Features

- Internal control latches and address decoder
- Short set-up and hold times
- Wide operating voltage: 4.5 V to 13.2 V
- 12Vpp analog signal capability
- $R_{\mathrm{ON}} 65 \Omega$ max. @ $\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, 25^{\circ} \mathrm{C}$
- $\Delta \mathrm{R}_{\mathrm{ON}} \leq 10 \Omega @ \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}, 25^{\circ} \mathrm{C}$
- Full CMOS switch for low distortion
- Minimum feedthrough and crosstalk
- Separate analog and digital reference supplies
- Low power consumption ISO-CMOS technology

Applications

- Key systems
- PBX systems
- Mobile radio
- Test equipment /instrumentation
- Analog/digital multiplexers
- Audio/Video switching

ISSUE 1
November 1988

```
    Ordering Information
    MT8815AC 40 Pin Ceramic DIP
    MT8815AE 40 Pin Plastic DIP
MT8815AP 44 Pin PLCC
    -40}\mp@subsup{}{}{\circ}\mathrm{ to }8\mp@subsup{5}{}{\circ}\textrm{C
```


Description

The Mitel MT8815 is fabricated in MITEL's ISOCMOS technology providing low power dissipation and high reliability. The device contains a 8×12 array of crosspoint switches along with a 7 to 96 line decoder and latch circuits. Any one of the 96 switches can be addressed by selecting the appropriate seven address bits. The selected switch can be turned on or off by applying a logical one or zero to the DATA input. V_{SS} is the ground reference of the digital inputs. The range of the analog signal is from V_{DD} to V_{EE}.

Figure 1 - Functional Block Diagram

Figure 2 - Pin Connections

Pin Description

Pin \#*	Name	Description
1	Y3	Y3 Analog (Input/Output): this is connected to the Y3 column of the switch array.
2	AY2	Y2 Address Line (Input).
3	RESET	Master RESET (Input): this is used to turn off all switches. Active High.
4,5	AX3,AX0	X3 and X0 Address Lines (Inputs): these are used to select X3 and X0 rows of switches.
6,7	NC	No Connection.
8-13	X6-X11	X6-X11 Analog (Inputs/Outputs): these are connected to the X6-X11 rows of the switch array.
14	NC	No Connection
15	Y7	Y7 Analog (Input/Output): this is connected to the Y7 column of the switch array.
16	$\mathrm{V}_{S S}$	Digital Ground Reference (Input).
17	Y6	Y6 Analog (Input/Output): this is connected to the Y6 column of the switch array.
18	STROBE	STROBE (Input): enables function selected by address and data. Address must be stable before STROBE goes high and DATA must be stable on the falling edge of the STROBE. Active High.
19	Y5	Y5 Analog (Input/Output): this is connected to the Y5 column of the switch array.
20	$\mathrm{V}_{\text {EE }}$	Negative Power Supply.
21	Y4	Y4 Analog (Input/Output): this is connected to the Y4 column of the switch array.
22, 23	AX1,AX2	X1 and X2 Address Lines (Inputs).
24, 25	AY0,AY1	Y0 and Y1 Address Lines (Inputs).
26, 27	NC	No Connection.
28-33	X5-X0	X5-X0 Analog (Inputs/Outputs): these are connected to the X5-X0 rows of the switch array.
34	NC	No Connection.
35	Y0	Y0 Analog (Input/Output): this is connected to the Y0 column of the switch array.
36	V_{DD}	Positive Power Supply.
37	Y1	Y1 Analog (Input/Output): this is connected to the Y1 column of the switch array.
38	DATA	DATA (Input): a logic high input will turn on the selected switch and a logic low will turn off the selected switch. Active High.
39	Y2	Y2 Analog (Input/Output): this is connected to the Y2 column of the switch array.
40	NC	No Connection.

[^0]
Functional Description

The MT8815 is an analog switch matrix with an array size of 8×12. The switch array is arranged such that there are 8 columns by 12 rows. The columns are referred to as the Y inputs/outputs and the rows are the X inputs/outputs. The crosspoint analog switch array will interconnect any X I/O with any Y I/O when turned on and provide a high degree of isolation when turned off. The control memory consists of a 96 bit write only RAM in which the bits are selected by the address inputs (AYO-AY2, AXO-AX3). Data is presented to the memory on the DATA input. Data is asynchronously written into memory whenever the STROBE input is high and is latched on the falling edge of STROBE. A logical "1" written into a memory cell turns the corresponding crosspoint switch on and a logical "0" turns the crosspoint off. Only the crosspoint switches corresponding to the addressed memory location are altered when data is written into memory. The remaining switches retain their previous states. Any combination of X and Y inputs/outputs can be interconnected by establishing appropriate patterns in the control memory. A logical " 1 " on the RESET input will asynchronously return all memory locations to logical " 0 " turning off all crosspoint switches. Two voltage reference pins (V_{SS} and V_{EE}) are provided for the MT8815 to enable switching of negative analog signals. The range for digital signals is from $V_{D D}$ to $V_{S S}$ while the range for analog signals is from $V_{D D}$ to $V_{E E}$. $V_{S S}$ and V_{EE} pins can be tied together if a single voltage reference is needed.

Address Decode

The seven address inputs along with the STROBE are logically ANDed to form an enable signal for the resettable transparent latches. The DATA input is buffered and is used as the input to all latches. To write to a location, RESET must be low while the address and data are set up. Then the STROBE input is set high and then low causing the data to be latched. The data can be changed while STROBE is high, however, the corresponding switch will turn on and off in accordance with the DATA input. DATA must be stable on the falling edge of STROBE in order for correct data to be written to the latch.

Absolute Maximum Ratings*- Voltages are with respect to $\mathrm{V}_{\text {EE }}$ unless otherwise stated.

	Parameter	Symbol	Min	Max	Units
1	Supply Voltage	V_{DD}	-0.3	15.0	V
		$\mathrm{~V}_{\mathrm{SS}}$	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
2	Analog Input Voltage	$\mathrm{V}_{\mathrm{INA}}$	-0.3	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
3	Digital Input Voltage	V_{IN}	$\mathrm{V}_{\mathrm{SS}}-0.3$	$\mathrm{~V}_{\mathrm{DD}}+0.3$	V
4	Current on any I/O Pin	I		± 15	mA
5	Storage Temperature		T_{S}	-65	+150
${ }^{\circ} \mathrm{C}$					
6	Package Power Dissipation	PLASTIC DIP	P_{D}		0.6
		CERDIP	W		
				1.0	W

* Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions - Voltages are with respect to $\mathrm{V}_{\text {EE }}$ unless otherwise stated.

	Characteristics	Sym	Min	Typ	Max	Units	Test Conditions
1	Operating Temperature	T_{O}	-40	25	85	${ }^{\circ} \mathrm{C}$	
2	Supply Voltage	V_{DD}	4.5		13.2	$\mathrm{~V}^{2}$	
	Analog Input Voltage	V_{SS}	V_{EE}		$\mathrm{V}_{\mathrm{DD}}-4.5$	V	
4	Digital Input Voltage	V_{EE}		V_{DD}	V		

DC Electrical Characteristics ${ }^{\dagger}$. Voltages are with respect to $\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=12 \mathrm{~V}$ unless otherwise stated.

	Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
1	Quiescent Supply Current	I_{DD}		1	100	$\mu \mathrm{A}$	$\begin{aligned} & \text { All digital inputs at } \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}} \text { or } \\ & \mathrm{V}_{\mathrm{DD}} \end{aligned}$
				0.4	1.5	mA	All digital inputs at $\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V}+$ $\mathrm{V}_{\mathrm{SS}} ; \mathrm{V}_{\mathrm{SS}}=7.0 \mathrm{~V}$
				5	15	mA	All digital inputs at $\mathrm{V}_{1 \mathrm{~N}=3.4 \mathrm{~V}}$
2	Off-state Leakage Current (See G. 9 in Appendix)	Ioff		± 1	± 500	nA	$\begin{aligned} & I V_{X_{\mathrm{I}}} \mathrm{~V}_{\mathrm{Yj}} \mathrm{I}=\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {EE }} \\ & \text { See Appendi, Fig. A. A. } \end{aligned}$
3	Input Logic "0" level	V_{LL}			${ }^{0.8+\mathrm{V}_{\text {ss }}}$	v	$\mathrm{V}_{\mathrm{SS}}=7.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
4	Input Logic "1" level	V_{H}	${ }^{2.0+\mathrm{V}_{\mathrm{ss}}}$			v	$\mathrm{V}_{\mathrm{SS}}=6.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=0 \mathrm{~V}$
5	Input Logic "1" level	V_{H}	3.3			V	
6	Input Leakage (digital pins)	$\mathrm{I}_{\text {LEAK }}$		0.1	10	$\mu \mathrm{A}$	All digital inputs at $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{SS}}$ or $V_{D D}$

\dagger DC Electrical Characteristics are over recommended temperature range.
\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
DC Electrical Characteristics- Switch Resistance $-\mathrm{V}_{\mathrm{DC}}$ is the external DC offset applied at the analog $1 / 0$ pins.

	Characteristics	Sym	$25^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		Units	Test Conditions
			Typ	Max	Typ	Max	Typ	Max		
1	On-state $V_{D D}=12 \mathrm{~V}$ Resistance $\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$ $\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ (See G.1, G.2, G .3 in Appendix)	R_{ON}	$\begin{gathered} \hline 45 \\ 55 \\ 120 \end{gathered}$	$\begin{gathered} \hline 65 \\ 75 \\ 185 \end{gathered}$		$\begin{gathered} \hline 75 \\ 85 \\ 215 \end{gathered}$		$\begin{gathered} \hline 80 \\ 90 \\ 225 \end{gathered}$	$\begin{aligned} & \Omega \\ & \Omega \\ & \Omega \end{aligned}$	$V_{S S}=V_{E E}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{DD}} / 2,$ $\mathrm{IV}_{\mathrm{Xi}_{\mathrm{i}}}-\mathrm{V}_{\mathrm{Yj}} \mathrm{I}=0.4 \mathrm{~V}$ See Appendix, Fig. A. 2
2	Difference in on-state resistance between two switches (See G. 4 in Appendix)	$\Delta \mathrm{R}_{\text {ON }}$	5	10		10		10	Ω	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{EE}}=0, \\ & \mathrm{~V}_{\mathrm{DC}}=\mathrm{V}_{\mathrm{DD}} / 2, \\ & \mathrm{IV}_{\mathrm{Xi}} \mathrm{~V}_{\mathrm{Y}} \mathrm{I}=0.4 \mathrm{~V}= \\ & \text { See Appendix, Fig. A. } 2 \end{aligned}$

AC Electrical Characteristics ${ }^{\dagger}$ - Crosspoint Performance- Voltages are with respect to $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{v}_{\mathrm{SS}}=0 \mathrm{~V}$, $\mathrm{V}_{\mathrm{EE}}=-7 \mathrm{~V}$, unless otherwise stated.

	Characteristics	Sym	Min	Typ ${ }^{\ddagger}$	Max	Units	Test Conditions
1	Switch I/O Capacitance	C_{S}		20		pF	$\mathrm{f}=1 \mathrm{MHz}$
2	Feedthrough Capacitance	C_{F}		0.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
3	Frequency Response Channel "ON" $20 \mathrm{LOG}\left(\mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\mathrm{Xi}}\right)=-3 \mathrm{~dB}$	$\mathrm{F}_{3 \mathrm{~dB}}$		45		MHz	Switch is "ON"; $\mathrm{V}_{\text {INA }}=2 \mathrm{Vpp}$ sinewave; $R_{L}=1 k \Omega$ See Appendix, Fig. A. 3
4	Total Harmonic Distortion (See G.5, G. 6 in Appendix)	THD		0.01		\%	Switch is "ON"; $\mathrm{V}_{\text {INA }}=2 \mathrm{Vpp}$ sinewave $f=1 \mathrm{kHz} ; R_{L}=1 \mathrm{k} \Omega$
5	```Feedthrough Channel "OFF" Feed.=20LOG (V VOUT}/\mp@subsup{V}{\textrm{Xi}}{} (See G.8 in Appendix)```	FDT		-95		dB	All Switches "OFF"; $\mathrm{V}_{\text {INA }}=$ 2Vpp sinewave $f=1 \mathrm{kHz}$; $R_{L}=1 \mathrm{k} \Omega$. See Appendix, Fig. A. 4
6	Crosstalk between any two channels for switches Xi-Yi and Xj-Yj. $\text { Xtalk=20LOG }\left(\mathrm{V}_{\mathrm{Y}_{\mathrm{j}}} / \mathrm{V}_{\mathrm{Xi}}\right) .$ (See G. 7 in Appendix).	$\mathrm{X}_{\text {talk }}$		-45		dB	$\mathrm{V}_{\text {INA }}=2 \mathrm{Vpp}$ sinewave $\mathrm{f}=10 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=75 \Omega$
				-90		dB	$\mathrm{V}_{\text {INA }}=2 \mathrm{Vpp}$ sinewave $\mathrm{f}=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=600 \Omega$
				-85		dB	$\mathrm{V}_{\text {INA }}=2 \mathrm{Vpp}$ sinewave $f=10 \mathrm{kHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega .$
				-80		dB	$\begin{aligned} & V_{\text {INA }}=2 \mathrm{Vpp} \text { sinewave } \\ & f=1 \mathrm{kHz} ; R_{\mathrm{L}}=10 \mathrm{k} \Omega . \end{aligned}$ Refer to Appendix, Fig. A. 5 for test circuit.
7	Propagation delay through switch	$t_{P S}$			30	ns	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$

\dagger Timing is over recommended temperature range. See Fig. 3 for control and I/O timing details.
\ddagger Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
Crosstalk measurements are for Plastic DIPS only, crosstalk values for PLCC packages are approximately 5dB better.
AC Electrical Characteristics ${ }^{\dagger}$ - Control and I/O Timings- Voltages are with respect to $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{VV}$,
$\mathrm{V}_{\mathrm{EE}}=-7 \mathrm{~V}$, unless otherwise stated.

| | Characteristics | Sym | Min | Typ ‡ | Max | Units | Test Conditions |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :--- | :--- |$|$| Control Input crosstalk to switch |
| :--- |
| (for DATA, STROBE, Address) | $\mathrm{CX}_{\text {talk }}$

\dagger Timing is over recommended temperature range. See Fig. 3 for control and I/O timing details.
Digital Input rise time (tr) and fall time (ff) $=5 \mathrm{~ns}$.
$\ddagger_{(1)}$ Typical figures are at $25^{\circ} \mathrm{C}$ and are for design aid only; not guaranteed and not subject to production testing.
Refer to Appendix, Fig. A. 7 for test circuit.

Figure 3 - Control Memory Timing Diagram
See Appendix, Fig. A. 7 for switching waveform

AX0	AX1	AX2	AX3	AYO	AY1	AY2	Connection
0	0	0	0	0	0	0	X0-Y0
1	0	0	0	0	0	0	X1-Y0
0	1	0	0	0	0	0	X2-Y0
1	1	0	0	0	0	0	X3-Y0
0	0	1	0	0	0	0	X4-Y0
1	0	1	0	0	0	0	X5-Y0
0	1	1	0	0	0	0	No Connection ${ }_{(1)}^{1}$
1	1	1	0	0	0	0	No Connection ${ }^{(1)}$
0	0	0	1	0	0	0	X6-Y0
1	0	0	1	0	0	0	X7-Y0
0	1	0	1	0	0	0	X8-Y0
1	1	0	1	0	0	0	X9-Y0
0	0	1	1	0	0	0	X10-Y0
1	0	1	1	0	0	0	$\mathrm{X} 11-\mathrm{Yo}$
0	1	1	1	0	0	0	No Connection
1	1	1	1	0	0	0	No Connection
0	\downarrow	\downarrow	0	\downarrow	\downarrow	$\stackrel{\downarrow}{\downarrow}$	XO-Y1
1	0	1	1	1	0	0	$\mathrm{X} 11-\mathrm{Y} 1$
\bigcirc	\bigcirc	\downarrow	\bigcirc	$\begin{aligned} & 0 \\ & \downarrow \end{aligned}$	\downarrow	$\begin{aligned} & 0 \\ & \downarrow \end{aligned}$	XO-Y2
1	0	1	1	0	1	0	X11-Y2
0	\bigcirc	\bigcirc	$\stackrel{1}{\downarrow}$	$\stackrel{1}{\downarrow}$	$\stackrel{1}{\downarrow}$	$\stackrel{0}{\downarrow}$	XO-Y3
1	0	1	1	1	1	0	X11-Y3
0	0	\bigcirc	$\stackrel{1}{\downarrow}$	$\stackrel{0}{\downarrow}$	\bigcirc	$\stackrel{\downarrow}{\downarrow}$	X0-Y4
1	0	1	1	0	0	1	X11-Y4
0	\bigcirc	\bigcirc	0	\downarrow	0	\downarrow	X0-Y5
1	0	1	1	1	0	1	X11-Y5
0	0	\bigcirc	0	\bigcirc	\downarrow	\downarrow	XO-Y6
1	0	1	1	0	1	1	X11-Y6
0	0	\bigcirc	\bigcirc	$\stackrel{1}{\downarrow}$	\downarrow	\downarrow	XO-Y7
1	0	1	1	1	1	1	X11-Y7

Table 1. Address Decode Truth Table
${ }^{(1)}$ This address has no effect on device status.

[^0]: Plastic DIP and CERDIP only.

