


AC Electrical Characteristics $\mathrm{v}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$

| Symbol | Parameter | Conditions | Typ | Guaranteed <br> Limit | Units |
| :--- | :--- | :---: | :---: | :---: | :---: |
| $t_{\text {PHL }}, t_{\text {PLH }}$ | Maximum Propagation <br> Delay From C0 to $\Sigma 1$ or $\Sigma 2$ |  | 18 | 27 | ns |
| $t_{\text {PHL }}, t_{\text {PLH }}$ | Maximum Propagation <br> Delay From C0 to $\Sigma 3$ | 18 | 27 | ns |  |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | Maximum Propagation <br> Delay From C0 to $\Sigma 4$ |  | 20 | 30 | ns |
| $t_{\text {PHL }}, t_{\text {PLH }}$ | Maximum Propagation <br> Delay From A1 or B1 to $\Sigma 1$ |  | 17 | 26 | ns |
| $t_{\text {PHL }}, t_{\text {PLH }}$ | Maximum Propagation <br> Delay From C0 to C4 |  | 22 | 32 | ns |
| $t_{\text {PHL }}, t_{\text {PLH }}$ | Maximum Propagation <br> Delay From A1 or B1 to C4 |  | 22 | 32 | ns |

AC Electrical Characteristics $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6 \mathrm{~ns}$ (unless otherwise specified)

| Symbol | Parameter | Conditions | $\mathrm{V}_{\text {cc }}$ | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | $\begin{gathered} 74 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-40 \text { to } 85^{\circ} \mathrm{C} \end{gathered}$ | $\begin{gathered} 54 \mathrm{HC} \\ \mathrm{~T}_{\mathrm{A}}=-55 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$ | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Typ | Guaranteed Limits |  |  |  |
| $t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | Maximum Propagation Delay From C0 to $\Sigma 1$ or $\Sigma 2$ |  | $\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 60 \\ & 21 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{gathered} 150 \\ 30 \\ 26 \\ \hline \end{gathered}$ | $\begin{gathered} 188 \\ 37 \\ 32 \\ \hline \end{gathered}$ | $\begin{gathered} 225 \\ 45 \\ 39 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $t_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | Maximum Propagation Delay From C0 to $\Sigma 3$ |  | $\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 60 \\ & 21 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{gathered} 150 \\ 30 \\ 26 \\ \hline \end{gathered}$ | $\begin{gathered} 188 \\ 37 \\ 32 \\ \hline \end{gathered}$ | $\begin{gathered} 225 \\ 45 \\ 39 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | Maximum Propagation Delay From C0 to $\Sigma 4$ |  | $\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 65 \\ & 24 \\ & 19 \\ & \hline \end{aligned}$ | $\begin{gathered} 162 \\ 34 \\ 28 \\ \hline \end{gathered}$ | $\begin{gathered} 202 \\ 43 \\ 35 \\ \hline \end{gathered}$ | $\begin{gathered} 243 \\ 51 \\ 42 \\ \hline \end{gathered}$ | $\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$ |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | Maximum Propagation <br> Delay From A1 or B1 to $\Sigma 1$ |  | $\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \\ & \hline \end{aligned}$ | $\begin{aligned} & 60 \\ & 22 \\ & 18 \\ & \hline \end{aligned}$ | $\begin{gathered} 150 \\ 33 \\ 27 \\ \hline \end{gathered}$ | $\begin{gathered} 188 \\ 41 \\ 34 \\ \hline \end{gathered}$ | $\begin{gathered} 225 \\ 50 \\ 41 \\ \hline \end{gathered}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| ${ }_{\text {t }}{ }_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | Maximum Propagation Delay From C0 to C4 |  | $\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 70 \\ & 26 \\ & 21 \end{aligned}$ | $\begin{gathered} 175 \\ 39 \\ 32 \end{gathered}$ | $\begin{gathered} 219 \\ 49 \\ 40 \end{gathered}$ | $\begin{gathered} 263 \\ 59 \\ 46 \end{gathered}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$ ns |
| $t_{\text {PHL }}$, tPLH | Maximum Propagation Delay From A1 or B1 to C4 |  | $\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 70 \\ & 26 \\ & 21 \end{aligned}$ | $\begin{aligned} & 175 \\ & 39 \\ & 32 \end{aligned}$ | $\begin{gathered} 219 \\ 49 \\ 40 \end{gathered}$ | $\begin{gathered} 263 \\ 59 \\ 46 \end{gathered}$ | ns <br> ns <br> ns |
| ${ }_{\text {t }}^{\text {THL }}$, $\mathrm{t}_{\text {TLH }}$ | Maximum Output Rise and Fall Time |  | $\begin{aligned} & 2.0 \mathrm{~V} \\ & 4.5 \mathrm{~V} \\ & 6.0 \mathrm{~V} \end{aligned}$ | $\begin{gathered} 28 \\ 8 \\ 7 \end{gathered}$ | $\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$ | $\begin{aligned} & 95 \\ & 19 \\ & 16 \end{aligned}$ | $\begin{gathered} 110 \\ 22 \\ 19 \end{gathered}$ | $\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \\ & \mathrm{~ns} \end{aligned}$ |
| $\mathrm{C}_{\text {IN }}$ | Maximum Input Capacitance |  |  | 6 | 10 | 10 | 10 | pF |
| CPD | Power Dissipation Capacitance (Note 5) |  |  | 150 |  |  |  | pF |

Note 5: $C_{P D}$ determines the no load dynamic power consumption, $P_{D}=C_{P D} V_{C C}{ }^{2} f+I_{C C} V_{C C}$, and the no load dynamic current consumption,
$I_{S}=C_{P D} V_{C C} f+I_{C C}$.

## Truth Table

| Input |  |  |  |  |  |  | Output |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  | When$\mathbf{C O}=\mathbf{L}$ |  |  |  |  |  | $\begin{aligned} & \text { When } \\ & \mathrm{CO}=\mathrm{H} \end{aligned}$ |  |  |  |  |  |
|  |  |  |  |  |  |  | When$\mathbf{C} 2=\mathbf{L}$ |  |  |  |  |  | When$\mathrm{C} 2=\mathrm{H}$ |  |  |  |  |  |
| A1 ${ }^{\text {A }}$ A | B1 | B3 | A2 | A4 | B2 | B4 | $\Sigma 1$ | $\Sigma 3$ | $\Sigma 2$ | S4 | C2 | C4 | $\Sigma 1$ | $\Sigma 3$ | $\Sigma 2$ | $\Sigma 4$ | C2 | C4 |
| L | L |  | L | L | L |  | L |  |  | L |  | L | H |  | L |  |  |  |
| H | L |  | L | L | L | L | H |  |  | L |  | L | L | L | H |  |  |  |
| L | H |  | L | L | L | , | H |  |  | L |  | L | L | L | H |  |  |  |
| H | H |  | L | L | L | L | L |  |  | H |  | L | H | H | H |  | L |  |
| L | L |  | H | H | L | L | L |  |  | H |  | L | H | H | H |  |  |  |
| H | L |  | H | H | L | L | H |  |  | H |  | L | L | L | L |  |  |  |
| L | H |  | H | H | , | , | H |  |  | H |  | L | L |  | L |  | H |  |
| H | H |  | H | H |  |  | L |  |  | L |  | H | H | H | L |  | H |  |
| L | L |  | L | L | H | H | L |  |  | H |  | L | H | H | H |  | L |  |
| H | L |  | L | L | H |  | H |  |  | H |  | L | L | L | L |  |  |  |
| L | H |  |  | L | H |  | H |  |  | H |  | L | L | L | L |  |  |  |
| H | H |  |  | L | H | H | L |  |  | L |  | H | H | H | L |  |  |  |
| L | L |  |  | H | H |  | L |  |  | L |  | H | H | H | L |  |  |  |
| H | L |  |  | H | H | H | H |  |  | L |  | H | L | L | H |  |  |  |
| L | H |  | H | H | H |  | H |  |  | L |  | H | L | L | H |  |  |  |
| H | H |  |  | H | H |  | L |  |  | H |  | H |  | H | H |  |  |  |

$H=$ high level, $L=$ low level
Note: Input conditions at A1, B1, A2, B2, and C0 are used to determine outputs $\Sigma 1$ and $\Sigma 2$ and the value of the
internal carry C 2 . The values at $\mathrm{C} 2, \mathrm{~A} 3, \mathrm{~B} 3, \mathrm{~A} 4$, and B 4 are then used to determine outputs $\Sigma 3, \Sigma 4$, and C 4


Physical Dimensions inches (millimeters)


## LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT devices or systems without the express written approval of the president of national SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

| National Semiconductor Corporation <br> 1111 West Bardin Road Arlington, TX 76017 <br> Tel: 1(800) 272-9959 <br> Fax: 1(800) 737-7018 | National Semiconductor <br> Europe <br> Fax: (+49) 0-180-530 8586 <br> Email: cnjwge@tevm2.nsc.com <br> Deutsch Tel: (+49) 0-180-530 8585 <br> English Tel: (+49) 0-180-532 7832 <br> Français Tel: $(+49)$ 0-180-532 9358 <br> Italiano Tel: $(+49)$ 0-180-534 1680 | National Semiconductor Hong Kong Ltd. <br> 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong <br> Tel: (852) 2737-1600 <br> Fax: (852) 2736-9960 | National Semiconductor Japan Ltd. <br> Tel: 81-043-299-2309 <br> Fax: 81-043-299-2408 |
| :---: | :---: | :---: | :---: |

