MC10SX1190

Product Preview
 Fibre Channel Coaxial Cable Driver and Loop Resiliency Circuit

The MC10SX1190 is a differential receiver, differential transmitter specifically designed to drive coaxial cables. It incorporates the output cable drive capability of the MC10EP89 Coaxial Cable Driver with additional circuitry to multiplex the output cable drive source between the cable receiver or the local transmitter inputs. The multiplexer control circuitry is TTL compatible for ease of operation.

The MC10SX1190 is useful as a bypass element for Fibre Channel-Arbitrated Loop (FC-AL) or Serial Storage Architecture (SSA) applications, to create loop style interconnects with fault tolerant, active switches at each device node. This device is particularly useful for back panel applications where small size is desirable.

The EP89 style drive circuitry produces swings approximately 70\% larger than a standard PECL output. When driving a coaxial cable, proper termination is required at both ends of the line to minimize reflections. The 1.4 V output swings allow for proper termination at both ends of the cable, while maintaining the required swing at the receiving end of the cable. Because of the larger output swings, the QT, $\overline{\mathrm{QT}}$ outputs are terminated into the thevenin equivalent of 50Ω to $\mathrm{V}_{\mathrm{CC}}-3.0 \mathrm{~V}$ instead of 50Ω to $\mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$.

- 2.5 Gbps Operation
- 425ps Propagation Delay
- 1.4V Output Swing on the Cable Driving Output
- PECL Mode: 3.0 V to $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$, with $\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
- ECL Mode: $0 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$, with $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{~V}$ to -5.5 V
- $75 \mathrm{k} \Omega$ Internal Input Pull Down Resistors
- >1000 Volt ESD Protection

Figure 1. 20-Lead TSSOP Pinout: (Top View)

This document contains information on a product under development. ON Semiconductor reserves the right to change or discontinue this product without notice.

ON Semiconductor

Formerfy a Division of Motorola http://onsemi.com

TSSOP-20
DT SUFFIX
CASE 948E
MARKING DIAGRAM

*For additional information, see Application Note AND8002/D

PIN DESCRIPTION

PIN	FUNCTION
DR/DR	ECL Diff. Inputs from Receive Cable
QR/QR	ECL Buffered Differential Outputs from Receive Cable
DT/DT	ECL Differential Input to Transmit Cable
QT/QT	ECL Buffered Differential Output to Transmit Cable
SEL	TTL Multiplexer Control Signal
V_{BB}	Reference Voltage Output
V_{CC}	ECL Positive Supply
V_{EE}	ECL Negative, 0 Supply

TRUTH TABLE

SEL	Function
L	DR QT
H	DT QT

ORDERING INFORMATION

Device	Package	Shipping
MC10SX1190DT	TSSOP-20	75 Units/Rail

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V_{CC}	Power Supply Voltage ($\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$)	0 to +6.0	Vdc
$\mathrm{V}_{\text {EE }}$	Power Supply Voltage ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)	-6.0 to 0	Vdc
$\mathrm{V}_{\text {IN }}$	Input Voltage ($\mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}$ not more positive than V_{CC})	0 to +6.0	Vdc
VIN	Input Voltage ($\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}$ not more negative than V_{EE})	-6.0 to 0	Vdc
IOUT	Output CurrentContinuous Surge	$\begin{gathered} 50 \\ 100 \end{gathered}$	mA
$\theta \mathrm{JA}$	$\begin{array}{lr}\text { Thermal Resistance (Junction-to-Ambient) } & \text { Still Air } \\ & 500 \text { LFPM }\end{array}$	$\begin{aligned} & \hline 90 \\ & 60 \end{aligned}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$
ӨJC	Thermal Resistance (Junction-to-Case)	30 to 35	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{T}_{\text {A }}$	Operating Temperature Range	-40 to +85	${ }^{\circ} \mathrm{C}$
TSTG	Storage Temperature Range	-50 to +150	${ }^{\circ} \mathrm{C}$

* Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

DC CHARACTERISTICS (Note 1)

Symbol	Characteristic	$-40^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$85^{\circ} \mathrm{C}$			Unit
		Min	Typ	Max										
V_{OH}	Output Voltage High (QR, QR) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}($ Notes 2,3 $)$		4.01			4.04			4.06			4.16		V
V_{OL}	Output Voltage Low (QR, $\overline{\mathrm{QR}}$) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \text { (Notes 2,3) }$		3.23			3.26			3.28			3.33		V
V_{OH}	Output Voltage High (QT,QT) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \text { (Notes 2,4) }$		3.94			3.98			4.04			4.13		V
V_{OL}	Output Voltage Low (QT, $\overline{\mathrm{QT}}$) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \text { (Notes 2,4) }$		2.51			2.49			2.48			2.47		V
${ }^{\text {ICC }}$	Quiescent Supply Current (Note 5)								55					mA
V_{IH}	Input Voltage High (DR, $\overline{\mathrm{DR}} \& \mathrm{DT}, \overline{\mathrm{DT}}$) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 2)	3.77		4.11	3.83		4.16	3.87		4.19	3.94		4.28	V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low (DR, $\overline{\mathrm{DR}} \& \mathrm{DT}, \overline{\mathrm{DT}}$) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ (Note 2)	3.05		3.50	3.05		3.52	3.05		3.52	3.05		3.56	V
V_{IH}	Input Voltage High SEL (Note 6)	2.0			2.0			2.0			2.0			V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low SEL (Note 6)			0.8			0.8			0.8			0.8	V
V_{BB}	Output Reference Voltage $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \text { (Note 2) }$	3.57	3.63	3.70	3.62	3.67	3.73	3.65	3.70	3.75	3.69	3.75	3.81	V

1. 10SX circuits are designed to meet the DC specifications shown in the table after thermal equilibrium has been established. The circuit is mounted in a test socket or mounted on a printed circuit board and transverse air greater than 500lfm is maintained.
2. Values will track $1: 1$ with the $V_{C C}$ supply.
3. Outputs loaded with 50Ω to +3.0 V
4. Outputs loaded with 50Ω to +2.0 V
5. Outputs open circuited.
6. TTL signal threshold is 1.5 V above V_{EE}.

AC CHARACTERISTICS (Note $1 \& 7$)

1. 10SX circuits are designed to meet the AC specifications shown in the table after thermal equilibrium has been established. The circuit is mounted in a test socket or mounted on a printed circuit board and transverse air greater than 500lfm is maintained.
2. The differential propagation delay is defined as the delay from the crossing points of the differential input signals to the crossing point of the differential output signals.
3. The single-ended propagation delay is defined as the delay from the 50% point of the input signal to the 50% point of the output signal.
4. Duty cycle skew is the difference between $\mathrm{t}_{\mathrm{PLH}}$ and $\mathrm{tPHL}^{\text {. propagation delay through a device. }}$
5. Minimum input swing for which AC parameters are guaranteed.
6. The CMR range is referenced to the most positive side of the differential input signal. Normal operation is obtained if the HIGH level falls within the specified range and the peak-to-peak voltage lies between VPP Min and 1.0V.
7. Data taken at V_{CC}, nom $=3.3 \mathrm{~V}$.

MC10SX1190

Typical value for $R_{p d}$ is 160Ω to 260Ω, depending on the application. The minimum value of $R_{p d}$ should not be less than 50Ω.

Figure 2. SX1190 Termination Configuration

MC10SX1190

PACKAGE DIMENSIONS

DT SUFFIX

PLASTIC PACKAGE
CASE 948E-02
ISSUE A

Notes

Notes

MC10SX1190

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada
Email: ONlit@hibbertco.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support
German Phone: 303-308-7140 (Mon-Fri 2:30pm to 5:00pm Munich Time)
German Email: ONlit-german@hibbertco.com
French Phone: 303-308-7141 (Mon-Fri 2:30pm to 5:00pm Toulouse Time)
French Email: ONlit-french@hibbertco.com
English Phone: 303-308-7142 (Mon-Fri 1:30pm to 5:00pm UK Time)
English Email: ONlit@hibbertco.com

ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support
Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800-4422-3781
Email: ONlit-asia@hibbertco.com
JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-8549
Phone: 81-3-5487-8345
Email: r14153@onsemi.com
Fax Response Line: 303-675-2167
800-344-3810 Toll Free USA/Canada
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local Sales Representative.

