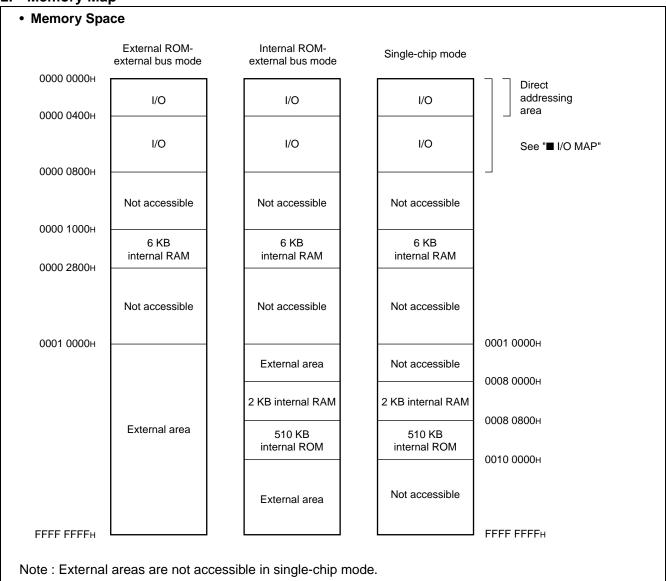
• MB91F158

■ CPU CORE

1. Memory Space

The FR family has a logical address space of 4 Gbytes (2³² bytes) and the CPU linearly accesses the memory space.

· Direct addressing area


The following area in the address space is used for I/O.

This area is called direct addressing area and an operand address can be specified directly in an instruction.

The direct addressing area varies with the data size to be accessed as follows:

 \rightarrow byte data access : 0-0FFн → half word data access : 0-1FFн → word data access : 0-3FFн

2. Memory Map

3. Registers

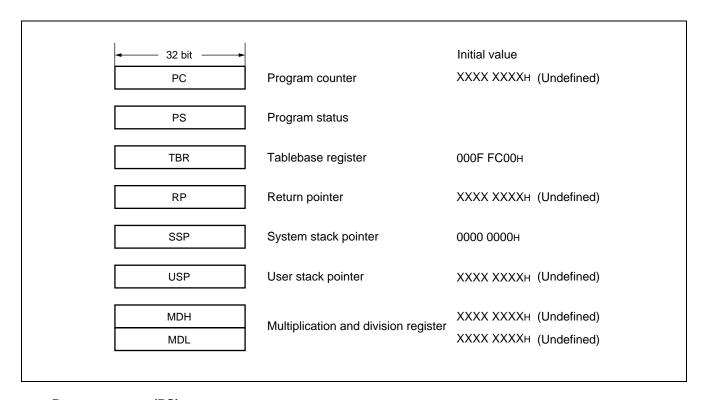
The family of FR microcontrollers has two types of registers: the registers residing in the CPU which are dedicated to applications and the general-purpose registers residing in the memory.

• Dedicated registers :

Program counter (PC) : A 32-bit register to indicate the location where an instructions is stored.

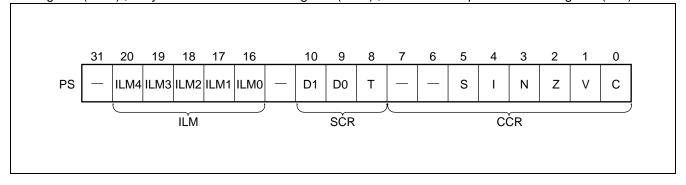
Program status (PS) : A 32-bit register to store a register pointer or a condition code.

Tablebase register (TBR) : Holds the vector table lead address used when EIT (exceptions/interrupt/


trap) is processed.

Return pointer (RP) : Holds the address to return from a subroutine to.

System stack pointer (SSP) : Points to the system stack space.


User stack pointer (USP) : Points to the user stack space.

Multiplication and division result register (MDH/MDL): A 32-bit multiplication and division register.

• Program status (PS)

The PS register holds program status and is further divided into three registers which are a Condition Code Register (CCR), a System condition Code Register (SCR), and an Interrupt Level Mask register (ILM).

• Condition Code Register (CCR)

S flag : Designates the stack pointer for use as R15.

I flag : Controls enabling and disabling of user interrupt requests.

N flag : Indicates the sign when arithmetic operation results are considered to be an integer represented

by 2's complement.

Z flag : Indicates if arithmetic results were "0."

V flag : Considers the operand used for an arithmetic operation to be an integer represented by 2's com-

plement and indicates if the operation resulted in an overflow.

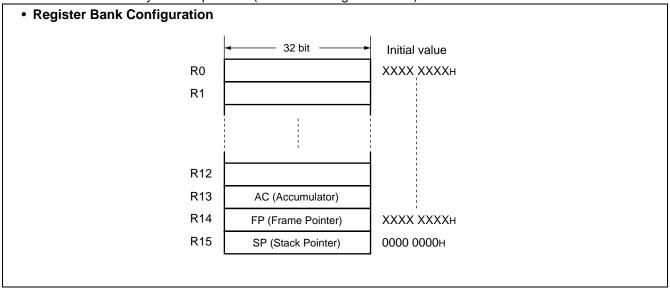
C flag : Indicates whether or not an arithmetic operation resulted in a carry or a borrow from the most sig-

nificant bit.

• System condition Code Register (SCR)

T flag : Designates whether or not to enable step trace trap.

• Interrupt Level Mask register (ILM)


ILM4 to ILM0 : Holds an interrupt level mask value to be used for level masking.

An interrupt request is accepted only if the corresponding interrupt level among interrupt requests input to the CPU is higher than the value indicated by the ILM register.

ILM4	ILM3	ILM2	ILM1	ILM0	Interrupt level	High-Low
0	0	0	0	0	0	Higher
	1		1		:	†
0	1	0	0	0	15	
		!			i i	ļ
1	1	1	1	1	31	Lower

■ GENERAL-PURPOSE REGISTERS

General-purpose registers are CPU registers R0 through R15 and used as accumulators during various operations and as memory access pointers (fields indicating addresses) .

Of the 16 general-purpose registers, the following registers are assumed for specific applications. For this reason, some instructions are enhanced.

R13: Virtual accumulator (AC)

R14 : Frame pointer (FP)

R15 : Stack pointer (SP)

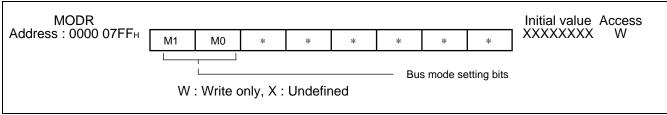
Initial values to which R0 through R14 are reset are not defined. The initial value of R15 is $0000\ 0000 \text{H}$ (the SSP value) .

■ SETTING MODE

1. Mode Pins

As shown in Table 1 three pins, MD2, 1, and 0 are used to indicate an operation.

Table 1 Mode pins and set modes


N	/lode pi	n	Mode name	Reset vector	External data	
MD2	MD1	MD0	Wode name	access area	bus width	
0	0	0	External vector mode 0	External	8 bits	External ROM bus mode
0	0	1	External vector mode 1	External	16 bits	External NOW bus mode
0	1	0	External vector mode 2	External	32 bits	Not available on this product type
0	1	1	External vector mode	Internal	(Mode register)	Single-chip mode
1	_	_	_	_		Not available

2. Mode Data

The data which the CPU writes to "0000 07FFH" after reset is called mode data.

It is the mode register (MODR) that exists at "0000 07FFH." Once a mode is set in this register, operations will take place in that mode. The mode register can be written only once after reset.

The mode specified in the register is enabled immediately after it is written.

[bits 7 and 6]: M1, M0

These are bus mode setting bits. Specify the bus mode to be set to after writing to the mode register.

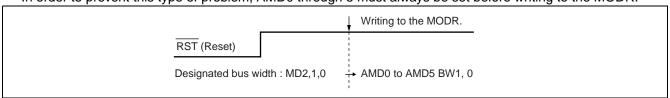
M1	МО	Function	Remarks
0	0	Single-chip mode	
0	1	Internal ROM-external bus mode	
1	0	External ROM-external bus mode	
1	1	_	Setting not allowed

[bits 5 to 0]: *

These bits are reserved for the system.

"0" should be written to these bits at all times.

[Precautions When Writing to the MODR]


Before writing to the MODR, be sure to set AMD0 through 5 and determine the bus width in each CS (Chip Select) area.

The MODR does not have bus width setting bits.

The bus width value set with mode pins MD2 through 0 is enabled before writing to the MODR and the bus width value set with BW1 and 0 of AMD0 through 5 is enabled after writing to the MODR.

For example, the external reset vector is normally executed with area 0 (the area where CS0 is active) and the bus width at that time is determined by pins MD 2 through 0. Suppose that the bus width is set to 32 or 16 bits in MD2 though 0 but no value is specified in AMD 0. If the MODR is written in this state, area 0 then switches to 8-bit bus mode and operates the bus since the initial bus width in AMD0 is set to 8 bits. This causes a malfunction.

In order to prevent this type of problem, AMD0 through 5 must always be set before writing to the MODR.

■ I/O MAP

A al alma a a		Reg	ister		Disale
Address	+0	+1	+2	+3	Block
000000н	PDR3 (R/W) XXXXXXXX	PDR2 (R/W) XXXXXXXX	_	_	
000004н	_	PDR6 (R/W) XXXXXXXX	PDR5 (R/W) XXXXXXXX	PDR4 (R/W) XXXXXXXX	
000008н		_	,	PDR8 (R/W) - XXXXXXX	
00000Сн		-			Port Data Register
000010н	PDRF (R/W) XXXXX	PDRE (R/W) XXXXXXXX	PDRD (R/W) XXXXXXXX	PDRC (R/W) XXXXXXXX	
000014н	_	PDRI (R/W) XXX	PDRH (R/W) XXX	PDRG (R/W) XXXX	
000018н	_	_	_	PDRK (R/W) XXXXXXXX	
00001Сн	SSR0 (R, R/W) 00001000	SIDR0/SODR0 (R, W) XXXXXXXX	SCR0 (R/W, W) 00000100	SMR0 (R/W) 00000 - 00	UART0
000020н		_	_		Reserved
000024н	SSR2 (R, R/W) 00001000	SIDR2/SODR2 (R, W) XXXXXXXX	SCR2 (R/W, W) 00000100	SMR2 (R/W) 00000 - 00	UART2
000028н		<u> </u>	<u> </u>		Reserved
00002Сн	TMRLI XXXXXXXX	R0 (W) XXXXXXXX	TMR(XXXXXXXX	` '	Dolood Timer 0
000030н	_	_	TMCSR 0000		Reload Timer 0
000034н to 000038н		_	_		Reserved
00003Сн	TMRLI XXXXXXXX		TMR2 XXXXXXXX		Reload Timer 2
000040н		_	TMCSR:		Treload Tiller 2
000044н to 000048н			_		Reserved
00004Сн	_	_	CDCR0 (R/W) 0 0000	_	Communications
000050н		_	CDCR2 (R/W) 0 0000		prescaler 1
000054н to 000058н		-	_		Reserved

A -1 -1		Regi	ster		Disals
Address	+0	+1	+2	+3	Block
00005Сн	RCR1 (W) 00000000	RCR0 (W) 00000000	UDCR1 (R) 00000000	UDCR0 (R) 00000000	
000060н	CCRH0 (R/W) 00000000	CCRL0 (R/W, W) - 000X000	_	CSR0 (R/W, R) 00000000	8/16 bit U/D Counter
000064н	CCRH1 (R/W) - 0000000	CCRL1 (R/W, W) - 000X000	_	CSR1 (R/W, R) 00000000	
000068н	IPCP XXXXXXXX	1 (R) XXXXXXXX		P0 (R) XXXXXXXX	
00006Сн	IPCP XXXXXXXX	` '		P2 (R) XXXXXXXX	16 bit ICU
000070н	_	ICS23 (R/W) 00000000	_	ICS01 (R/W) 00000000	
000074н to 000078н		_	_		Reserved
00007Сн	OCCP: XXXXXXXX	5 (R/W) XXXXXXXX	XXXXXXXX	4 (R/W) XXXXXXXX	16 bit OCU
000080н		7 (R/W) XXXXXXXX		6 (R/W) XXXXXXXX	- 10 bit 000
000084н			_		Reserved
000088н	OCS6, XXX00000			5 (R/W) 0000XX00	16 bit OCU
00008Сн	TCDT 00000000	` ,		G (R/W) - 00000000	16 bit Freerun Timer
000090н	STPR0 (R/W) 0 - 0	STPR1 (R/W) 0 - 0 - 0 - 00	STPR2 (R/W) 0000	_	Stop Register 0, 1, 2
000094н	GCN1 00110010		_	GCN2 (R/W) 00000000	PPG controler
000098н	PTMR0 (R) 11111111 1111111			R0 (W) XXXXXXXX	PPG0
00009Сн	PDUT XXXXXXXX	O (W)	PCNH0 (R/W) 0000000 -	PCNL0 (R/W) 00000000	- 7700
0000А0н	PTMF 11111111	R1 (R) 11111111		R1 (W) XXXXXXXX	PPG1
0000А4н		1 (W) XXXXXXXX	PCNH1 (R/W) 0000000 -	PCNL1 (R/W) 00000000	7
0000А8н	PTMF 11111111	R2 (R) 11111111		R2 (W) XXXXXXXX	DDC2
0000АСн	PDUT XXXXXXXX	2 (W) XXXXXXXX	PCNH2 (R/W) 0000000 -	PCNL2 (R/W) 00000000	- PPG2
0000В0н	PTMF 11111111	R3 (R) 11111111		R3 (W) XXXXXXXX	DDC2
0000В4н	PDUT XXXXXXXX	3 (W) XXXXXXXX	PCNH3 (R/W) 0000000 -	PCNL3 (R/W) 00000000	- PPG3

Address	Block Reserved Ext int Reserved D/A Converter	
to 0000C4H — 0000C8H EIRR0 (R/W) 00000000 000000000 000000000 00000000	Ext int Reserved	
0000ССн 00000000 00000000 00000000 00000000 0000ССн ELVR0 (R/W) 00000000 00000000 ELVR1 (R/W) 00000000 00000000 00000000 0000DCH to 0000DCH — DACR2 (R/W) 0 DACR1 (R/W) 0 DADR0 (R/W) 0 0000E0H — DADR2 (R/W) XXXXXXXXX DADR1 (R/W) XXXXXXXXX DADR0 (R/W) XXXXXXXXX 0000E4H ADCR (R, W) 00101-XX XXXXXXXX ADCS1 (R/W, W) 00000000 ADCS0 (R/W) 00000000 0000ECH to 0000F0H — — 0000E4U PCRI (R/W) PCRH (R/W) PCRD (R/W) PCRC (R/W)	Reserved	
0000ССН 00000000 0000000 00000000 0000000 0000DOH — — 0000DCH — DACR2 (R/W) DACR1 (R/W) DACR0 (R/W) 0000E0H — DADR2 (R/W) DADR1 (R/W) DADR0 (R/W) 0000E4H ADCR (R, W) ADCS1 (R/W, W) ADCS0 (R/W) 0000E8H — AICK (R/W) 00000000 0000E0H — — AICK (R/W) 0000F0H PCRI (R/W) PCRH (R/W) PCRD (R/W) PCRC (R/W)	Reserved	
to 0000D8H — DACR2 (R/W) — DACR1 (R/W) — DACR0 (R/W) — DACR0 (R/W) — DADR2 (R/W) — DADR1 (R/W) — DADR0 (R/W) — DADR1 (R/W) — DADR0 (R/W) — XXXXXXXXX — XXXXXXXXX — XXXXXXXXX DADR1 (R/W) — DADR1 (R/W) — DADR0 (R/W) — XXXXXXXXX DADR0 (R/W) — DADR1 (R/W) — ADCS0 (R/W) — ADCS0 (R/W) — 00000000 DADR1 (R/W) — DADR1 (R/W) — DADR1 (R/W) — DADR0 (R/W) — DADR1 (R/		
0000DCH — — — 0000E0H — DADR2 (R/W) XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	D/A Converter	
ООООЕОН — XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	D/A Converter	
0000E4H 00101- XX XXXXXXXX 00000000 0000000 0000E8H — AICK (R/W) 0000000 0000ECH to 0000F0H — — 0000E4H PCRI (R/W) PCRD (R/W) PCRC (R/W)	DIA GOIVEREI	
0000ECH to 0000F0H PCRI (R/W) PCRH (R/W) PCRD (R/W) PCRC (R/W)	A/D Converter (Sequential type)	
to	Analog Input Control	
	Reserved	
	Pull Up Control	
0000F8H OCRI (R/W) OCRH (R/W) — — — — — — — — — — — — — — — — — — —	Opendrain Control	
0000FCH		
000100н — DDRI (R/W) DDRH (R/W) DDRG (R/W) -000000000	Data Direction Register	
000104н — DDRK (R/W) 000000000		
000108н to — 0003ECн	Reserved	
0003F0н BSD0 (W) XXXXXXXX XXXXXXXX XXXXXXXX		
0003E4H BSD1 (R/W) XXXXXXXX XXXXXXXX XXXXXXXX	Bit Search Module	
0003F8H BSDC (W) XXXXXXXX XXXXXXXX XXXXXXXX	Dit Search Module	
0003FCH BSRR (R) XXXXXXXX XXXXXXXX XXXXXXXX		

Address			Block					
Audress	+0	- BIOCK						
000400н	ICR00 (R/W)	ICR01 (R/W)	ICR02 (R/W)	ICR03 (R/W)				
000400H	1111	1111	1111	1111				
000404н	ICR04 (R/W)	ICR05 (R/W)	ICR06 (R/W)	ICR07 (R/W)				
	1111	1111	1111	1111				
000408н	ICR08 (R/W) 1111	_	ICR10 (R/W) 1111	_				
00040Сн	ICR012 (R/W) 1111	_	_	ICR15 (R/W) 1111				
000410н	_	ICR17 (R/W) 1111	_	_	-			
000414н	_	ICR21 (R/W) 1111	_	ICR23 (R/W)	Interruput Control			
000418н	_	_	ICR26 (R/W) 1111	ICR27 (R/W)	Unit			
00041Сн	ICR28 (R/W)	ICR29 (R/W)	ICR30 (R/W) 1111	_	1			
	1111	ICR33 (R/W)	ICR34 (R/W)	ICR35 (R/W)	_			
000420н	_	Ì111 ´	1111	1111				
000424н	ICR36 (R/W) 1111	ICR37 (R/W) 1111	ICR38 (R/W) 1111	_				
000428н	_	_	_	ICR43 (R/W) 1111				
00042Сн	ICR44 (R/W) 1111	_	ICR46 (R/W) 1111	ICR47 (R/W)	-			
000430н	DICR (R/W)	HRCL (R/W)	Delay int					
000434н								
to 00047Сн		_	-		Reserved			
000480н	RSRR/WTCR (R, W) 1-XXX-00	STCR (R/W, W) 000111	PDRR (R/W) 0000	CTBR (W) XXXXXXXX	Clock Control unit			
000484н	GCR (R/W, R) 110011-1	WPR (W) XXXXXXXX						
000488н	PTCR (R/W) 00XX0XXX	PLL Control						
00048Сн to		_	-		Reserved			
0005FCн				T				
000600н	DDR3 (W) 00000000	DDR2 (W) 00000000	<u> </u>	_				
000604н	_	DDR6 (W) 00000000	DDR5 (W) 00000000	DDR4 (W) 00000000	Data Direction Register			
000608н		_		DDR8 (W) - 0000000				

(Continued)

Address		Register						
Auuless	+0	+1	+2	+3	Block			
00060Сн	ASR1 00000000			AMR1 (W) 00000000 00000000				
000610н	ASR2 00000000			2 (W) 00000000				
000614н	ASR3 00000000			3 (W) 00000000				
000618н	ASR ² 00000000			4 (W) 00000000	External bus			
00061Сн	ASR5 00000000			5 (W) 00000000	interface			
000620н	AMD0 (R/W) 00111	AMD1 (R/W) 0 00000	AMD32 (R/W) 00000000	AMD4 (R/W) 0 00000				
000624н	AMD5 (R/W) 0 00000			1				
000628н	EPCR 1100			EPCR1 (W) 11111111				
00062Сн		-	Reserved					
000630н	_	PCR6 (R/W) 00000000	Pull Up Control					
000634н to 0007ВСн		-	Reserved					
0007С0н	FLCR (R/W, R) 000XXXX0		FLASH Control					
0007С4н	FWTC (R/W, W) 10010100		FLASIT COILIO					
0007С8н to 0007F8н		-	_		Reserved			
0007FСн	_	_	MODR (W) XXXXXXXX	Little Endian Register Mode Register				

Note: Do not execute RMW instructions on registers having a write-only bit.

RMW instructions (RMW : Read Modify Write)

AND Rj, @Ri OR Rj, @Ri EOR Rj, @Ri ANDH Rj, @Ri ORH Rj, @Ri EORH Rj, @Ri ORB **EORB** Rj, @Ri ANDB Rj, @Ri Rj, @Ri BANDL #u4, @Ri BORL #u4, @Ri BEORL #u4, @Ri BANDH #u4, @Ri BORH #u4, @Ri BEORH #u4, @Ri

Data is undefined in "Reserved" or (—) areas.

() : Access

R/W : Read/Write enabled

R : Read only W : Write only — : Not in use X : Undefined

■ INTERRUPT FACTORS AND ASSIGNMENT OF INTERRUPT VECTORS AND RESISTERS

Footor	Interru	pt No.	Interrupt	Officet	Default TBR	
Factor	Decimal	Hex.	level	Offset	address	
Reset	0	00	_	3FСн	000FFFFСн	
Reserved for the system	1	01	_	3F8н	000FFF8н	
Reserved for the system	2	02	_	3F4н	000FFFF4н	
Reserved for the system	3	03	_	3F0н	000FFF0н	
Reserved for the system	4	04	_	3ЕСн	000FFFECн	
Reserved for the system	5	05	_	3Е8н	000FFFE8н	
Reserved for the system	6	06	_	3Е4н	000FFFE4н	
Reserved for the system	7	07	_	3Е0н	000FFFE0н	
Reserved for the system	8	08	_	3DСн	000FFFDCн	
Reserved for the system	9	09	_	3D8н	000FFFD8н	
Reserved for the system	10	0A	_	3D4н	000FFFD4н	
Reserved for the system	11	0B	_	3D0н	000FFFD0н	
Reserved for the system	12	0C	_	3ССн	000FFFCCн	
Reserved for the system	13	0D	_	3С8н	000FFFC8н	
Undefined instruction exception	14	0E	_	3С4н	000FFFC4н	
Reserved for the system	15	0F	_	3С0н	000FFFC0н	
External interrupt 0	16	10	ICR00	3ВСн	000FFFBCн	
External interrupt 1	17	11	ICR01	3В8н	000FFFB8н	
External interrupt 2	18	12	ICR02	3В4н	000FFFB4н	
External interrupt 3	19	13	ICR03	3В0н	000FFFB0н	
External interrupt 4	20	14	ICR04	3АСн	000FFFACн	
External interrupt 5	21	15	ICR05	3А8н	000FFFA8н	
External interrupt 6	22	16	ICR06	3А4н	000FFFA4н	
External interrupt 7	23	17	ICR07	3А0н	000FFFA0н	
External interrupts 8 - 15	24	18	ICR08	39Сн	000FFF9Сн	
Reserved for the system	25	19	_	398н	000FFF98н	
UART0 (receiving complete)	26	1A	ICR10	394н	000FFF94н	
Reserved for the system	27	1B	ICR11	390н	000FFF90н	
UART2 (receiving complete)	28	1C	ICR12	38Сн	000FFF8Сн	
Reserved for the system	29	1D	ICR13	388н	000FFF88н	
Reserved for the system	30	1E	_	384н	000FFF84н	
UART0 (sending complete)	31	1F	ICR15	380н	000FFF80 _H	
Reserved for the system	32	20	ICR16	37Сн	000FFF7Сн	
UART2 (sending complete)	33	21	ICR17	378н	000FFF78н	

F/	Interru	pt No.	Interrupt	0111	Default TBR	
Factor	Decimal	Hex.	level	Offset	address	
Reserved for the system	34	22	ICR18	374н	000FFF74н	
Reserved for the system	35	23	ICR19	370н	000FFF70н	
Reserved for the system	36	24	ICR20	36Сн	000FFF6Сн	
Reload timer 0	37	25	ICR21	368н	000FFF68н	
Reserved for the system	38	26	ICR22	364н	000FFF64н	
Reload timer 2	39	27	ICR23	360н	000FFF60н	
Reserved for the system	40	28	ICR24	35Сн	000FFF5Сн	
A/D (sequential type)	42	2A	ICR26	354н	000FFF54н	
PPG0	43	2B	ICR27	350н	000FFF50н	
PPG1	44	2C	ICR28	34Сн	000FFF4Сн	
PPG2	45	2D	ICR29	348н	000FFF48н	
PPG3	46	2E	ICR30	344н	000FFF44н	
Reserved for the system	47	2F	ICR31	340н	000FFF40н	
Reserved for the system	48	30	ICR32	33Сн	000FFF3Сн	
U/Dcounter 0 (compare/underflow, overflow, up-down inversion)	49	31	ICR33	338н	000FFF38н	
U/Dcounter 1 (compare/underflow, overflow, up-down inversion	50	32	ICR34	334н	000FFF34н	
ICU0 (Read)	51	33	ICR35	330н	000FFF30н	
ICU1 (Read)	52	34	ICR36	32Сн	000FFF2Cн	
ICU2 (Read)	53	35	ICR37	328н	000FFF28н	
ICU3 (Read)	54	36	ICR38	324н	000FFF24н	
Reserved for the system	55	37	ICR39	320н	000FFF20н	
Reserved for the system	56	38	ICR40	31Сн	000FFF1Сн	
Reserved for the system	57	39	ICR41	318н	000FFF18н	
Reserved for the system	58	3A	ICR42	314н	000FFF14	
OCU4/5 (Match)	59	3B	ICR43	310н	000FFF10н	
OCU6/7 (Match)	60	3C	ICR44	30Сн	000FFF0Сн	
Reserved for the system	61	3D	_	308н	000FFF08н	
16-bit free-run timer	62	3E	ICR46	304н	000FFF04н	
Delay interrupt factor bit	63	3F	ICR47	300н	000FFF00н	

Factor	Interru	pt No.	Interrupt	Offset	Default TBR	
Factor	Decimal	Hex.	level	Offset	address	
Reserved for the system (used by REALOS*)	64	40	_	2FСн	000FFEFCн	
Reserved for the system (used by REALOS*)	65	41	_	2F8 _H	000FFEF8⊦	
Reserved for the system	66	42	_	2F4 _H	000FFEF4н	
Reserved for the system	67	43	_	2F0н	000FFEF0н	
Reserved for the system	68	44	_	2ЕСн	000FFEECн	
Reserved for the system	69	45	_	2Е8н	000FFEE8н	
Reserved for the system	70	46	_	2Е4н	000FFEE4н	
Reserved for the system	71	47	_	2Е0н	000FFEE0н	
Reserved for the system	72	48	_	2DC _H	000FFEDCн	
Reserved for the system	73	49	_	2D8н	000FFED8н	
Reserved for the system	74	4A	_	2D4н	000FFED4н	
Reserved for the system	75	4B	_	2D0н	000FFED0н	
Reserved for the system	76	4C	_	2ССн	000FFECCн	
Reserved for the system	77	4D	_	2С8н	000FFEC8н	
Reserved for the system	78	4E	_	2С4н	000FFEC4н	
Reserved for the system	79	4F	_	2С0н	000FFEC0н	
Used with the INT instruction	80 to 255	50 to FF	_	2ВСн to 000н	000FFEBCн to 000FFC00н	

^{*:} REALOS/FR uses 0X40 and 0X41 interrupts for system codes.

■ PERIPHERAL RESOURCES

1. I/O Port

(1) Port Block Diagram

This LSI is available as an I/O port when the resource associated with each pin is set not to use a pin for input/output.

The pin level is read from the port (PDR) when it is set for input. When the port is set for output, the value in the data register is read. The same also applies to reload by read modify write.

When switching from input to output, output data is set in the data register beforehand. However, if a read modify write instruction (such as bit set) is used at that time, keep in mind that it is the input data from the pin that is read, not the latch value of the data register.

Basic I/O Port

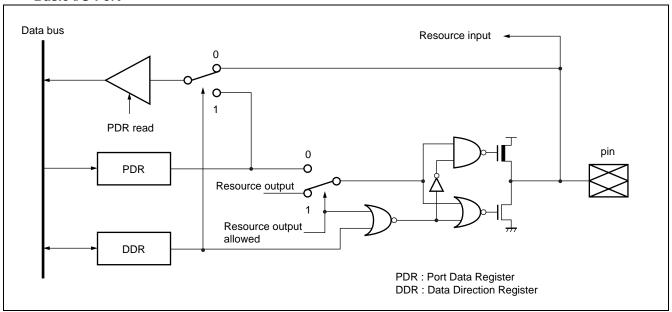


Figure PORT-1 Basic port block

The I/O port consists of the PDR (Port Data Register) and the DDR (Data Direction Register). In input mode (DDR = "0") \rightarrow PDR read: Reads the level of the corresponding external pin.

PDR write: Writes the set value to the PDR.

In output mode (DDR = "1") \rightarrow PDR read : Reads the PDR value.

PDR write: Outputs the PDR value to the corresponding external pin.

Note: AIC controls switching between the resource and port of the analog pin (A/D).

AICK (Analog Input Control register on port-K)

The register controls whether port K should be used for analog input or as a general-purpose port.

0 : General-purpose port

1: Analog input (A/D)

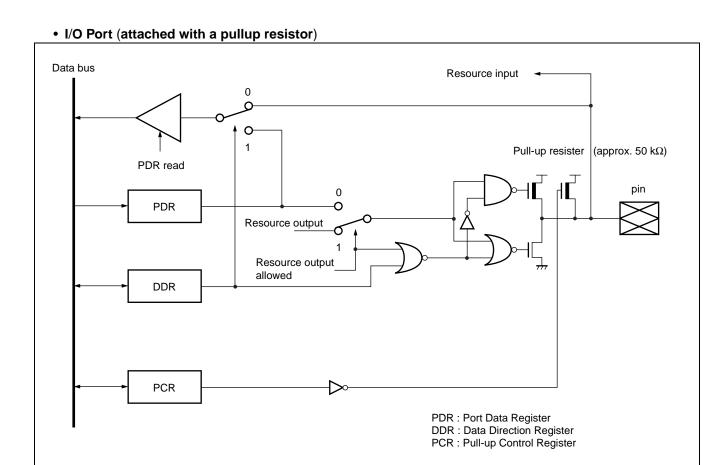
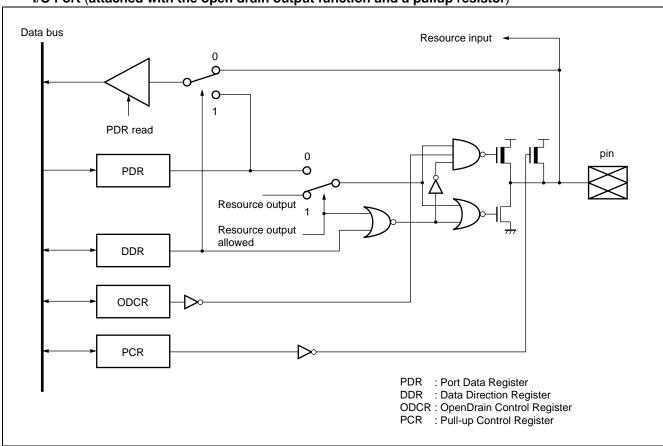



Figure PORT-2 Port block attached with a pullup resistor

Notes: • Pullup resistor control register (PCR) R/W Controls turning the pullup resistor on/off.

0 : Pullup resistor disabled1 : Pullup resistor enabled

- In stop mode priority is also given to the setting of the pullup resistor control register.
- This function is not available when a relevant pin is in use as an external bus pin. Do not write "1" to this register.

• I/O Port (attached with the open drain output function and a pullup resistor)

Figure PORT-3 Port block attached with the open drain output function and a pullup resistor

Notes: • Pullup resistor setup register (PCR) R/W
Controls turning the pullup resistor on/off.

0 : Pullup resistor disabled

1: Pullup resistor enabled

 Open drain control register (ODCR) R/W Controls open drain in output mode.

- 0 : Standard output port during output mode
- 1 : Open-drain output port during output mode

This register has no significance in input mode (output Hi-Z) . Input/output mode is determined by the direction register (DDR) .

- Priority is also given to the setting of the pullup resistor control register in stop mode.
- When a relevant pin is used as an external bus pin, neither function is available. Do not write "1" to either register.

PDR2	7	6	E	1	2	2	4	0	Initial value Access
Address : 000001н	7 P27	6 P26	5 P25	4 P24	3 P23	2 P22	1 P21	P20	XXXXXXXXB R/W
	FZI	FZU	FZJ	F 2 1	FZJ	F 44	FZI	FZU	
PDR3	7	6	5	4	3	2	1	0	Initial value Access
Address: 000000 _H	P37	P36	P35	P34	P33	P32	P31	P30	XXXXXXXXB R/W
PDR4	7	6	5	4	3	2	1	0	Initial value Access
Address : 000007н	P47	P46	P45	P44	P43	P42	P41	P40	XXXXXXXXB R/W
PDR5	7	6	5	4	3	2	1	0	Initial value Access
Address : 000006н	P57	P56	P55	P54	P53	P52	P51	P50	XXXXXXXXB R/W
PDR6	7	6	5	4	3	2	1	0	Initial value Access
Address : 000005н	P67	P66	P65	P64	P63	P62	P61	P60	XXXXXXXXB R/W
PDR8	7	6	5	4	3	2	1	0	Initial value Access
Address: 00000Bн	_	P86	P85	P84	P83	P82	P81	P80	- XXXXXXXB R/W
PDRC	7	6	5	1	3	2	1	0	Initial value Access
Address : 000013н	7 PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	XXXXXXXXB R/W
L PDRD							_		Initial value Access
Address : 000012 _H	7 PD7	6 PD6	5 PD5	4 PD4	3 PD3	PD2	1 PD1	0 PD0	XXXXXXXXXB R/W
PDRE	PDI	PD6	PDS	FD4	PD3	PDZ	PDI	PDU	
PDRE Address : 000011 _H 「	7	6	5	4	3	2	1	0	Initial value Access
	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	
PDRF	7	6	5	4	3	2	1	0	Initial value Access
Address: 000010H	_	_	_	PF4	PF3	PF2	PF1	PF0	XXXXXB R/W
PDRG	7	6	5	4	3	2	1	0	Initial value Access
Address: 000017 _H	_	_	_	_	PG3	PG2	PG1	PG0	XXXX _B R/W
PDRH	7	6	5	4	3	2	1	0	Initial value Access
Address : 000016н	_	_	_	_	_	PH2	PH1	PH0	XXX _B R/W
PDRI	7	6	5	4	3	2	1	0	Initial value Access
Address : 000015н		_		_		PI2	PI1	PI0	XXX _B R/W
PDRK	7	6	5	4	3	2	1	0	Initial value Acces
Address: 00001BH	PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0	XXXXXXXXB R/W
L									

DDR2	3.2	(DDR)								
DDRZ	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000601H	P27	P26	P25	P24	P23	P22	P21	P20	0000000В	W
DDR3	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000600H	P37	P36	P35	P34	P33	P32	P31	P30	0000000В	W
DDR4	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000607н	P47	P46	P45	P44	P43	P42	P41	P40	0000000В	W
DDR5	7	6	5	4	3	2	1	0	Initial value	Access
Address: 000606 _H	P57	P56	P55	P54	P53	P52	P51	P50	0000000В	W
DDR6	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000605н	P67	P66	P65	P64	P63	P62	P61	P60	0000000В	W
DDR8	7	6	5	4	3	2	1	0	Initial value	Access
Address : 00060BH	_	P86	P85	P84	P83	P82	P81	P80	- 0000000в	W
DDRC	7	6	5	4	3	2	1	0	Initial value	Access
Address : 0000FFH	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	0000000	R/W
DDRD				4			4		Initial value	Access
Address : 0000FEH	7 PD7	6 PD6	5 PD5	4 PD4	3 PD3	PD2	1 PD1	0 PD0	0000000	R/W
DDRE									Initial value	Access
Address : 0000FDH	7 PE7	6 PE6	5 PE5	PE4	3 PE3	2 PE2	1 PE1	0 PE0	00000000	R/W
DDRF									Initial value	Access
Address : 0000FCH	7	6	5	4 PF4	3 PF3	PF2	1 PF1	0 PF0	00000B	R/W
DDRG				F1-4	FF3	FIZ	FFI	FFU	Initial value	Access
Address : 000103 _H	7	6	5	4	3 PG3	PG2	1 PG1	0 PG0	0000 _B	R/W
		_	_	_	PG3	PG2	PGI	PGU		
DDRH Address : 000102 _H	7	6	5	4	3	2	1	0	Initial value	R/W
		_	_	_	_	PH2	PH1	PH0		
DDRI Address : 000101н	7	6	5	4	3	2	1	0	Initial value	Access R/W
		TEST	_	_	_	PI2	PI1	PI0		
DDRK	7	6	5	4	3	2	1	0	Initial value	Access
Address : 000107 _H	PK7	PK6	PK5	PK4	PK3	PK2	PK1	PK0	0000000В	R/W
DDD2 to DDDK cont		/O direc	tion of t	he I/O p	ort by b	it.				
DDR2 to DDRK cont DDR = 0 : Port input DDR = 1 : Port output										
DDR = 0: Port input	ut s a test l		ure to w	rite "0" t	to the bi	t.				

Address: 0000F4H

Pull-up Control Register (PCR)									
PCR6	7	6	5	4	3	2	1	0	Initial value Access
Address: 000631H	P67	P66	P65	P64	P63	P62	P61	P60	00000000в R/W
PCRC	7	6	5	4	3	2	1	0	Initial value Access
Address: 0000F7H	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	00000000в R/W
PCRD	7	6	5	4	3	2	1	0	Initial value Access
Address: 0000F6H	PD7	PD6	PD5	PD4	PD3	PD2	PD1	PD0	00000000в R/W
PCRH	7	6	5	4	3	2	1	0	Initial value Access
Address: 0000F5H	_	_	_	_	_	PH2	PH1	PH0	000в R/W
PCRI	7	6	5	4	3	2	1	0	Initial value Access

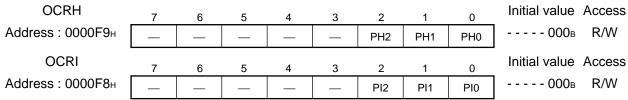
PI2

PI1

PI0

- - - - 000_B

R/W

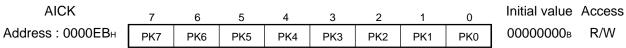

PCR6 to PCRI control the pullup resistor when the corresponding I/O port is in input mode.

PCR = 0 : Pullup resistor not available in input mode

PCR = 1 : Pullup resistor available in input mode

The register has no significance in output mode (a pullup resistor not available) .

• Open Drain Control Register (ODCR)


OCRH and OCRI control open drain when the corresponding I/O port is in output mode.

OCR = 0 : Standard output port during output mode

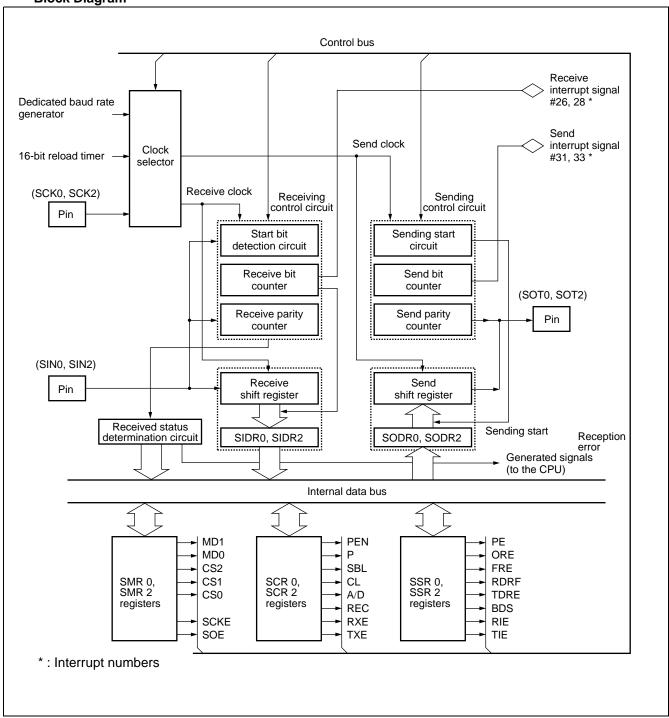
OCR = 1 : Open drain output port during output mode

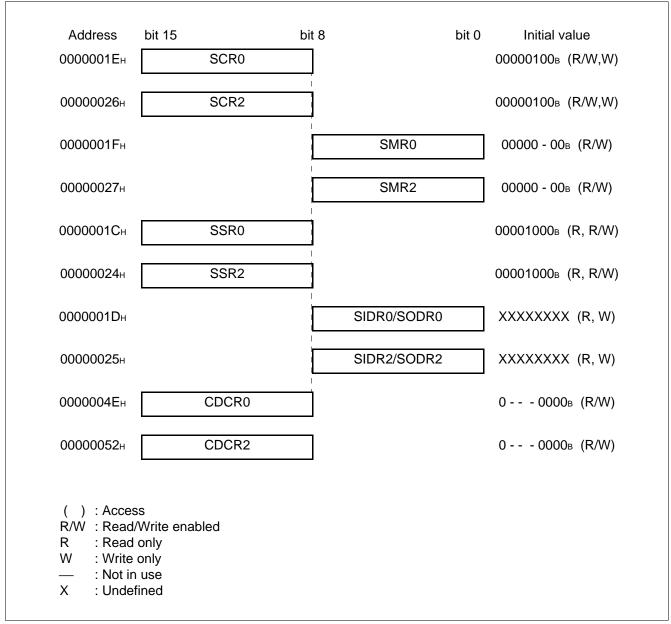
The register has no significance in input mode (output Hi-Z).

• Analog Input Control Register (AICR)

The AICK controls each pin of a corresponding I/O port as follows:

AIC = 0 : Port input mode AIC = 1 : Analog input mode The register is reset to "0."

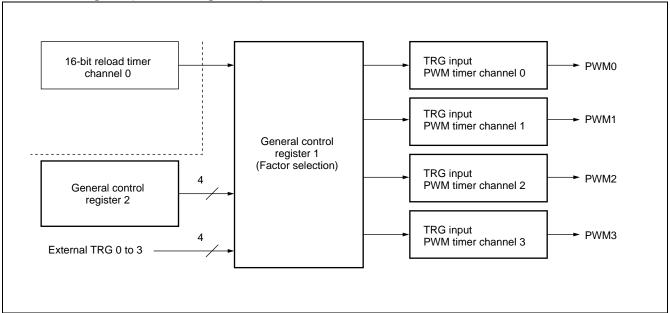

R/W: Read/Write enabled, -: Not in use

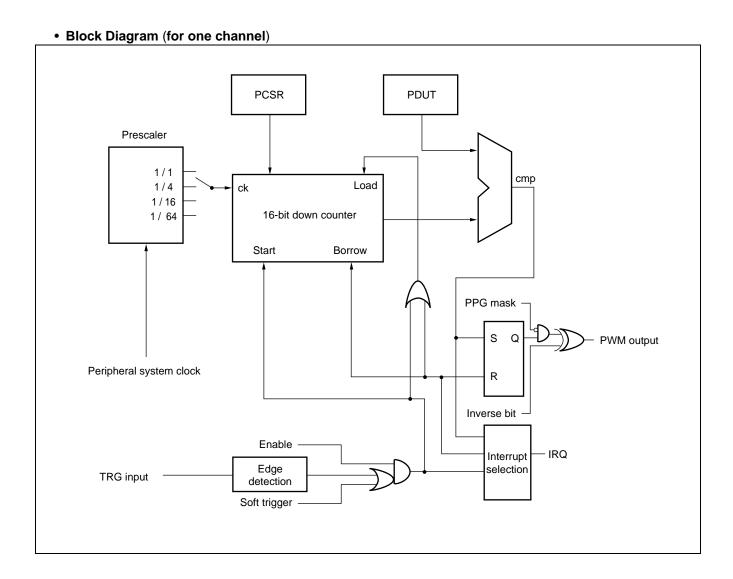

2. UART

The UART is a serial I/O port for asynchronous (start and stop synchronization) communication or CLK synchronous communication. This product type contains this UART for two channels. Its features are as follows:

- Full-duplex double buffer
- Capable of asynchronous (start and stop synchronization) and CLK synchronous communication.
- Support for multiprocessor mode
- Baud rate by a dedicated baud rate generator
- Baud rate by an internal timer
 The baud rate can be set with a 16-bit reload timer.
- Any baud rate can be set using an external clock.
- Error detection function (parity, framing, and overrun)
- NRZ-encoded transfer signals

• Block Diagram


3. PPG Timer


The PPG timer can output highly accurate PWM waveforms efficiently.

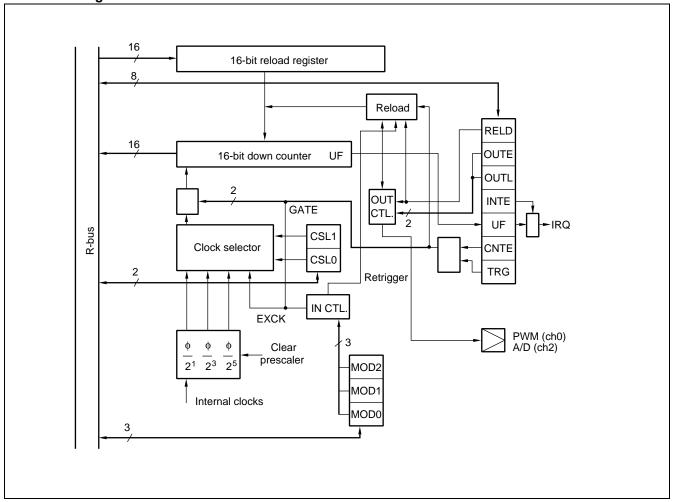
This device contains four PPG timer channels and its features are as follows:

- Each channel consists of a 16-bit down counter, a 16-bit data register attached with a frequency setting buffer, a 16-bit compare register attached with a duty setting buffer, and a pin controller.
- The count clock for the 16-bit down counter can be selected from the following four types : Internal clocks ϕ , $\phi/4$, $\phi/16$, and $\phi/64$
- The counter value can be initialized by reset or counter borrow to "FFFFH."
- PWM output (by channel)

• Block Diagram (Entire configuration)

Register List Address Initial value bit 15 bit 8 bit 0 00110010B 00010000B (R/W) 00000094н GCN1 00000095н 00000000B (R/W) 00000097н GCN₂ 11111111B 11111111B(R) 00000098н PTMR0 00000099н XXXXXXXXB (W) 0000009AH PCSR0 0000009Вн XXXXXXXXB (W) 0000009CH PDUT0 0000009Dн 0000009Ен 0000000-в (R/W) PCNH₀ 000009Fн PCNL0 00000000B (R/W) 11111111B 111111111B(R) 000000А0н PTMR1 000000A1H $\underset{\mathsf{XXXXXXXXXB}}{\mathsf{XXXXXXXXB}}\,(\mathsf{W})$ 000000А2н PCSR1 000000АЗН XXXXXXXXB (W) 000000А4н PDUT1 000000А5н 000000А6н PCNH1 000000-в (R/W) 000000A7H PCNL1 00000000B (R/W) 11111111B 11111111B(R) 000000А8н PTMR2 000000А9н ${\displaystyle \mathop{\mathsf{XXXXXXXXB}}_{\mathsf{XXXXXXXXB}}}(\mathsf{W})$ 000000ААн PCSR2 000000АВн 000000ACH XXXXXXXXB XXXXXXXXB (W) PDUT2 000000ADH PCNH2 000000AEH 0000000-в (R/W) 000000AFн PCNL2 00000000B (R/W) 11111111B 11111111B(R) 000000В0н PTMR3 000000B1H XXXXXXXXB XXXXXXXXB (W) 000000B2H PCSR3 000000ВЗн XXXXXXXXB (W) 000000В4н PDUT3 000000В5н 000000В6н PCNH3 000000-в (R/W) 000000В7н PCNL3 00000000 (R/W)

(): Access R/W: Read/Write enabled R: Read only W: Write only —: Not in use X: Undefined

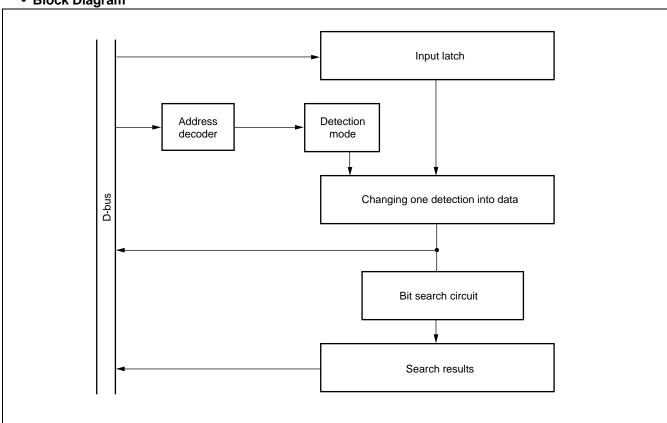

4. 16-bit Reload Timer

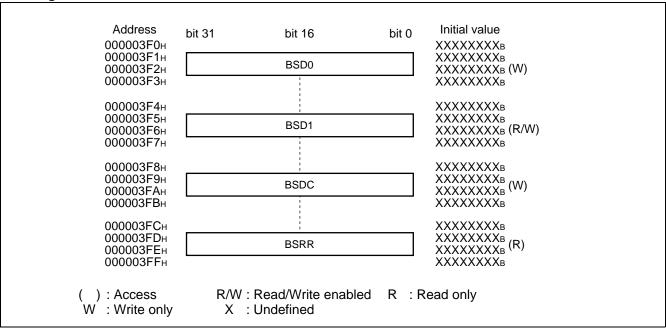
The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload register, a prescaler for creating internal count clocks, and a control register.

The input clock can be selected from three internal clock types (2/8/32 machine clock divisions) .

This product type contains this 16-bit reload timer for two channels.

Block Diagram




Address 00000032н 00000033н	bit 15 bit 0 TMCSR0	Initial value 0000B 00000000B (R/W)
00000042н 00000043н	TMCSR2	0000B 00000000B (R/W)
0000002Ен 0000002Fн	TMR0	XXXXXXXXB XXXXXXXXB (R)
0000003Eн 0000003Fн	TMR2	XXXXXXXXB XXXXXXXXB (R)
0000002Сн 0000002Dн	TMRLR0	XXXXXXXXB XXXXXXXXB (W)
0000003Сн 0000003Dн	TMRLR2	XXXXXXXXB XXXXXXXXB (W)
() : Acces R/W : Read R : Read W : Write — : Not in X : Unde	/Write enabled only only use	

5. Bit Search Module

The module searches data written to the input register for "0" or "1" or a "change" and returns the detected bit position.

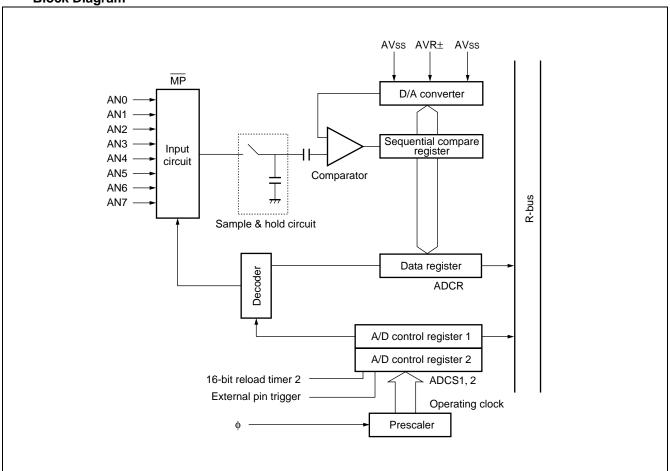
• Block Diagram

6. 8/10-bit A/D Converter (Sequential Conversion Type)

The A/D converter is a module that converts analog input voltage into a digital value. Its features are as follows:

- A minimum conversion time of 5.2 µs/ch. (Including sampling time at a 32 MHz machine clock)
- Contains a sample and hold circuit.
- Resolution: 10 or 8 bits selectable.
- Selection of analog input from eight channels by program

Single conversion mode : Selects and converts one channel.

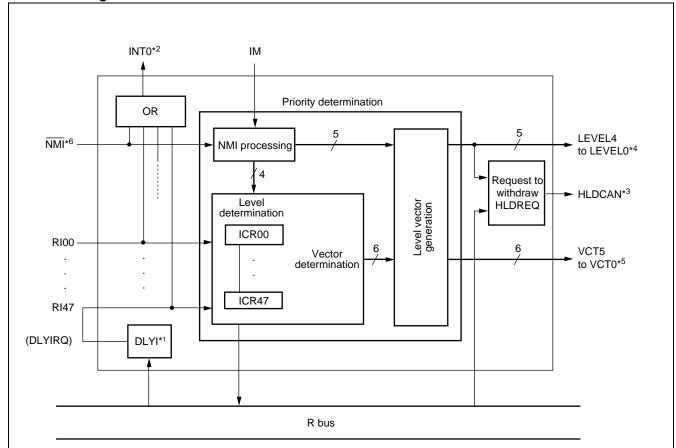

Continuous conversion mode : Converts a specified channel repeatedly.

Stop and convert mode : Stops after converting one channel and stands by until invoked the next

time. (Conversion invoking can be synchronized.)

• Selection of an invoking factor from software, external pin trigger (falling edge), and 16-bit reload timer (rising edge).

• Block Diagram

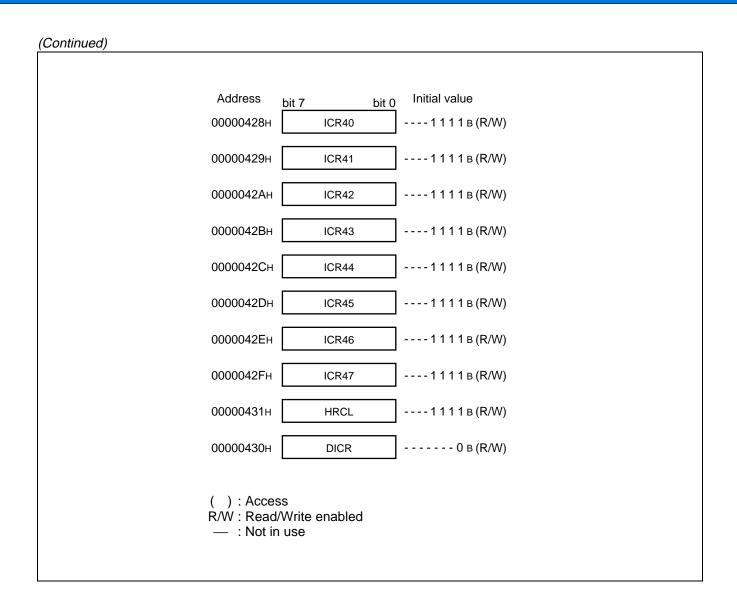


Register List			
	1945	1.11.0	
000000Е4н 000000Е5н	bit 15	bit 0	00101-XXв (W, R) XXXXXXXВ (R)
000000Е6н	ADCS1		00000000в (R/W, W)
000000Е7н	[ADCS0	00000000в (R/W)
000000ЕВн	[AICK	00000000в (R/W)
(): Acces R/W: Read/ R: Read W: Write —: Not in X: Undef	Write enabled only only use		

7. Interrupt Controller

The interrupt controller accepts and arbitrates interrupts.

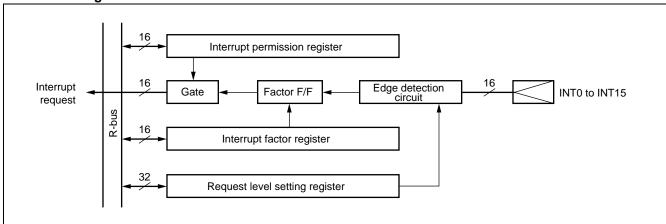
• Block Diagram

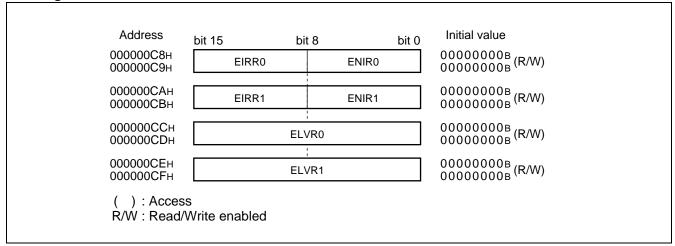


- *1 : DLY1 represents the delay interrupt module (delay interrupt generator) . (For detailed information, see section 10, "Delay Interrupt Module."
- *2: INT0 is a wake-up signal for the clock controller in sleep or stop mode.
- *3: HLDCAN is a bus surrender request signal for bus masters except for the CPU.
- *4: LEVEL 4-0 are interrupt level outputs.
- *5: VCT 5-0 are interrupt vector outputs.
- *6: This product type does not have the NMI function.

• Register List

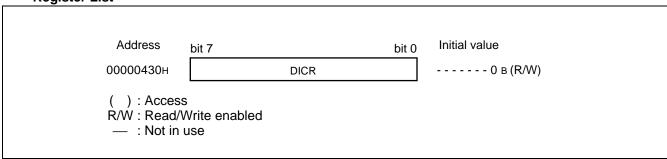
Address	bit 7 bit 0	Initial value	Address	bit 7 bit	0 Initial value
00000400н	ICR00	1111B (R/W)	00000414н	ICR20	1111B (R/W)
00000401н	ICR01	1111B(R/W)	00000415н	ICR21]1111B(R/W)
00000402н	ICR02	1111B(R/W)	00000416н	ICR22]1111B(R/W)
00000403н	ICR03	1111B(R/W)	00000417н	ICR23	1111в(R/W)
00000404н	ICR04]1111B(R/W)	00000418н	ICR24	1111в(R/W)
00000405н	ICR05	1111B (R/W)	00000419н	ICR25	1111в(R/W)
00000406н	ICR06	1111B(R/W)	0000041Ан	ICR26	1111в(R/W)
00000407н	ICR07	1111B(R/W)	0000041Вн	ICR27]1111B(R/W)
00000408н	ICR08	1111B(R/W)	0000041Сн	ICR28]1111B(R/W)
00000409н	ICR09	1111B(R/W)	0000041Dн	ICR29]1111B(R/W)
0000040Ан	ICR10	1111B(R/W)	0000041Ен	ICR30]1111B(R/W)
0000040Вн	ICR11	1111B(R/W)	0000041Fн	ICR31]1111B(R/W)
0000040Сн	ICR12	1111B(R/W)	00000420н	ICR32]1111B(R/W)
0000040Дн	ICR13	1111B(R/W)	00000421н	ICR33	1111в(R/W)
0000040Ен	ICR14	1111B(R/W)	00000422н	ICR34	1111в(R/W)
0000040Fн	ICR15	1111B(R/W)	00000423н	ICR35	1111в(R/W)
00000410н	ICR16	1111B(R/W)	00000424н	ICR36	1111в (R/W)
00000411н	ICR17	1111B(R/W)	00000425н	ICR37	1111B(R/W)
00000412н	ICR18	1111B(R/W)	00000426н	ICR38	1111B(R/W)
00000413н	ICR19]1111B (R/W)	00000427н	ICR39]1111B(R/W)
() : Acce R/W : Read — : Not i	d/Write enabled				


(Continued)


8. External Interrupt

The external interrupt controller controls external interrupt requests input to INT pins 0 through 15. The level of requests to be detected can be selected from "H," "L," rising edge, and falling edge.

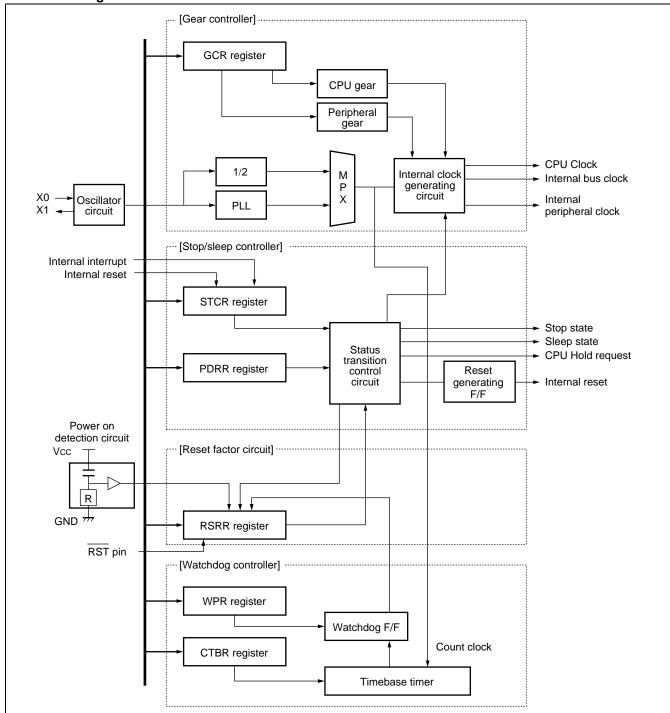
• Block Diagram


Register List

9. Delay Interrupt Module

The delay interrupt is a module that generates task switching interrupts. The use of this module allows the software to generate/cancel interrupt requests to the CPU.

For the block diagram of the delay interrupt module, see section 8, "Interrupt Controller."

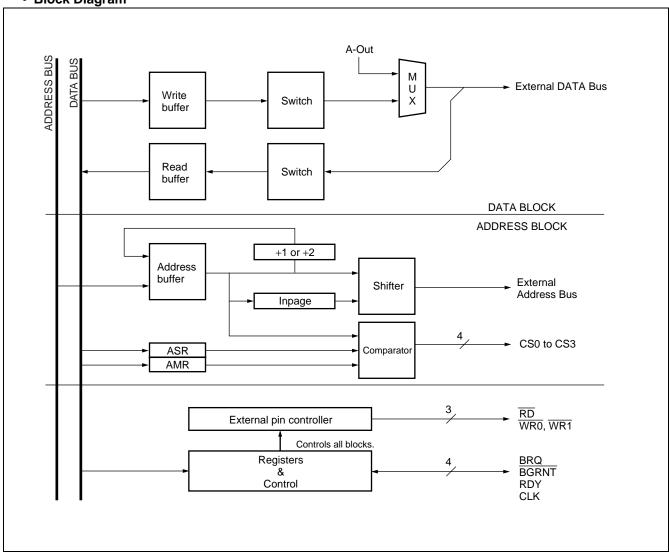


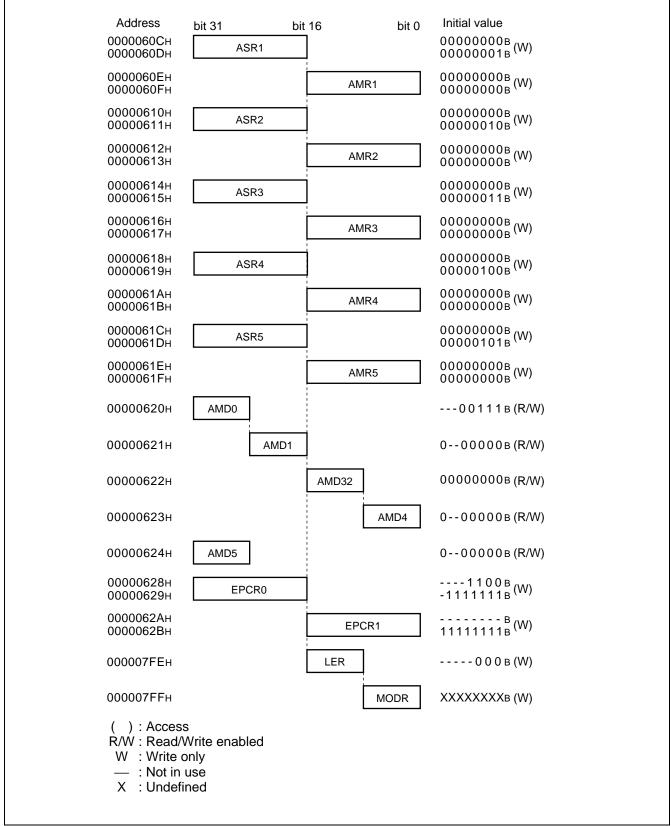
10. Clock Generator (Low power consumption mechanism)


The clock generator is responsible for the following functions :

- CPU clock generation (including the gear function)
- Peripheral clock generation (including the gear function)
- · Reset generation and holding factors
- Standby function (including hardware standby)
- Contains PLL (multiplication circuit)

• Block Diagram




11. External Bus Interface

The external bus interface controls the interface between the external memory and the external I/O. Its features are as follows:

- 24-bit (16 MB) address output
- An 8/16-bit bus width can be set by chip select area.
- Inserts an automatic and programmable memory wait (for seven cycles at maximum) .
- Unused addresses/data pins are available as I/O ports.
- Support for little endian mode
- Use of a clock doubler, 32 MHz internal and 16 MHz external bus operations

• Block Diagram

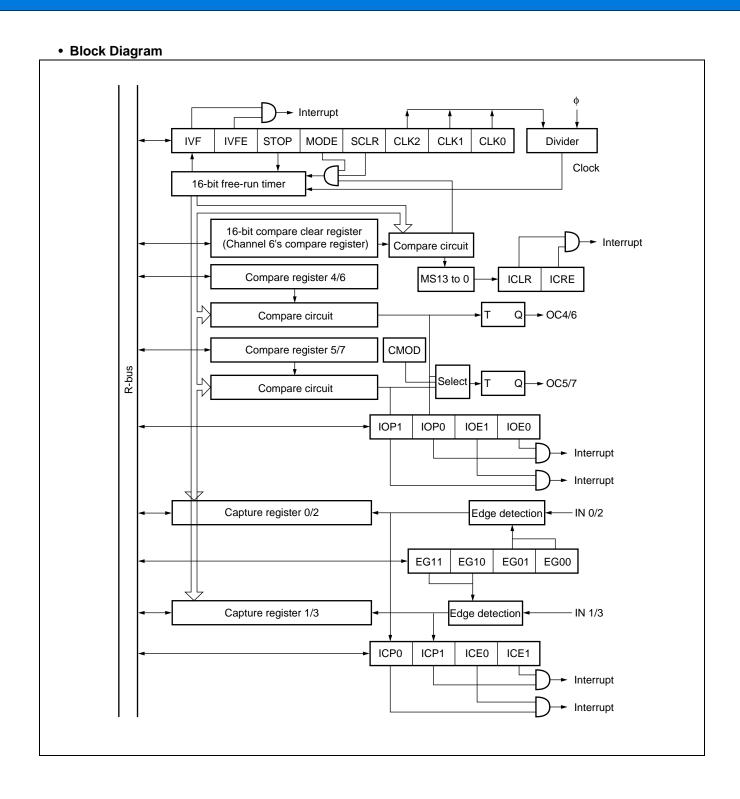
12. Multifunction Timer

The multifunction timer unit consists of one 16-bit free-run timer, four 16-bit output compare registers, four 16-bit input capture registers, and four 16-bit PPG timer channels. By using this function waveforms can be output based on the 16-bit free-run timer and the input pulse width and external clock cycle can also be measured.

• Timer Components

• 16-bit free-run timer (× 1)

The 16-bit free-run timer consists of a 16-bit up counter, a control register, a 16-bit compare clear register, and a prescaler. The output value of this counter is used as the basic time (base timer) for output compare and input capture.


• Output compare (× 4)

The output compare consists of four 16-bit compare registers, a compare output latch, and a control register. When the 16-bit free-run timer value agrees to the compare register value, the output level can be inverted and an interrupt can also be generated.

• Input capture (× 4)

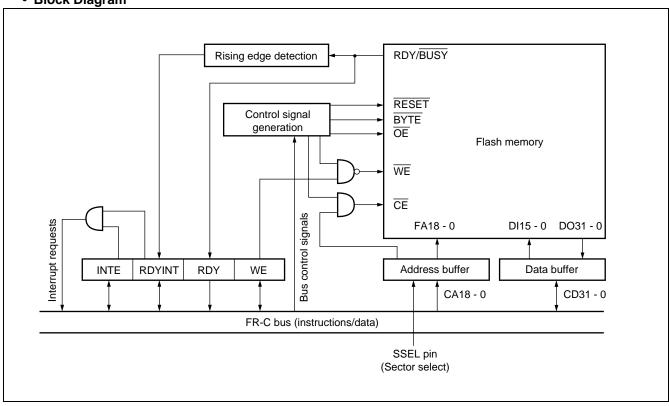
The input capture consists of capture registers corresponding to four independent external input pins and a control register. By detecting any edge of signals input from external input pins, the 16-bit free-run timer value can be held in the capture register and an interrupt can be generated at the same time.

16-bit PPG timer (× 4)
 See the section on the PPG Timer.

Address		Initial value
000068н 000069н	IPCP1	XXXXXXXB (R)
00006Ан 00006Вн	IPCP0	XXXXXXXXB (R) XXXXXXXXB (R)
00006Сн 00006Dн	IPCP3	XXXXXXXXB (R) XXXXXXXXB (R)
00006Eн 00006Fн	IPCP2	XXXXXXXXB (R) XXXXXXXXB (R)
000071н	ICS23	00000000в (R/W)
000073н	ICS01	00000000в (R/W)
00007Cн 00007Dн	OCCP5	XXXXXXXXB (R/W XXXXXXXXB (R/W
00007Ен 00007Fн	OCCP4	XXXXXXXXB (R/W XXXXXXXXB (R/W
000080н 000081н	OCCP7	XXXXXXXXB (R/W/XXXXXXXXB (R/W/
000082н 000083н	OCCP6	XXXXXXXXB (R/W)
000088н 000089н	OCS7, OCS6	XXX00000в (R/W) 0000XX00в (R/W)
00008Ан 00008Вн	OCS5, OCS4	XXX00000в (R/W) 0000XX00в (R/W)
00008Сн 00008Dн	TCDT	00000000в (R/W) 00000000в (R/W)
00008Ен 00008Fн	TCCS	0 в (R/W) 00000000в (R/W)

13. FLASH Memory

The MB91F158 contains a 510-Kbyte (4 Mbits) flash memory. The sectors can be erased all at once or sector by sector and that can be written with the FR-CPU by half word (16 bits) using a single 0.3 V power supply.


The MB91F158 accomplishes the following functions by a combination of the flash memory macro and the FR-CPU interface circuit:

- Functions as the CPU program/data storage memory : When used as a ROM, the memory is accessible with a 32-bit bus width. Allows the CPU to read from/write to/erase the memory (automatic program algorithm*) .
- Functions equivalent to the stand-alone MBM29LV400C flash memory product : Allows a ROM programmer to read from/write to/erase the memory (automatic program algorithm*)

At this time, using the flash memory from the FR-CPU is described. For detailed information about using the flash memory from the ROM programmer, refer to the ROM programmer instruction manual.

*: Automatic program algorithm = Embedded Algorithm™ Embedded Algorithm™ is a trademark of Advanced Micro Devices, Inc.

Block Diagram

Memory Map

Flash memory address mapping varies between FLASH memory mode and CPU mode. Mapping in each mode is shown next. Memory mapping in FLASH memory mode of MB91F158: (at SSEL = Vss) OFFFFFH SA13 SA12 Using FLASH memory mode is prohibited, SA11 **FLASH** when SSEL pin is connected to VCC. SA10 memory image (Using parallel writer is prohibited.) SA9 SA8 SA7 07FFFFн SA6 SA5 SA4 SA3 SA2 010000н SA1 SA0 000000н (SAn: sector address n) FLASH memory mode Memory mapping in CPU mode of MB91F158A: (at SSEL = Vss) (at SSEL = Vcc) 0FFFFFh 0FFFFFH 0FFFFFh SA6 SA13 SA5 SA12 0F8000н 0FС000н SA5 SA4 SA11 SA12 0F4000н 0F8000н SA4 SA11 SA6 SA13 0F0000н 0F0000н FLASH memory area SA3 SA10 SA3 SA10 0Е0000н 0Е0000н SA2 SA9 SA2 SA9 0С0000н 0С0000н 080800н RAM area SA1 SA8 SA1 SA8 2 KByte 080000н н0000А0 0А0000н SA0 SA7 SA0 SA7 Status register 0007С0н 080800н 080800н 000000н

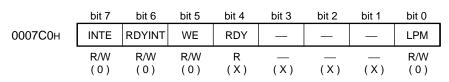
(SAn : sector address n) CPU mode

• Sector Address Table

< SSEL = $V_{SS} >$

Sector address	Address range	Corresponding bit positions	Sector capacity
SA7	080802, 3н to 09FFFE, Fн (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA8	0A0002, 3н to 0BFFFE, Fн (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA9	0C0002, 3н to 0DFFFE, Fн (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA10	0E0002, 3н to 0EFFFE, Fн (16 bits on LSB side)	bit15 to 0	32 Kbyte
SA11	0F0002, 3н to 0F3FFE, Fн (16 bits on LSB side)	bit15 to 0	8 Kbyte
SA12	0F4002, 3н to 0F7FFE, Fн (16 bits on LSB side)	bit15 to 0	8 Kbyte
SA13	0F8002, 3н to 0FFFFE, Fн (16 bits on LSB side)	bit15 to 0	16 Kbyte
SA0	080800, 1н to 09FFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA1	0A0000, 1н to 0BFFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA2	0C0000, 1н to 0DFFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA3	0E0000, 1н to 0EFFFC, Dн (16 bits on MSB side)	bit31 to 16	32 Kbyte
SA4	0F0000, 1н to 0F3FFC, Dн (16 bits on MSB side)	bit31 to 16	8 Kbyte
SA5	0F4000, 1н to 0F7FFC, Dн (16 bits on MSB side)	bit31 to 16	8 Kbyte
SA6	0F8000, 1н to 0FFFFC, Dн (16 bits on MSB side)	bit31 to 16	16 Kbyte

< SSEL = Vcc >


Sector address	Address range	Corresponding bit positions	Sector capacity
SA7	080802, 3н to 09FFFE, Fн (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA8	0A0002, 3н to 0BFFFE, Fн (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA9	0C0002, 3н to 0DFFFE, Fн (16 bits on LSB side)	bit15 to 0	64 Kbyte
SA10	0E0002, 3н to 0EFFFE, Fн (16 bits on LSB side)	bit15 to 0	32 Kbyte
SA13	0F0002, 3н to 0F7FFE, Fн (16 bits on LSB side)	bit15 to 0	16 Kbyte
SA11	0F8002, 3н to 0FBFFE, Fн (16 bits on LSB side)	bit15 to 0	8 Kbyte
SA12	0FC002, 3н to 0FFFFE, Fн (16 bits on LSB side)	bit15 to 0	8 Kbyte
SA0	080800, 1н to 09FFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA1	0A0000, 1н to 0BFFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA2	0C0000, 1н to 0DFFFC, Dн (16 bits on MSB side)	bit31 to 16	64 Kbyte
SA3	0E0000, 1н to 0EFFFC, Dн (16 bits on MSB side)	bit31 to 16	32 Kbyte
SA6	0F0000, 1н to 0F7FFC, Dн (16 bits on MSB side)	bit31 to 16	16 Kbyte
SA4	0F8000, 1н to 0FBFFC, Dн (16 bits on MSB side)	bit31 to 16	8 Kbyte
SA5	0FC000, 1н to 0FFFFC, Dн (16 bits on MSB side)	bit31 to 16	8 Kbyte

• Registers

FLCR: Status register (CPU mode)

This register indicates the FLASH memory operating status. The register controls interrupts to the CPU as well as writing to the FLASH memory.

This register is accessible only in CPU mode. Do not access this register with read modify write instructions.

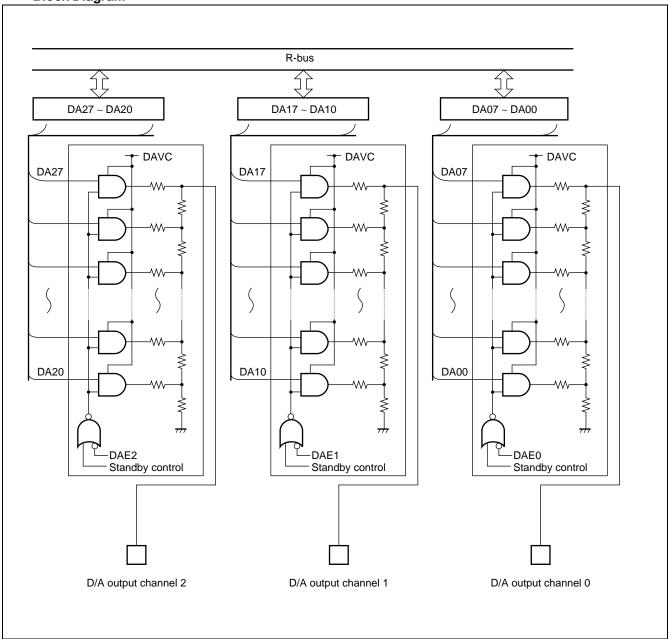
R/W: Read/Write enabled, R: Read only, —: Not in use, X: Undefined

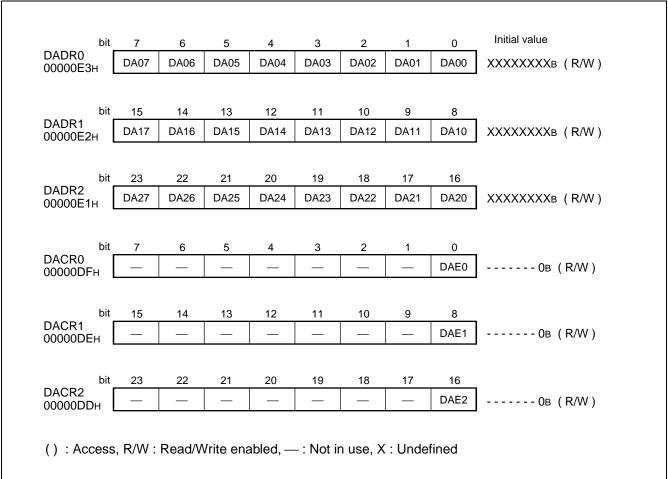
FWTC: Wait register

This register controls waiting for the FLASH memory in CPU mode.

The register also controls accessing to read from the FLASH memory (33 MHz operations) at high speeds.

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
0007С4н		_	_	_	_	SYNC	WTC1	WTC0
	W (1)	W (0)	W (0)	W (1)	W (0)	W (1)	R/W (0)	R/W (0)

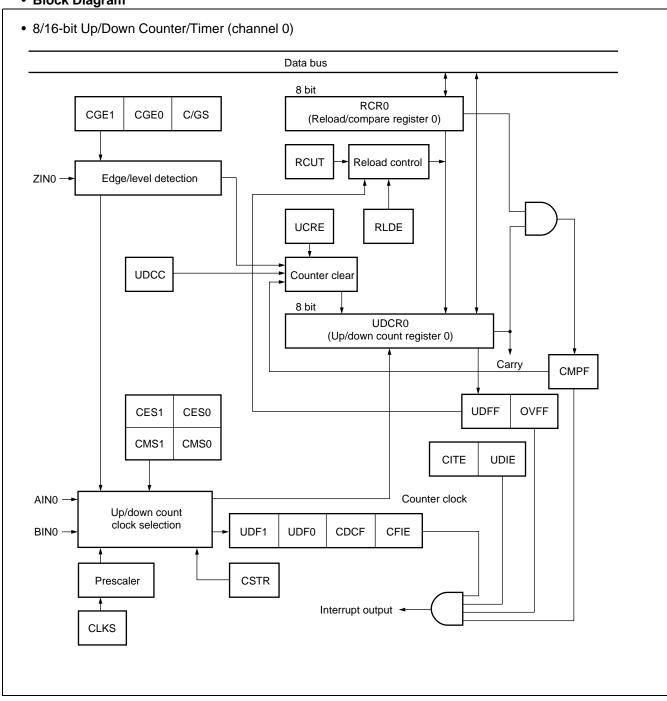

R/W: Read/Write enabled, W: Write only, —: Not in use, X: Undefined

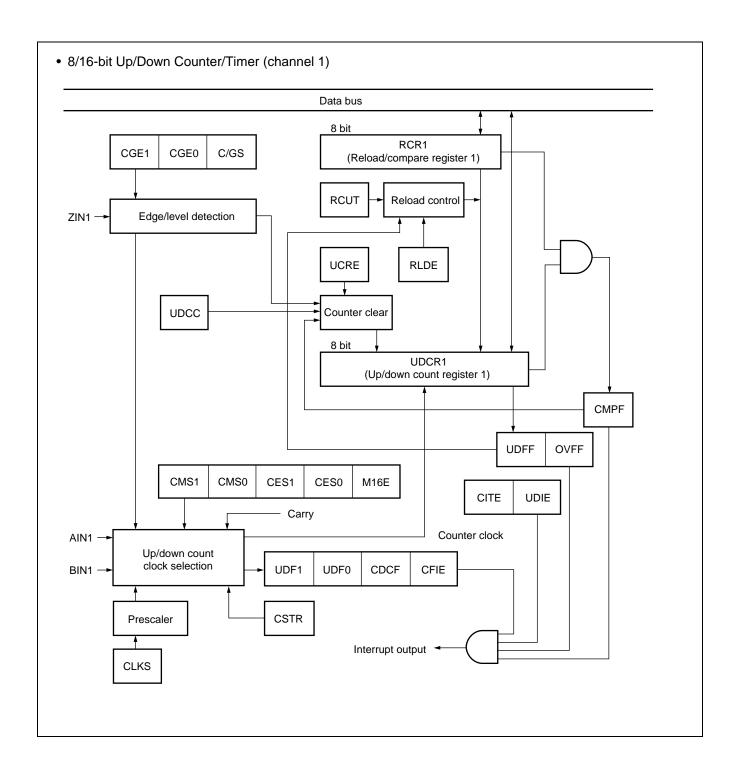

14. 8-bit D/A Converter

This block is of an 8-bit resolution, R-2R D/A converter. The block contains three D/A converter channels and each D/A control register can control output independently.

The D/A converter pin is a dedicated pin.

• Block Diagram

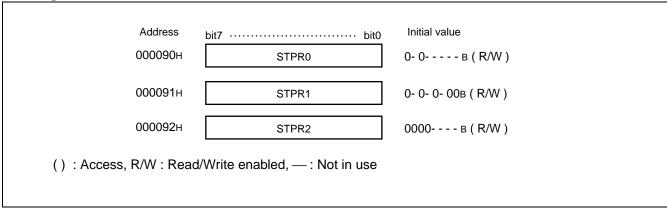

15. 8/16-bit Up/Down Counters/Timers


This is the up/down counter/timer block consisting of six event input pins, two 8-bit up/down counters, two 8-bit reload/compare registers, and their control circuits.

The features of this module are as follows:

- Capable of counting in the (0) d- (256) d range by the 8-bit count register. (In 16-bit × 1 operating mode, the register can count in the (0) d- (65535) d range.)
- Four count modes to choose from by the count clock.
- In timer mode the count clock can be selected from two internal clock types.
- In up/down count mode an external pin input signal detection edge can be selected.
- The phase-difference count mode is suitable for encoder counting, such as of motors. Rotation angles, rotating speeds, and so on can be counted accurately and easily by inputting the output of phases A, B, and Z.
- Two types of function to choose from for the ZIN pin. (Enabled in all modes)
- Equipped with compare and reload functions which can be used individually or in combination. When combined, these functions can count up/down at any width.
- The immediately preceding count direction can be identified by the count direction flag.
- Capable of individually controlling interrupt generation when comparison results match, at occurrence of reload (underflow) or overflow, or when the count direction changes.

• Block Diagram



rtogistor Elet											
	bit	7	6	5	4	3	2	1	0	Initial value	
Address: 00005FH	Address: 00005FH UDCR0						0000000В	(R)			
	bit	15	14	13	12	11	10	9	8	Initial value	
Address : 00005EH					UD	CR1				0000000в	(R)
	bit	7	6	5	4	3	2	1	0	Initial value	
Address : 00005DH					RO	CR0				00000000в	(W)
4.1.	bit	15	14	13	12	11	10	9	8	Initial value	
Address : 00005CH					RO	CR1				00000000в	(W)
	bit	7	6	5	4	3	2	1	0	Initial value	(D.111)
Address : 000063 _H					CS	SR0				00000000в	(R/W)
	bit	7	6	5	4	3	2	1	0	Initial value	
Address: 000067 _H					CS	SR1				00000000	(R/W)
	bit	7	6	5	4	3	2	1	0	Initial value	
Address: 000061H			CCRL0						-000Х000в	(R/W, W)	
	bit	7	6	5	4	3	2	1	0	Initial value	
Address: 000065H					CC	RL1				-000Х000в	(R/W, W)
	bit	15	14	13	12	11	10	9	8	Initial value	
Address: 000060H					CC	RH0				0000000В	(R/W)
	bit	15	14	13	12	11	10	9	8	Initial value	
Address: 000064H					CC	RH1				-0000000в	(R/W)
() : Access, R/W : Read/Write enabled, R : Read only, W : Write only, — : Not in use, X : Undefined											

16. Peripheral STOP Control

This function can be used to stop the clock of unused resources in order to conserve more power.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Devenuetes	Comple ed	Ra	ting	Unit	Domostro	
Parameter	Symbol	Min	Max	Unit	Remarks	
Power supply voltage	Vcc	Vss - 0.3	Vss + 3.5	V		
Analog supply voltage	AVcc	Vss - 0.3	Vss + 3.5	V	*1	
Analog reference voltage	AVRH	Vss - 0.3	Vss + 3.5	V	*1	
Input voltage	Vı	Vss - 0.3	Vcc + 0.3	V		
Analog pin input voltage	VIA	Vss - 0.3	AVcc + 0.3	V		
Output voltage	Vo	Vss - 0.3	Vcc + 0.3	V		
"L" level maximum output current	lol	_	10	mA	*2	
"L" level average output current	lolav		4	mA	*3	
"L" level total maximum output current	Σ loL	_	100	mA		
"L" level total average output current	Σ lolav	_	50	mA	*4	
"H" level maximum output current	Іон		-10	mA	*2	
"H" level average output current	Іонаv	_	-4	mA	*3	
"H" level total maximum output current	Σ loн	_	-50	mA		
"H" level total average output current	Σ lohav	_	-20	mA	*4	
Power consumption	PD	_	500	mW		
Operating temperature	TA	0	+70	°C		
Storage temperature	Tstg	- 55	+150	°C		

^{*1 :} Take care not to exceed Vcc + 0.3 V when turning on the power, for example.

Take care also to prevent AVcc from exceeding Vcc when turning on the power, for example.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} The maximum output current stipulates the peak value of a single concerned pin.

^{*3:} The average output current stipulates the average current flowing through a single concerned pin over a period of 100 ms.

^{*4:} The total average output current stipulates the average current flowing through all concerned pins over a period of 100 ms.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Parameter	Symbol	Va	Value		Remarks
Faranietei	Зуппон	Min	Max	Unit	Kemarks
		3.2	3.5		During normal operations.
Power supply voltage	Vcc 2.0 3.5		3.5	V	The RAM state is retained when stopped.
Analog supply voltage	AVcc	Vss + 3.2	Vss + 3.5	V	
Analog reference voltage (High potential side)	AVRH	AVcc - 0.3	AVcc	V	
Analog reference voltage (Low potential side)	AVRL	AVss	AVss + 0.3	V	
Operating temperature	TA	0	+70	°C	

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

> No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V, TA = 0 °C to +70 °C)

Donomotor	0	Din nama	Condition		Value		11:4:4	Domostro
Parameter	Symbol	Pin name	Condition	Min	Тур	Max	Unit	Remarks
"H" level input	Vıн	Input except for hysteresis input pin*	_	0.65 × Vcc	_	Vcc + 0.3	V	
voltage	Vihs	Hysteresis input pin*	_	0.8 × Vcc	_	Vcc + 0.3	V	
"L" level input	VIL	Input except for hysteresis input pin*	_	Vss - 0.3		0.25 × Vcc	V	
voltage	VILS	Hysteresis input pin*	_	Vss - 0.3		0.2×Vcc	V	
"H" level output voltage	Vон	_	$V_{CC} = 3.2 \text{ V}$ $I_{OH} = 4.0 \text{ mA}$	Vcc - 0.5	_	_	V	
"L" level output voltage	Vol	_	Vcc = 3.2 V IoL = 4.0 mA	_		0.4	V	
Input leakage current	Iц	_	Vcc = 3.5 V, Vss < Vı < Vcc	_		±5	μΑ	
Pullup resistance	RPULL	RST, pullup pin	_	_	50	_	kΩ	
	Icc	Vcc	Vcc = 3.3 V	_	85	110	mΑ	
Power supply current	Iccs	Vcc	Vcc = 3.3 V	_	60	90	mA	During sleep mode
Garron	Іссн	Vcc	$V_{CC} = 3.3 \text{ V},$ $T_A = +25 ^{\circ}\text{C}$	_	15	300	μΑ	During stop mode
Input capacity	Cin	Other than Vcc, Vss, AVcc, AVss, and AVRH	_		5	15	pF	

^{* :} Refer to "■ I/O CIRCUIT TYPE".

4. Flash Memory Erase and Programming Performance

(Vss = AVss = 0 V)

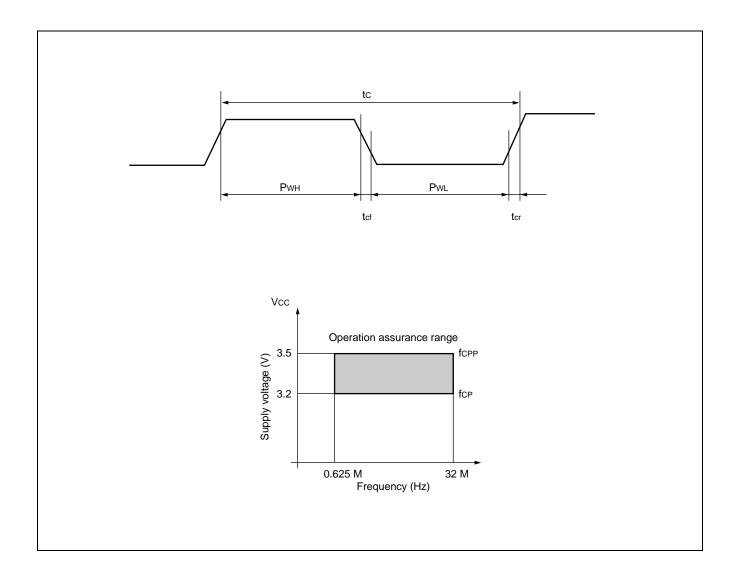
Parameter		Value		Unit	Remarks
raiailletei	Min	Тур	Max	Oilit	Remarks
Sector Erase Time	_	1 *1	15 *²	S	Excludes programming time prior to erasure
Byte Programming Time	_	8 *1	3600 *2	μs	Excludes system-level overhead
Chip Programming Time	_	4.2 *1	_	S	Excludes system-level overhead
Erase/Program Cycle	10000	_	_	cycle	

^{*1 :} $T_A = +25$ °C, $V_{CC} = 3.3$ V, 10,000 cycles

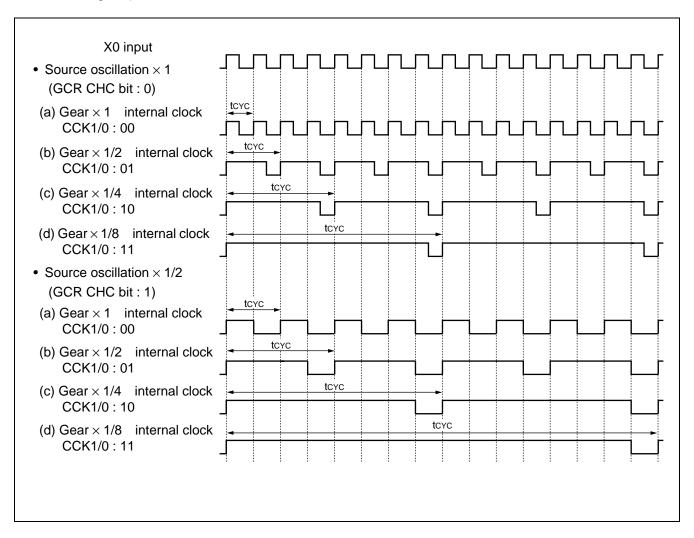
^{*2 :} $T_A = +70$ °C, $V_{CC} = 3.3$ V, 10,000 cycles

5. AC Characteristics

(1) Clock Timing Ratings

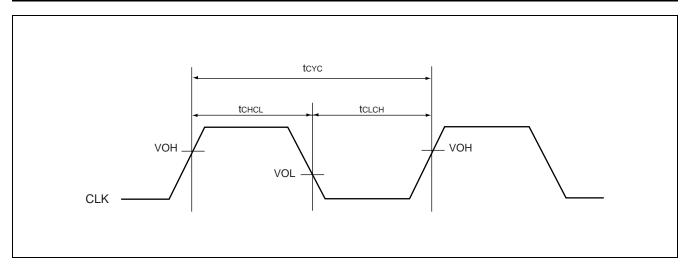

(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Parameter		Sym- bol	Pin name	Condition	Value		l les!#	Domonto
					Min	Max	Unit	Remarks
Clock frequency (High speed and self oscillation)		fc	X0, X1	_		16	MHz	Range in which self oscillation is allowed
Clock frequency (High speed and PLL in use)				_	10			Range in which self oscillation and the use of the PLL for external clock input are allowed
Clock frequency (High speed an 1/2 division input)				_	10	16	MHz	Range in which external clocks can be input
Clock cycle time		t c	X0, X1	_	62.5	100		
Clock pulse width		PwH	X0, X1	_	25	_	ns	
		PwL			15			
Input clock rising		t cr	X0, X1			8		$(t_{cr} + t_{cf})$
Input clock falling		t cf						(to 1 to)
Internal operating clock frequency	CPU system	f CP	_	One wait is set with the wait controller.	0.625*3	32	MHz	
	Bus system	fсрв			0.625*3	25*²		
	Peripheral	fсpp			0.625*3	32		Analog section excluded. *1
	system				1	32		Analog section *1
Internal operat- ing clock cycle time	CPU system	t cp			31.25	1600*3	ns	
	Bus system	t CPB			40*2	1600*3		
	Peripheral system	t CPP			31.25	1600*3		Analog section excluded. *1
					31.25	1000		Analog section *1


^{*1:} The target analog section is the A/D.

^{*2:} The maximum external bus operating frequency allowed is 25 MHz.

^{*3 :} The value when a minimum clock frequency of 10 MHz is input to X0 and half a division of the oscillator circuit and the 1/8 gear are in use.


The relationship between the X0 input and the internal clock set with the CHC/CCK1/CCK0 bit of the GCR (Gear Control Register) is as shown next.

(2) Clock Output Timing

(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Parameter	Symbol	Pin	Pin Condition	Va	lue	Unit	Remarks
rarameter	Syllibol	name	Condition	Min	Max	Oilit	Nemarks
Cycle time	tcyc	CLK		t CP		ns	*1
Cycle time	LCYC	CLK		t CPB		115	On using doubla
CLK↑→CLK↓	tchcl	CLK		tcyc/2-10	tcyc/2+10	ns	*2
CLK↓→CLK↑	t clch	CLK		tcyc/2-10	tcyc/2+10	ns	*3

- *1: tcyc is a frequency for 1clock cycle including a gear cycle. Use the doublur when CPU frequency is above 25 MHz.
- *2 : Rating at a gear cycle of \times 1

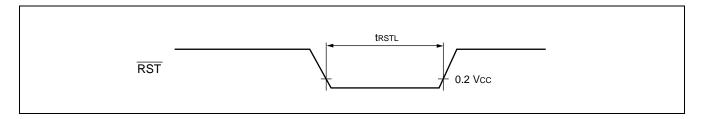
When a gear cycle of 1/2, 1/4, 1/8 is selected, substitute "n" in the following equations with 1/2, 1/4, 1/8, respectively.

Min : (1-n/2) × tcyc-10
 Max : (1-n/2) × tcyc+10

Select a gear sysle of \times 1 when using the doublur.

*3: Rating at a gear cycle of \times 1

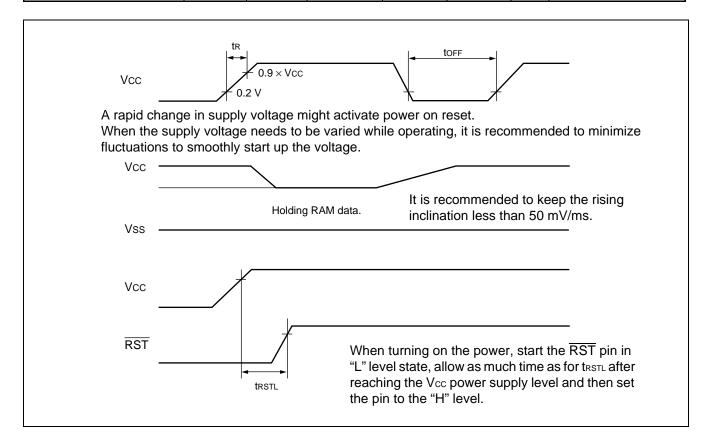
When a gear cycle of 1/2, 1/4, 1/8 selected, substitute "n" in the following equations wiht 1/2, 1/4, 1/8, respectively.


Min : n/2 × tcyc-10
 Max : n/2 × tcyc+10

Select a gear sysle of \times 1 when using the doublur.

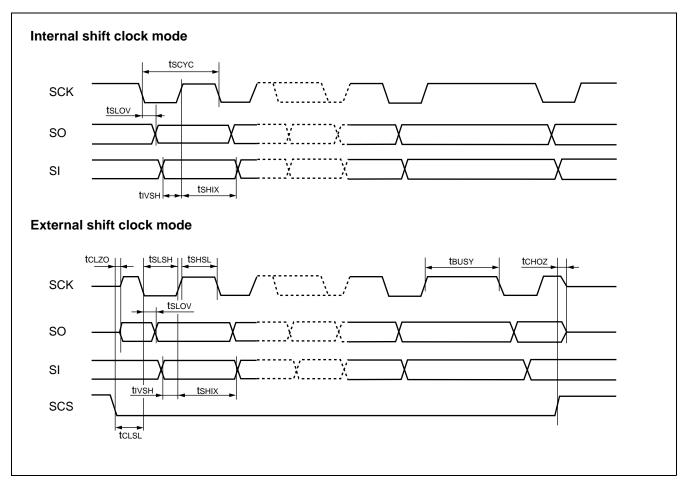
(3) Reset Input Ratings

(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)


Parameter	Symbol	Pin	Condition	Va	Value		Remarks
Farameter	Syllibol	name	Condition	Min	Max	Unit	Nemarks
Reset input time	t rstl	RST	_	tcp×5	_	ns	

(4) Power On Reset

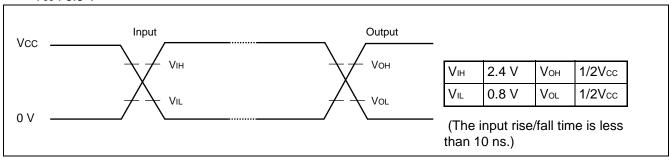
($Vcc = 3.2 \text{ V to } 3.5 \text{ V}, Vss = AVss = 0 \text{ V}, T_A = 0 ^{\circ}\text{C to } +70 ^{\circ}\text{C}$)


Parameter	Symbol	Pin	Condition	Val	ue	Unit	Remarks
raiailletei	Syllibol	name	Condition	Min	Max	Oill	Remarks
Power supply rising time	fR	Vcc	_	_	20	ms	Vcc < 0.2 V before turning up the power.
Power supply cutoff time	t off			2	_	ms	

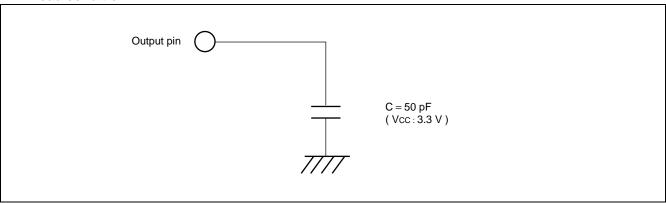
(5) Serial I/O (CH0-4)

(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V, TA = 0 °C to +70 °C)

Parameter	Symbol	Pin	Condition	Valu	ne	Unit	Remarks
Farameter	Syllibol	name	Condition	Min	Max	Unit	Remarks
Serial clock cycle time	t scyc	_		8 tcpp	_	ns	
$SCK \downarrow \to SO$ delay time	t sLov	_	Internal	-10	50	ns	
Valid SI → SCK ↑	t ıvsh	_	clock	50	_	ns	
$SCK \uparrow \rightarrow valid SI hold time$	t shix	_		50	_	ns	
Serial clock "H" pulse width	t shsl	_		4 tcpp - 10	_	ns	
Serial clock "L" pulse width	t slsh	_		4 tcpp - 10	_	ns	
$SCK \downarrow \to SO$ delay time	t sLov	_		0	50	ns	
Valid SI → SCK ↑	t ıvsн	_		50	_	ns	
$SCK \uparrow \rightarrow valid SI hold time$	t shix	_	External clock	50	_	ns	
Serial busy period	t BUSY	_	O O O O N	_	6 tcpp	ns	
$SCS \downarrow \to SCK$ and SO delay time	t clzo	_		_	50	ns	
$SCS \downarrow \to SCK$ input mask time	t clsl	_		_	3 tcpp	ns	
SCS $\uparrow \rightarrow$ SCK and SO Hi-Z time	t cHOZ	_		50		ns	



(6) External Bus Measurement Conditions

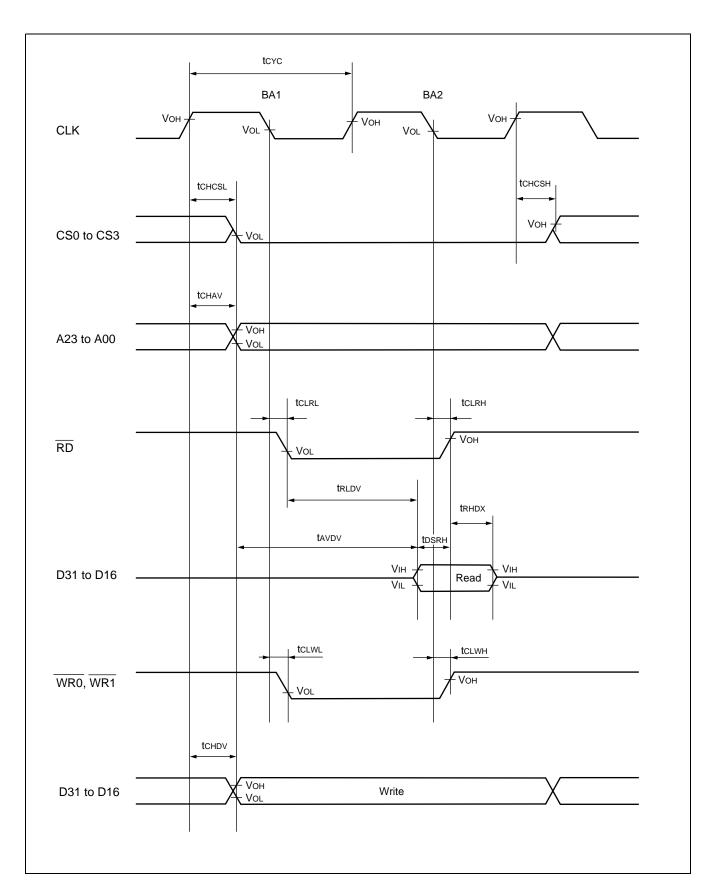

The following conditions apply to items that are not specifically stipulated.

• AC characteristics measurement conditions

Vcc: 3.3 V

Load condition

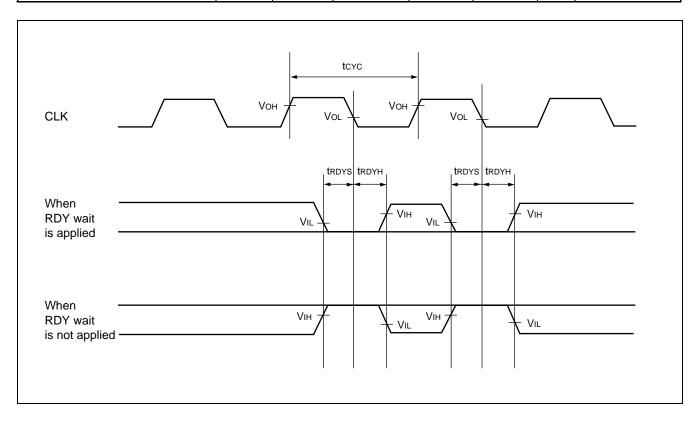
(7) Normal Bus Access and Read/Write Operations


(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V, Ta = 0 °C to +70 °C)

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
raiailletei	Syllibol	riii iiaiiie	Condition	Min	Max	Oiii	Remarks
CS0 - CS3 delay time	t chcsL	CLK,			15	ns	
CS0 - CS3 delay time	tснсsн	CS0 to CS3			15	ns	
Address delay time	tchav	CLK, A23 to A00		_	15	ns	
Data delay time	t chdv	CLK, D31 to D16		_	15	ns	
RD delay time	t clrl	CLK,		_	10	ns	
RD delay time	t CLRH	RD			10	ns	
WR0 - WR1 delay time	t clwL	CLK,		_	10	ns	
WR0 - WR1 delay time	t cLWH	WR0, WR1		_	10	ns	
Valid address → valid data input time	t avdv	A23 to A00, D31 to D16		_	3 / 2 × tcyc – 40	ns	*1, *2
$\overline{RD} \downarrow \to valid$ data input time	t RLDV			_	tcyc - 25	ns	*1
$Data\;setup\to\overline{RD}\;\!\!\uparrowtime$	t DSRH	RD, D31 to D16		25	_	ns	
$\overline{RD} \uparrow \to Rdata$ hold time	t RHDX	20. 10 2 10		0	_	ns	

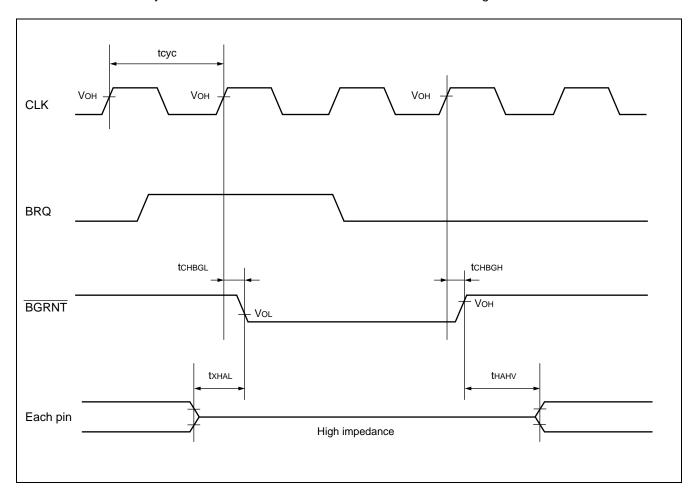
^{*1 :} If the bus is extended with either automatic wait insertion or RDY input, add the (tcyc × the number of extended cycles) time to this value.

Formula: $(2 - n / 2) \times tcyc - 40$


^{*2 :} This is the value at the time of (gear cycle \times 1) . When the gear cycle is set to 1/2, 1/4 or 1/8, substitute "n" in the following formula with 1/2, 1/4 or 1/8 respectively.

(8) Ready Input Timing

(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V,
$$T_A$$
 = 0 °C to +70 °C)


Parameter	Symbol Pin Condition		Va	lue	Unit	Remarks	
Faranietei	Syllibol	name	Condition	Min	Max	Oilit	Remarks
RDY setup time $ ightarrow$ CLK \downarrow	t RDYS	RDY CLK		20	_	ns	
$CLK \downarrow \to RDY$ hold time	t RDYH	RDY CLK		0		ns	

(9) Hold Timing

Parameter	Symbol	Pin	Condition	Va	lue	Unit	Remarks
Farameter	Syllibol	name	Condition	Min	Max	Offic	Remarks
BGRNT delay time	t CHBGL	CLK		_	10	ns	
BGRNT delay time	t снвGн	BGRNT		_	10	ns	
$Pin floating \rightarrow \overline{BGRNT} \downarrow time$	t xhal	BGRNT	_	tcyc - 10	tcyc + 10	ns	
$\overline{BGRNT} \uparrow \to Pin \ valid \ time$	t hahv	DGKINI		tcyc - 10	tcyc + 10	ns	

Note : More than one cycle exist after BRQ is fetched and before $\overline{\text{BGRNT}}$ changes.

6. A/D Converter Electrical Characteristics

(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

Por	ameter	Sym-	Pin	Condition		Value		Unit	Re-	
Para	ameter	bol	name	Condition	Min	Тур	Max	Unit	marks	
Resolution		_	_		_	_	10	Bit		
Conversion	time	_	_	_	5.2	_	_	μs		
Comparisor	n time	_		_	_		0.2	ms		
Total error		_	_		_	_	±4.0	LSB		
Linearity err	ror	_		AVcc = 3.3 V, AVRH = 3.3 V			±3.5	LSB		
Differential	linearity error	_		7,4,4,1,1 = 0.0 4	_	_	±2.0	LSB	SB	
Zero transit	ion error	Vот	AN0 to AN7	AVcc = 3.3 V,	AVss - 1.5	AVss+0.5	AVss+2.5	LSB		
Full-scale tr	ansition error	VFST	AN0 to AN7	AV _{RH} = 3.3 V	AV _{RH} – 5.5	AV _{RH} – 1.5	AV _{RH} + 0.5	LSB		
Analog inpu	it current	Iain	AN0 to AN7		_	0.1	10	μΑ		
Analog inpu	ıt voltage	Vain	AN0 to AN7	_	AVss	—	AVRH	V		
Reference v	/oltage	AV _{RH}	AVRH	_	_	_	AVcc	V		
Supply	Conversion in operation	lΑ	AVcc	AVcc = 3.3 V	_	3.0	5.0	mA		
current	Conversion stopped	Іан	AVCC	AVcc = 3.3 V		—	5.0	μА		
Reference voltage	Conversion in operation	lR	AVRH	AVcc = 3.3 V,	_	2.0	3.0	mA		
supply current	Conversion stopped	IRH	AVKH	AVRH = 3.3 V	_	_	10	μА		
Interchanne	el variation	_	AN0 to AN7	_	_	_	4	LSB		

Notes: • The smaller the |AVRH| is, the greater the error is in general.

• The external circuit output impedance of analog input should be used in compliance with the following requirements :

External circuit output impedance ≤ 2 (k Ω)

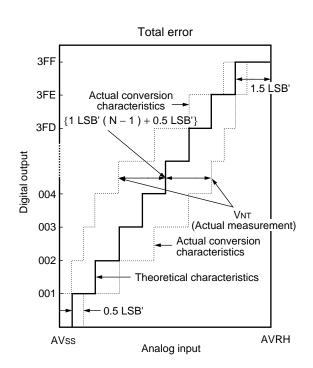
If the output impedance of the external circuit is too high, an analog voltage sampling duration shortage might occur. (Sampling duration = 1.41 μs : @32 MHz)

A/D Converter Glossary

• Resolution : Analog changes that are identifiable by the A/D converter.

• Linearity error : The deviation of the straight line connecting the zero transition point

(00 0000 0000 \longleftrightarrow 00 0000 0001) with the full-scale transition point


(11 1111 1110 \longleftrightarrow 11 1111 1111) from actual conversion characteristics.

• Differential linearity error: The deviation of input voltage needed to change the output code by one LSB

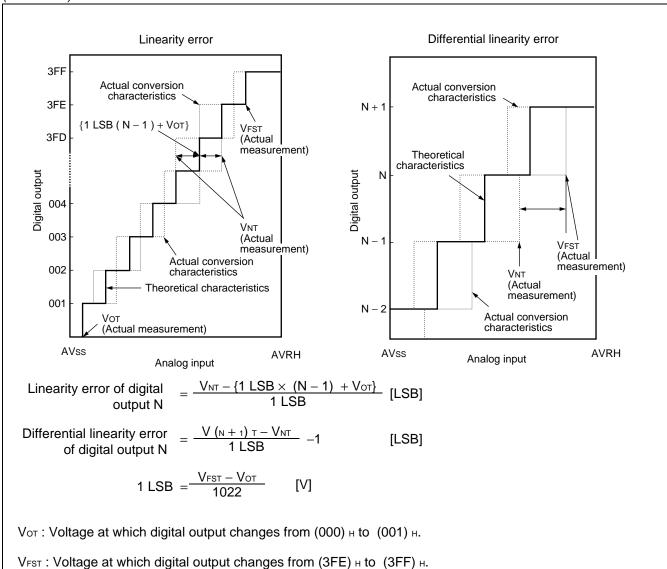
from the theoretical value.

• Total error : The difference between actual and theoretical conversion values including a

zero transition/full-scale transition/linearity error.

1 LSB' (theoretical value) =
$$\frac{AVRH - AV_{SS}}{1024}$$
 [V]

Vot' (theoretical value) = AVss + 0.5 LSB' [V]

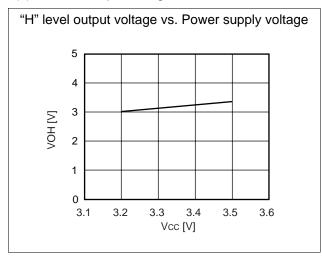

V_{FST}' (theoretical value) = AVRH - 1.5 LSB' [V]

Total error of digital output N =
$$\frac{V_{NT} - \{1 \text{ LSB'} \times (N-1) + 0.5 \text{ LSB'}\}}{1 \text{ LSB'}}$$

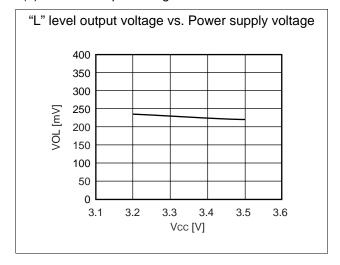
 V_{NT} : Voltage at which digital output changes from (N + 1) to N.

(Continued)

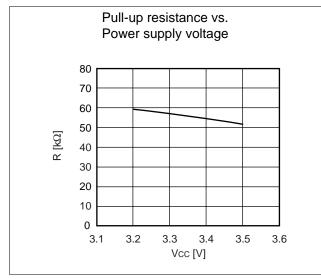
D/A Converter Electrical Characteristics

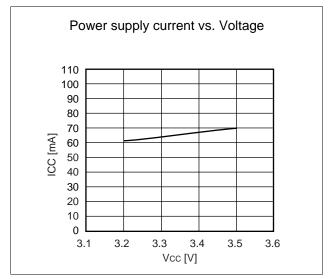

(Vcc = 3.2 V to 3.5 V, Vss = AVss = 0 V, $T_A = 0$ °C to +70 °C)

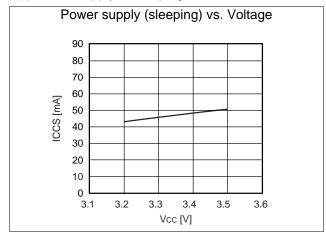
Parameter	Symbol	Pin	Pin Condi-		Value		Unit	Re-
Farameter	Syllibol	name	tion	Min	Тур	Max	Oilit	marks
Resolution	_	_	_	_	_	8	Bit	
Differential linearity error	_	_	_	_	_	1	LSB	
Conversion time	_	_	_	_		20	μs	*
Analog output impedance	_	_	_	_	29	_	kΩ	

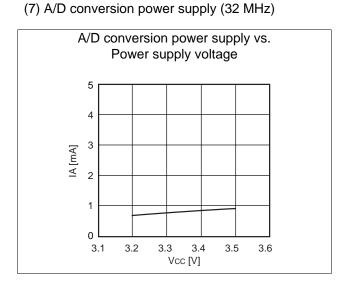

^{* :} CL = 20 pF

■ EXAMPLE CHARACTERISTICS

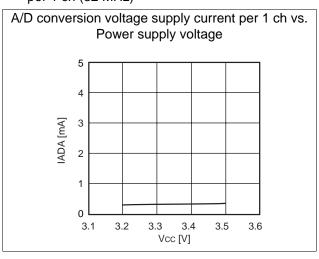

(1) "H" level output voltage


(2) "L" level output voltage

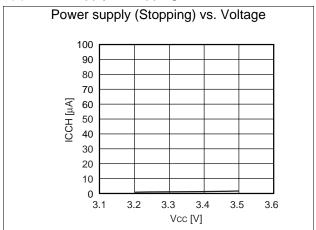

(3) Pull-up resistance

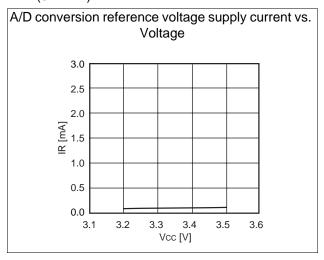


(4) Power supply current

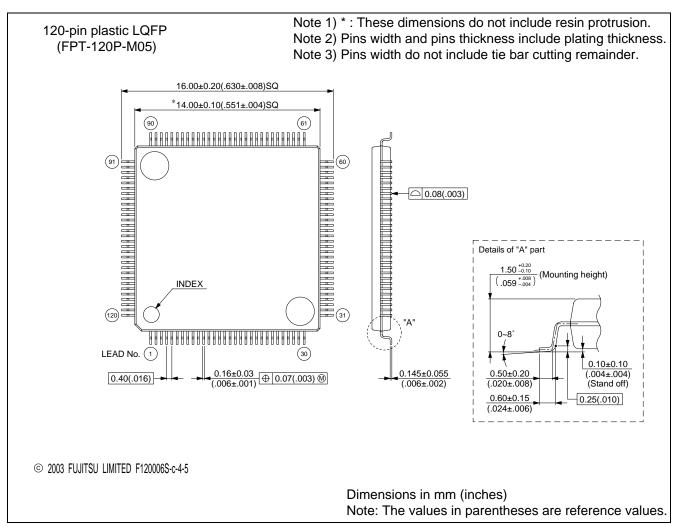


(5) Power supply at sleeping




(9) A/D conversion reference voltage supply current per 1 ch (32 MHz)

(6) Power supply at stopping


(8) A/D conversion reference voltage supply current (32 MHz)

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91F158PFF-G	120-pin plastic LQFP (FPT-120P-M05)	

■ PACKAGE DIMENSION

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0311 © FUJITSU LIMITED Printed in Japan