MX26C1000A

1M-BIT [128K x 8] CMOS

 MULTIPLE-TIME-PROGRAMMABLE-EPROM
FEATURES

- 128 K x 8 organization
- +5 V operating power supply
- +12.75V program/erase voltage
- Electric erase instead of UV light erase
- Fast access time: 70/90/100/120/150 ns
- Totally static operation
- Completely TTL compatible

GENERAL DESCRIPTION

The MX26C1000A is a $12.75 \mathrm{~V} / 5 \mathrm{~V}$, 1 M -bit MTP EPROM ${ }^{\text {TM }}$ (Multiple Time Programmable Read Only Memory). It is organized as 128 K words by 8 bits per word, operates from a +5 volt supply, has a static standby mode, and features fast address location programming. It is designed to be reprogrammed and erased by an EPROM programmer or on-board. All programming/erasing signals are TTL levels, requiring a

PIN CONFIGURATIONS

PDIP/SOP

VPP \square	1		32		VCC
A16	2		31		PGM
A15	3		30		NC
A12	4		29		A14
A7 \square	5		28		A13
A6 \square	6	5	27		A8
A5 \square	7	\bigcirc	26		A9
A4 \square	8	O	25		A11
A3 \square	9	\bigcirc	24		$\overline{\mathrm{OE}}$
A2 \square	10	잧	23		A10
A1 \square	11	L	22		$\overline{C E}$
A0 \square	12		21		Q7
Q0 \square	13		20		Q6
Q1 \square	14		19		Q5
Q2 \square	15		18		Q4
GND \square	16		17		Q3

TSOP

- Operating current: 30 mA
- Standby current: 100uA
- 100 minimum erase/program cycles
- Package type:
- 32 pin PDIP
- 32 pin SOP
- 32 pin PLCC
- 32 pin TSOP(1)

single pulse. The MX26C1000A supports an intelligent quick pulse programming algorithm which can result in a programming time of less than 30 seconds.

This MTP EPROM ${ }^{\text {TM }}$ is packaged in industry standard 32 pin dual-in-line packages, 32 pinPLCC packages or 32 pin TSOP packages and 32 pin SOP packages.

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin $(+5 \mathrm{~V})$
GND	Ground Pin

FUNCTIONAL DESCRIPTION

When the MX26C1000A is delivered, or it is erased, the chip has all 1000K bits in the "ONE", or HIGH state. "ZEROs" are loaded into the MX26C1000 through the procedure of programming.

PROGRAMMING MODE PROGRAMMING ALGORITHM

The MX26C1000A is programmed by an EPROM programmer or on-board. The device is set up in the programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=5 \mathrm{~V}$ and $\mathrm{PGM}=\mathrm{VIH}$ (Algorithm shown in Figure 1). Programming is achieved by applying a single TTL low level 25 us pulse to the PGM input after addresses and data lines are stable. If the data is not verified, additional pulses are applied for a maximum of 20 pulses. After the data is verified, one 25us pulse is applied to overprogram the byte so that program margin is assured. This process is repeated while sequencing through each address of the device. When programming is completed, the data at all the address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

The VCC supply of the MXIC On-Board Programming Algorithm is designed to be $5 \mathrm{~V} \pm 10 \%$ particularly to faciliate the programming operation under the on-board application environment. But it can also be implemented in an industrial-standard EPROM programmer.

COMPATIBILITY WITH MX27C1000 FAST PROGRAMMING ALGORITHM

Besides the On-Board Programming Algorithm, the Fast Programming Algorithm of MX27C1000 also applies to MX26C1000A. MXIC Fast Algorithm is the conventional EPROM programming algorithm and is available in industrial-standard EPROM programmers. A user of industrial-standard EPROM programmer can choose either of the algorithms base on his preference.

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applted, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\overline{\mathrm{PGM}}=\mathrm{VIL}($ or $\overline{\mathrm{OE}}=\mathrm{VIH})($ Algorithm is shown in Figure 2). The programming is achieved by applying a single TTL low level 25~100us pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

ERASE MODE

The MX26C1000A is erased by an EPROM programmer or in-system. The device is set up in erase mode when the $\mathrm{A} 9=\mathrm{VPP}=12.75 \mathrm{~V}$ are applied, with $\mathrm{VCC}=5 \mathrm{~V}$ and $\overline{\mathrm{PGM}}=$ VIL.(Algorithm shown in Figure 3). Erase time is around 1 sec . If the erase is not verified, an additional erase processes will be repeated for a maximum of 200 times.

PROGRAM INHIBIT MODE

Programming of multiple MX26C1000s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for CE and OE, all like inputs of the parallel MX26C1000 may be common. A TTL low-level program pulse applied to an MX26C1000A $\overline{\mathrm{CE}}$ input with VPP $=12.75 \pm 0.25 \mathrm{~V}$ and $\overline{\mathrm{PGM}} \mathrm{LOW}$ will program that MX26C1000A. A high-level $\overline{C E}$ input inhibits the other MX26C1000A from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. Verification should be performed with $\overline{O E}$ and $\overline{C E}$, at VIL, $\overline{\text { PGM }}$ at VIH, and VPP at its programming voltage.

ERASE VERIFY MODE

Verification should be performed on the erased chip to determine that the whole chip(all bits) was correctly erased. Verification should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at VIL, $\overline{\mathrm{PGM}}$ at VIH , and $\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VPP}=12.5 \mathrm{~V}$

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an MTP that will identify its manufacturer and device type. This mode is intended for use by the programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX26C1000A.

To activate this mode, the programming equipment must force 12.75 V on address line A9 of the device. Two
identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{~A} 0=\mathrm{VIH})$, the device identifier code. For the MX26C1000A, these two identifier bytes are given in the Mode Select Table. All identifiers for the manufacturer and device codes will possess odd parity, with the MSB (DQ7) defined as the parity bit.

READ MODE

The MX26C1000A has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable ($\overline{\mathrm{CE}}$) is the power control and should be used for device selection. Output Enable $(\overline{\mathrm{OE}})$ is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from CE to output (tCE). Data is available at the outputs tOE after the falling edge of $\overline{\mathrm{OE}}$, assuming that $\overline{\mathrm{CE}}$ has been LOW and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The MX26C1000A has a CMOS standby mode which reduces the maximum VCC current to 100 uA . It is placed in CMOS standby when $\overline{\mathrm{CE}}$ is at $\mathrm{VCC} \pm 0.3 \mathrm{~V}$. The MX26C1000A also has a TTL-standby mode which reduces the maximum VCC current to 1.5 mA . It is placed in TTL-standby when CE is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\mathrm{OE}}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus.

This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 uF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between VCC and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 uF bulk electrolytic capacitor should be used between VCC and GND for each of the eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

MODE	PINS						
	$\overline{C E}$	$\overline{O E}$	$\overline{\text { PGM }}$	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	X	X	X	VCC	DOUT
Output Disable	VIL	VIH	X	X	X	VCC	High Z
Standby (TTL)	VIH	X	X	X	X	VCC	High Z
Standby (CMOS)	VCC	X	X	X	X	VCC	High Z
Program	VIL	VIH	VIL	X	X	VPP	DIN
Program Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Erase	VIL	VIH	VIL	X	VPP	VPP	HIGH Z
Erase Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Program Inhibit	VIH	X	X	X	X	VPP	High Z
Manufacturer Code	VIL	VIL	X	VIL	VH	VCC	C2H
Device Code(26C1000)	VIL	VIL	X	VIH	VH	VCC	D2H

NOTES: 1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL(For auto select)

FIGURE 1. PROGRAMMING FLOW CHART

FIGURE 2. COMPATIBILITY WITH MX27C1000 FAST PROGRAMMING FLOW CHART

FIGURE 3. ERASING MODE FLOW CHART

SWITCHING TEST CIRCUITS

$\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance(30pF for 70 ns parts)

SWITCHING TEST WAVEFORMS

AC TESTING: (1) Inputs are driven at 3.0 V for a logic "1" and 0 V for a logic " 0 ". Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.
(2) For MX26C1000A

M×26C1000A

ABSOLUTE MAXIMUM RATINGS

RATING	VALUE
Ambient Operating Temperature	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
A9 \& Vpp	-0.5 V to 13.5 V

NOTICE:
Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC CHARACTERISTICS $\quad \mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.4 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	uA	$\mathrm{VIN}=0$ to 5.5 V
ILO	Output Leakage Current	-10	10	uA	$\mathrm{VOUT}=0$ to 5.5 V
ICC3	VCC Power-Down Current		100	uA	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCC Standby Current		1.5	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	VCC Active Current	30	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \mathrm{f}=5 \mathrm{MHz}$, lout $=0 \mathrm{~mA}$	
IPP	VPP Supply Current Read	100	uA	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=5.5 \mathrm{~V}$	

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	8	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	VOUT $=0 \mathrm{~V}$
CVPP	VPP Capacitance	18	25	pF	VPP $=0 \mathrm{~V}$

M×26C1000A

AC CHARACTERISTICS $\quad \mathrm{TA}=0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}, \mathrm{VCC}=5 \mathrm{~V} \pm 10 \%$

SYMBOL	PARAMETER	$\begin{gathered} \hline 26 \mathrm{C} 1000 \mathrm{~A} \\ -70 \end{gathered}$		$\begin{gathered} \hline 26 \mathrm{C} 1000 \mathrm{~A} \\ -90 \end{gathered}$		UNIT	CONDITIONS
		MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		70		90	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		70		90	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		35		40	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{\mathrm{CE}}$ High to Output Float	0	20	0	25	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred firs	0		0		ns	

		$\begin{gathered} \text { 26C1000A } \\ -10 \end{gathered}$		$\begin{gathered} \text { 26C1000A } \\ -12 \end{gathered}$		$\begin{gathered} \hline 26 \mathrm{C} 1000 \mathrm{~A} \\ -15 \end{gathered}$		UNIT	CONDITIONS
SYMBOL	PARAMETER	MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
tACC	Address to Output Delay		100		120		150	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		100		120		150	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		45		50		65	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{\mathrm{CE}}$ High to Output Float	0	30	0	35	0	50	ns	
tOH	Output Hold from Address, $\overline{C E}$ or OE which ever occurred first	0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	$\mathrm{IOH}=-0.40 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	$\mathrm{IOL}=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	uA	$\mathrm{VIN}=0$ to 5.5 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program/Erase \& Verify)	50	mA		
IPP2	VPP Supply Current(Program)/Erase		50	mA	$\overline{\mathrm{CE}}=\overline{\text { PGM }=\mathrm{VIL},}$
		4.5	6.5	V	$\overline{\mathrm{OE}=\mathrm{VIH}}$
VCC2	Programming \& Erase Supply Voltage	12.5	13.0	V	
VPP2	Programming \& Erase Voltage	1	mA	$\overline{\mathrm{CE}}=\mathrm{PGM}=\mathrm{VIL}$,	
IPP A9	A9 Auto Select Current /Erase		$\overline{\mathrm{OE}=\mathrm{VIH}}$		

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
tAS	Address Setup Time	2.0		us	
tOES	$\overline{\text { OE Setup Time }}$	2.0		us	
tDS	Data Setup Time	2.0		us	
tAH	Address Hold Time	0		us	
tDH	Data Hold Time	2.0		us	
tDFP	$\overline{\mathrm{CE}}$ to Output Float Delay	0	130	ns	
tVPS	VPP Setup Time	2.0		us	
tPW	Program Pulse Width	20	105	us	
tVCS	VCC Setup Time	2.0		us	
tDV			250	ns	
tCES	$\overline{\text { CE S Setup Time }}$	2.0		us	
tOE	Data valid from $\overline{\mathrm{OE}}$		150	ns	
tER	Erase Recovery Time	0.5		S	
tPR	Program Recovery Time	2		us	
tEW	Erase Pulse Width	0.5		S	
tEV	Erase Verify Time		200	ns	
tPV	Program Verify Time		200	ns	
tA9S	A9 Setup Time	2.0		us	
tPVS	Program Verify Setup	2		us	
tEVS	Erase Verify Setup	0.5		S	

WAVEFORMS

READ CYCLE

PROGRAMMING WAVEFORMS

ERASE WAVEFORMS

ORDERING INFORMATION

PLASTIC PACKAGE

PART NO.	ACCESS TIME(ns)	OPERATING CURRENT MAX.(mA)	STANDBY CURRENT MAX.(uA)	PACKAGE
MX26C1000APC-70 70	30	100	32 Pin DIP	
MX26C1000AMC-70 70	30	100	32 Pin SOP	
MX26C1000AQC-70 70	30	100	32 Pin PLCC	
MX26C1000ATC-70 70	30	100	32 Pin TSOP	
MX26C1000APC-90 90	30	100	32 Pin DIP	
MX26C1000AMC-90 90	30	100	32 Pin SOP	
MX26C1000AQC-90 90	30	100	32 Pin PLCC	
MX26C1000ATC-90 90	30	100	32 Pin TSOP	
MX26C1000APC-10 100	30	100	32 Pin DIP	
MX26C1000AMC-10 100	30	100	32 Pin SOP	
MX26C1000AQC-10 100	30	100	32 Pin PLCC	
MX26C1000ATC-10 100	30	100	32 Pin TSOP	
MX26C1000APC-12 120	30	100	32 Pin DIP	
MX26C1000AMC-12 120	30	100	32 Pin SOP	
MX26C1000AQC-12 120	30	100	32 Pin PLCC	
MX26C1000ATC-12 120	30	100	32 Pin TSOP	
MX26C1000APC-15 150	30	100	32 Pin DIP	
MX26C1000AMC-15 150	30	100	32 Pin SOP	
MX26C1000AQC-15 150	30	100	32 Pin PLCC	
MX26C1000ATC-15 150	30	100	32 Pin TSOP	

PACKAGE INFORMATION

32-PIN PLASTIC DIP(600 mil)

ITEM	MILLIMETERS	INCHES
A	42.13 max.	1.660 max.
B	1.90 [REF]	. 075 [REF]
C	2.54 [TP]	. 100 [TP]
D	. 46 [Typ.]	. 018 [Typ.]
E	38.07	1.500
F	1.27 [Typ.]	. 050 [Typ.]
G	$3.30 \pm .25$. $130 \pm .010$
H	. 51 [REF]	. 020 [REF]
1	$3.94 \pm .25$. $155 \pm .010$
J	5.33 max.	. 210 max.
K	$15.22 \pm .25$. $600 \pm .010$
L	$13.97 \pm .25$. $550 \pm .010$
M	. 25 [Typ.]	. 010 [Typ.]

NOTE: Each lead centerline is located within . 25 $\mathrm{mm}[.01$ inch] of its true position [TP] at maximum material condition.

32-PIN PLASTIC LEADED CHIP CARRIER (PLCC)

ITEM MILLIMETERS INCHES A $12.44 \pm .13$ $.490 \pm .005$ B $11.50 \pm .13$ $.453 \pm .005$ C $14.04 \pm .13$ $.553 \pm .005$ D $14.98 \pm .13$ $.590 \pm .005$ E 1.93 .076 F $3.30 \pm .25$ $.130 \pm .010$ G $2.03 \pm .13$ $.080 \pm .005$ H $.51 \pm .13$ $.020 \pm .005$ I $1.27[T y p]$. $.050[$ Typ.] J $.71[R E F]$ $.028[R E F]$ K $.46[R E F]$ $.018[R E F]$ L $10.40 / 12.94$ $.410 / .510$ (W) (L) (W) (L) M .89 R .035 R N .25 (TYP.) .010 (TYP.) NOTE: Each lead centerline is located within .25 mm[.01 inch] of its true position [TP] at maximum material condition.	

PACKAGE INFORMATION

32-PIN PLASTIC TSOP

ITEM	MILLIMETERS	INCHES
A	$20.0 \pm .20$	$.078 \pm .006$
B	$18.40 \pm .10$	$.724 \pm .004$
C	8.20 max.	.323 max.
D	$0.15[$ Typ. $]$.006 [Typ.]
E	$.80[$ Typ. $]$	$.031[$ Typ. $]$
F	$.20 \pm .10$	$.008 \pm .004$
G	$.30 \pm .10$	$.012 \pm .004$
H	$.50[$ Typ. $]$	$.020[$ Typ. $]$
I	$.45 \max$.	.018 max.
J	$0 \sim .20$	$0 \sim .008$
K	$1.00 \pm .10$	$.039 \pm .004$
L	$1.27 \max$.	$.050 \max$.
M	.50	.020
N	19.00	.748
O	$0 \sim 5$.500

NOTE: Each lead centerline is located within . 25 $\mathrm{mm}[.01$ inch] of its true position [TP] at a maximum material condition.

32-PIN PLASTIC SOP (450 mil)

Revision History		
Revision \#	Description	Date
1.1	Eraseing mode flow chart: Chip erase(5s)---> (1s).	4/10/1997
	Programming waveforms: $\overline{\mathrm{CE}}$ changed.	
1.2	MTP ROM----> MTP EPROM	5/30/1997
	Chip erase(1s)---->0.5s. X = 60?--->200?	
	Switching Test Waveforms revise.	
	tEW Erase Pulse Width $1 \mathrm{sec}--->0.5 \mathrm{sec}$	
	Programming/erase waveforms modifiction.	
	VPP: from 12.0~13V to 12.5~13V.	
1.3	Erase Verify Time: 60--->200.	7/25/1997
1.4	Change Part Name: 26C1000 ---> 26C1000A	11/05/1997
1.5	Change tPW:Min. 95us --> Min. 20us	2/10/1998
	Programming flow chart revised.	
	Mode Select Table, Erase Mode A9=VH-->A9=VPP.	
	Erase flow chart revised.	

Macronix International Co., Ltd.
HEADQUARTERS:
TEL:+886-3-578-8888
FAX:+886-3-578-8887
EUROPE OFFICE:
TEL:+32-2-456-8020
FAX:+32-2-456-8021
JAPAN OFFICE:
TEL:+81-44-246-9100
FAX:+81-44-246-9105
SINGAPORE OFFICE:
TEL:+65-747-2309
FAX:+65-748-4090
TAIPEI OFFICE:
TEL:+886-3-509-3300
FAX:+886-3-509-2200
Macronix America, Inc.
TEL:+1-408-453-8088
FAX:+1-408-453-8488
CHICAGO OFFICE:
TEL:+1-847-963-1900
FAX:+1-847-963-1909
http : //www.macronix.com

