MM54HC192/MM74HC192

Synchronous Decade Up/Down Counters MM54HC193/MM74HC193 Synchronous Binary Up/Down Counters

General Description

These high speed synchronous counters utilize advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of CMOS technology, along with the speeds of low power Schottky TTL. The MM54HC192/MM74HC192 is a decade counter, and the MM54HC193/MM74HC193 is a binary counter. Both counters have two separate clock inputs, an UP COUNT input and a DOWN COUNT input. All outputs of the flip-flops are simultaneously triggered on the low to high transition of either clock while the other input is held high. The direction of counting is determined by which input is clocked.
These counters may be preset by entering the desired data on the DATA A, DATA B, DATA C, and DATA D inputs. When the LOAD input is taken low the data is loaded independently of either clock input. This feature allows the counters to be used as divide-by-n counters by modifying the count length with the preset inputs.
In addition both counters can also be cleared. This is accomplished by inputting a high on the CLEAR input. All 4 internal stages are set to a low level independently of either COUNT input.

Both a BORROW and CARRY output are provided to enable cascading of both up and down counting functions. The BORROW output produces a negative going pulse when the counter underflows and the CARRY outputs a pulse when the counter overflows. The counters can be cascaded by connecting the CARRY and BORROW outputs of one device to the COUNT UP and COUNT DOWN inputs, respectively, of the next device.
All inputs are protected from damage due to static discharge by diodes to V_{CC} and ground.

Features

- Typical propagation delay,

Count up to Q: 28 ns

- Typical operating frequency: 27 MHz
- Wide power supply range: 2-6V
- Low quiescent supply current: $80 \mu \mathrm{~A}$ maximum (74HC Series)
- Low input current: $1 \mu \mathrm{~A}$ maximum
- 4 mA output drive

Truth Table

Count		Clear	Load	Function
Up	Down			
\uparrow	H	L	H	Count Up
H	\uparrow	L	H	Count Down
X	X	H	X	Clear
X	X	L	L	Load

$H=$ high level
$L=$ low level
$\uparrow=$ transition from low-to-high
X $=$ don't care

Absolute Maximum Ratings (Notes 1 \& 2)	
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales	
Supply Voltage (V_{CC})	-0.5 to +7.0 V
DC Input Voltage ($\mathrm{V}_{\text {IN }}$)	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5 \mathrm{~V}$
DC Output Voltage (VOUT)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Clamp Diode Current ($\mathrm{I}_{\text {K, }}$, IOK)	$\pm 20 \mathrm{~mA}$
DC Output Current, per pin (lout)	$\pm 25 \mathrm{~mA}$
DC $\mathrm{V}_{\text {CC }}$ or GND Current, per pin (lcC)	$\pm 50 \mathrm{~mA}$
Storage Temperature Range ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation (PD)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temp. (T_{L}) (Soldering 10 seconds)) $\quad 260^{\circ} \mathrm{C}$

Operating Conditions

	Min	Max	Units
Supply Voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$	2	6	V
DC Input or Output Voltage	0	$\mathrm{~V}_{\mathrm{CC}}$	V
$\left(\mathrm{V}_{\text {IN }}, \mathrm{V}_{\mathrm{OUT}}\right)$			
Operating Temp. Range $\left(\mathrm{T}_{\mathrm{A}}\right)$			
MM74HC	-40	+85	${ }^{\circ} \mathrm{C}$
MM54HC	-55	+125	${ }^{\circ} \mathrm{C}$
Input Rise or Fall Times			
$\left(\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}\right) \quad \mathrm{V}_{\mathrm{CC}}=2 \mathrm{~V}$		1000	ns
$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$		500	ns
$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$		400	ns

DC Electrical Characteristics (Note 4)

Symbol	Parameter	Conditions	Vcc	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ	Guaranteed Limits			
V_{IH}	Minimum High Level Input Voltage		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage**		$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{gathered} 0.5 \\ 1.35 \\ 1.8 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
V_{OH}	Minimum High Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \|\mathrm{IOUT}\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA} \\ & \left\|\left.\right\|_{\text {IOUT }}\right\| \leq 5.2 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.2 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
V_{OL}	Maximum Low Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \|\mathrm{IOUT}\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 4.0 \mathrm{~mA} \\ & \|\mathrm{IOUT}\| \leq 5.2 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{aligned} & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.2 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
IN	Maximum Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	6.0 V		± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
ICC	Maximum Quiescent Supply Current	$\begin{aligned} & \mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0 V		8.0	80	160	$\mu \mathrm{A}$

Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.
Note 2: Unless otherwise specified all voltages are referenced to ground.
Note 3: Power Dissipation temperature derating - plastic " N " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$; ceramic " J " package: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $100^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
Note 4: For a power supply of $5 \mathrm{~V} \pm 10 \%$ the worst case output voltages (V_{OH}, and V_{OL}) occur for HC at 4.5 V . Thus the 4.5 V values should be used when designing with this supply. Worst case $\mathrm{V}_{I H}$ and $\mathrm{V}_{I L}$ occur at $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ and 4.5 V respectively. (The $\mathrm{V}_{I H}$ value at 5.5 V is 3.85 V .) The worst case leakage current (I I_{N}, I_{CC}, and I_{OZ}) occur for CMOS at the higher voltage and so the 6.0 V values should be used.
${ }^{* *} \mathrm{~V}_{\mathrm{IL}}$ limits are currently tested at 20% of V_{CC}. The above V_{IL} specification (30% of V_{CC}) will be implemented no later than $\mathrm{Q} 1, \mathrm{CY}{ }^{\prime} 89$.

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\boldsymbol{f}}=6 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ (unless otherwise specified)

Symbol	Parameter	Conditions		Typ	Guaranteed Limit	Units
$f_{\text {MAX }}$	Maximum Clock Frequency	Count		27	20	MHz
		Count		31	24	MHz
$t_{\text {tPLH }}$	Maximum Propagation Delay Low to High	Count Up to Carry		17	26	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay High to Low			18	24	ns
$t_{\text {PLH }}$	Maximum Propagation Delay Low to High	Count Down to Borrow		16	24	ns
$t_{\text {PHL }}$	Maximum Propagation Delay High to Low			15	24	ns
$t_{\text {PLH }}$	Maximum Propagation Delay Low to High	Count Up Or Down to Q		28	40	ns
${ }_{\text {t }}^{\text {PHL }}$	Maximum Propagation Delay High to Low			36	52	ns
${ }_{\text {tPLH }}$	Maximum Propagation Delay Low to High	Data or Load to Q		30	42	ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay High to Low			40	55	ns
${ }^{\text {t }}$ PHL	Maximum Propagation Delay High to Low	Clear		35	47	ns
tw	Minimum Pulse Width	Clear	$\begin{aligned} & \text { 'HC192 } \\ & \text { 'HC193 } \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \end{aligned}$	$\begin{aligned} & 52 \\ & 26 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
		Load	$\begin{aligned} & \text { 'HC192 } \\ & \text { 'HC193 } \end{aligned}$	$\begin{aligned} & 40 \\ & 10 \end{aligned}$	$\begin{aligned} & 52 \\ & 20 \end{aligned}$	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$
		Count Up/Down		15	22	ns
$t_{\text {SD }}$	Minimum Setup time	Data to Load		10	20	ns
$t_{H D}$	Minimum Hold Time			-3	0	ns
$t_{\text {REM }}$	Minimum Removal Time	Clear $\text { to } \mathrm{Clo}$			10	ns

AC Electrical Characteristics $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Symbol	Parameter	Conditions	V_{Cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Units
				Typ		Guaranteed	Limits	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	Count Up	$\begin{array}{\|l} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} 5 \\ 25 \\ 29 \\ \hline \end{gathered}$	$\begin{gathered} 3 \\ 18 \\ 20 \\ \hline \end{gathered}$	$\begin{array}{r} 2.5 \\ 14 \\ 16 \\ \hline \end{array}$	$\begin{gathered} 2 \\ 12 \\ 13 \\ \hline \end{gathered}$	MHz MHz MHz
		Count Down	$\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5 \\ 27 \\ 31 \end{gathered}$	$\begin{gathered} 4 \\ 20 \\ 23 \end{gathered}$	$\begin{gathered} 3 \\ 16 \\ 18 \end{gathered}$	$\begin{gathered} 2 \\ 11 \\ 12 \end{gathered}$	$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \mathrm{MHz} \\ & \hline \end{aligned}$
$\mathrm{t}_{\text {PLH }}$	Maximum Propagation Delay Low to High	Count Up to Carry	$\begin{array}{\|l} \hline 2.0 \mathrm{~V} \\ 4.5 \mathrm{~V} \\ 6.0 \mathrm{~V} \\ \hline \end{array}$	$\begin{aligned} & 30 \\ & 13 \\ & 11 \\ & \hline \end{aligned}$	$\begin{gathered} 140 \\ 28 \\ 24 \\ \hline \end{gathered}$	$\begin{gathered} 175 \\ 35 \\ 30 \\ \hline \end{gathered}$	$\begin{gathered} 210 \\ 42 \\ 36 \\ \hline \end{gathered}$	ns ns ns
$\mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay High to Low		$\begin{aligned} & \hline 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 39 \\ & 16 \\ & 14 \end{aligned}$	$\begin{gathered} 130 \\ 26 \\ 22 \end{gathered}$	$\begin{gathered} 163 \\ 33 \\ 28 \end{gathered}$	$\begin{gathered} 195 \\ 39 \\ 33 \end{gathered}$	ns ns ns

AC Electrical Characteristics (Continued) $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ to $6.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

Note 5: $C_{P D}$ determines the no load dynamic power consumption, $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$, and the no load dynamic current consumption, $I_{S}=C_{P D} V_{C C} f+I_{C C}$.

Logic Waveforms

Sequences:
(1) Clear outputs to zero
(2) Load (preset) to BCD seven.
(3) Count up to eight, nine, carry, zero, one and two.
(4) Count down to one, zero, borrow, nine, eight, and seven.

Sequence:
(1) Clear outputs to zero
(2) Load (preset) to binary thirteen
(3) Count up to fourteen, fifteen, carry, zero, one, and two.
(4) Count down to one, zero, borrow, fifteen, fourteen, and thirteen

Note A: Clear overrides load data, and count inputs.
Note B: When counting up, count-down input must be high; when counting down, count-up input must be high
MM54HC192/MM74HC192 Synchronous Decade Up/Down Counters
MM54HC193/MM74HC193 Synchronous Binary Up/Down Counters

Physical Dimensions inches (millimeters)

Order Number MM54HC192J, MM54HC193J, MM74HC192J or MM74HC193J
NS Package J16A

LIFE SUPPORT POLICY
NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018	National Semiconductor Europe Fax: (+49) 0-180-530 8586 Email: cnjwge@tevm2.nsc.com Deutsch Tel: $(+49)$ 0-180-530 8585 English Tel: (+49) 0-180-532 7832 Français Tel: $(+49)$ 0-180-532 9358 Italiano Tel: (+49) 0-180-534 1680	National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960	National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408

