1M-BIT [128Kx8] LOW VOLTAGE OPERATION

 CMOS EPROM

 CMOS EPROM}

FEATURES

- $128 \mathrm{~K} \times 8$ organization
- Wide power supply range, 2.7V DC to 3.6VDC
- +12.5V programming voltage
- Fast access time:90/120/150/200/250 ns
- Totally static operation
- Completely TTL compatible
- Operating current: 20mA @3.6V, 5MHz
- Standby current: 10uA
- Package type:
- 32 pin plastic DIP
- 32 pin SOP
- 32 pin TSOP
- 32 pin PLCC
may be used. The MX27L1000 supports a intelligent fast programming algorithm which can result in programming time of less than thirty seconds.

This EPROM is packaged in industry standard 32 pin dual-in-line packages, 32 lead SOP , 32 lead PLCC, and 32 lead TSOP packages.

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	PIN NAME
A0~A16	Address Input
Q0~Q7	Data Input/Output
$\overline{\mathrm{CE}}$	Chip Enable Input
$\overline{\mathrm{OE}}$	Output Enable Input
$\overline{\text { PGM }}$	Programmable Enable Input
VPP	Program Supply Voltage
NC	No Internal Connection
VCC	Power Supply Pin
GND	Ground Pin

FUNCTIONAL DESCRIPTION

THE PROGRAMMING OF THE MX27L1000

When the MX27L1000 is delivered, or it is erased, the chip has all 1M bits in the "ONE" or HIGH state. "ZERO" are loaded into the MX27L1000 through the procedure of programming.

For programming, the data to be programmed is applied with 8 bits in parallel to the data pins.

VCC must be applied simultaneously or before VPP, and removed simultaneously or after VPP. When programming an MXIC EPROM, a 0.1 uF capacitor is required across VPP and ground to suppress spurious voltage transients which may damage the device.

FASTPROGRAMMING

The device is set up in the fast programming mode when the programming voltage VPP $=12.75 \mathrm{~V}$ is applied, with $\mathrm{VCC}=6.25 \mathrm{~V}$ and $\overline{\mathrm{PGM}}=\mathrm{VIL}($ or $\overline{\mathrm{OE}}=\mathrm{VIH}$) (Algorithm is shown in Figure 1). The programming is achieved by applying a single TTL low level 100us pulse to the $\overline{\text { PGM input after addresses and data line are stable. If }}$ the data is not verified, an additional pulse is applied for a maximum of 25 pulses. This process is repeated while sequencing through each address of the device. When the programming mode is completed, the data in all address is verified at $\mathrm{VCC}=\mathrm{VPP}=5 \mathrm{~V} \pm 10 \%$.

PROGRAM INHIBIT MODE

Programming of multiple MX27L1000s in parallel with different data is also easily accomplished by using the Program Inhibit Mode. Except for $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$, all like inputs of the parallel MX27L1000 may be common. A TTL low-level program pulse applied to an MX27L1000 $\overline{\mathrm{CE}}$ input with VPP $=12.5 \pm 0.5 \mathrm{~V}$ and $\overline{\mathrm{PGM}} \mathrm{LOW}$ will program that MX27L1000. A high-level $\overline{\mathrm{CE}}$ inputinhibits the other MX27L1000s from being programmed.

PROGRAM VERIFY MODE

Verification should be performed on the programmed bits to determine that they were correctly programmed. The verification should be performed with $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ at VIL, $\overline{\text { PGM }}$ at VIH, and VPP at its programming voltage.

AUTO IDENTIFY MODE

The auto identify mode allows the reading out of a binary code from an EPROM that will identify its manufacturer and device type. This mode is intended for use by programming equipment for the purpose of automatically matching the device to be programmed with its corresponding programming algorithm. This mode is functional in the $25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ambient temperature range that is required when programming the MX27L1000.

To activate this mode, the programming equipment must force $12.0 \pm 0.5 \mathrm{~V}$ on address line A9 of the device. Two identifier bytes may then be sequenced from the device outputs by toggling address line A0 from VIL to VIH. All other address lines must be held at VIL during auto identify mode.

Byte $0(\mathrm{~A} 0=\mathrm{VIL})$ represents the manufacturer code, and byte $1(\mathrm{AO}=\mathrm{VIH})$, the device identifier code. For the MX27L1000, these two identifier bytes are given in the Mode Select Table. All identifiers for manufacturer and device codes will possess odd parity, with the MSB (Q7) defined as the parity bit.

READ MODE

The MX27L1000 has two control functions, both of which must be logically satisfied in order to obtain data at the outputs. Chip Enable (CE) is the power control and should be used for device selection. Output Enable ($\overline{\mathrm{OE}}$) is the output control and should be used to gate data to the output pins, independent of device selection. Assuming that addresses are stable, address access time (tACC) is equal to the delay from $\overline{\mathrm{CE}}$ to output (tCE). Data is available at the outputs tQE after the falling edge of $\overline{O E}$, assuming that $\overline{C E}$ has been LOW and addresses have been stable for at least tACC - tOE.

STANDBY MODE

The MX27L1000 has a CMOS standby mode which reduces the maximum VCC current to 10 uA . It is placed in CMOS standby when $\overline{\mathrm{CE}}$ is at VCC $\pm 0.3 \mathrm{~V}$. The MX27L1000 also has a TTL-standby mode which reduces the maximum VCC current to 0.25 mA . It is placed in TTL-standby when $\overline{\mathrm{CE}}$ is at VIH. When in standby mode, the outputs are in a high-impedance state, independent of the $\overline{\mathrm{OE}}$ input.

TWO-LINE OUTPUT CONTROL FUNCTION

To accommodate multiple memory connections, a twoline control function is provided to allow for:

1. Low memory power dissipation,
2. Assurance that output bus contention will not occur.

It is recommended that $\overline{\mathrm{CE}}$ be decoded and used as the primary device-selecting function, while $\overline{\text { OE }}$ be made a common connection to all devices in the array and connected to the READ line from the system control bus. This assures that all deselected memory devices are in their low-power standby mode and that the output pins are only active when data is desired from a particular memory device.

SYSTEM CONSIDERATIONS

During the switch between active and standby conditions, transient current peaks are produced on the rising and falling edges of Chip Enable. The magnitude of these transient current peaks is dependent on the output capacitance loading of the device. At a minimum, a 0.1 uF ceramic capacitor (high frequency, low inherent inductance) should be used on each device between Vcc and GND to minimize transient effects. In addition, to overcome the voltage drop caused by the inductive effects of the printed circuit board traces on EPROM arrays, a 4.7 uF bulk electrolytic capacitor should be used between Vcc and GND for each eight devices. The location of the capacitor should be close to where the power supply is connected to the array.

MODE SELECT TABLE

				PINS			
MODE	$\mathbf{C E}$	$\overline{\text { OE }}$	$\overline{\text { PGM }}$	A0	A9	VPP	OUTPUTS
Read	VIL	VIL	X	X	X	VCC	DOUT
Output Disable	VIL	VIH	X	X	X	VCC	High Z
Standby (TTL)	VIH	X	X	X	X	VCC	High Z
Standby (CMOS)	VCC $\pm 0.3 \mathrm{~V}$	X	X	X	X	VCC	High Z
Program	VIL	VIH	VIL	X	X	VPP	DIN
Program Verify	VIL	VIL	VIH	X	X	VPP	DOUT
Program Inhibit	VIH	X	X	X	X	VPP	High Z
ManufacturerCode(3)	VIL	VIL	X	VIL	VH	VCC	C2H
Device Code(3)	VIL	VIL	X	VIH	VH	VCC	OEH

NOTES:

1. $\mathrm{VH}=12.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$
2. $\mathrm{X}=$ Either VIH or VIL
3. $\mathrm{A} 1-\mathrm{A} 8=\mathrm{A} 10-\mathrm{A} 16=\mathrm{VIL}($ For auto select $)$
4. See DC Programming Characteristics for VPP voltage during programming.

MX27L1000

FIGURE 1. FAST PROGRAMMING FLOW CHART

SWITCHING TEST CIRCUITS

$\mathrm{CL}=100 \mathrm{pF}$ including jig capacitance
$\mathrm{CL}=30 \mathrm{pF}$ including jig capacitance for 90/120ns

SWITCHING TEST WAVEFORMS

AC TESTING: AC driving levels are $2.4 \mathrm{~V} / 0.4 \mathrm{~V}$ for both commercial grade and industrial grade. Input pulse rise and fall times are $\leq 10 \mathrm{~ns}$.

SWITCHING TEST WAVEFORMS (For Speed 90/120ns)

\square

MX27L1000

ABSOLUTE MAXIMUM RATINGS	
RATING	VALUE
Ambient Operating Temperature	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Applied Input Voltage	-0.5 V to 7.0 V
Applied Output Voltage	-0.5 V to $\mathrm{VCC}+0.5 \mathrm{~V}$
VCC to Ground Potential	-0.5 V to 7.0 V
V9 \& VPP	-0.5 V to 13.5 V

NOTICE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended period may affect reliability.

NOTICE:

Specifications contained within the following tables are subject to change.

DC/AC Operating Conditions for Read Operation

| | | MX27L1000 | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\mathbf{- 9 0}$ | $\mathbf{- 1 2}$ | $\mathbf{- 1 5}$ | -20 | $\mathbf{- 2 5}$ |
| Operating Temperature | Commercial | $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ |
| | Industrial | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ | |
| Vcc Power Supply | | 2.7 V to 3.6 V |

DC CHARACTERISTICS

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	VCC -0.3		V	IOH $=-100 \mathrm{uA}$ VCC $=3.0 \mathrm{~V}$
VOL	Output Low Voltage		0.3	V	$\mathrm{IOL}=2.1 \mathrm{~mA}, \mathrm{VCC}=3.0 \mathrm{~V}$
VIH	Input High Voltage	2.0	$\mathrm{Vcc}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.6	V	$2.7 \mathrm{~V}=\mathrm{VCC}<3.6 \mathrm{~V}$
ILI	Input Leakage Current	-10	10	uA	$\mathrm{VIN}=0$ to 3.6 V
ILO	Output Leakage Current	-10	10	uA	$\mathrm{VOUT}=0$ to 3.6 V
ICC3	VCC Power-DownCurrent		10	uA	$\overline{\mathrm{CE}}=\mathrm{VCC} \pm 0.3 \mathrm{~V}$
ICC2	VCCStandby Current		0.25	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}$
ICC1	VCC Active Current		20	mA	$\overline{\mathrm{CE}}=\mathrm{VIH}, \mathrm{f}=5 \mathrm{MHz}$, lout $=\mathrm{OmA}$,
					$\mathrm{Vcc}=3.6 \mathrm{~V}$
IPP	Supply Current Read		10	uA	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}, \mathrm{VPP}=\mathrm{VCC}$

CAPACITANCE TA $=25^{\circ} \mathrm{C}, \mathrm{f}=1.0 \mathrm{MHz}$ (Sampled only)

SYMBOL	PARAMETER	TYP.	MAX.	UNIT	CONDITIONS
CIN	Input Capacitance	8	12	pF	VIN $=0 \mathrm{~V}$
COUT	Output Capacitance	8	12	pF	VOUT $=0 \mathrm{~V}$
CVPP	VPP Capacitance	18	25	pF	VPP $=0 \mathrm{~V}$

MX27L1000

AC CHARACTERISTICS

		27L1000-90		27L1000-12		27L1000-15		27L1000-20		27L1000-25		UNIT	CONDITIONS
Symbol	PARAMETER	MIN.	MAX.										
tACC	Address to Output Delay		90		120		150		200		250	ns	$\overline{\mathrm{CE}}=\overline{\mathrm{OE}}=\mathrm{VIL}$
tCE	Chip Enable to Output Delay		90		120		150		200		250	ns	$\overline{\mathrm{OE}}=\mathrm{VIL}$
tOE	Output Enable to Output Delay		40		50		70		100		120	ns	$\overline{\mathrm{CE}}=\mathrm{VIL}$
tDF	$\overline{\mathrm{OE}}$ High to Output Float, or $\overline{\mathrm{CE}}$ High to Output Float	0	30	0	40	0	50	0	60	0	70	ns	
tOH	Output Hold from Address, $\overline{\mathrm{CE}}$ or $\overline{\mathrm{OE}}$ which ever occurred			0		0		0		0		ns	

DC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT	CONDITIONS
VOH	Output High Voltage	2.4		V	IOH $=-0.10 \mathrm{~mA}$
VOL	Output Low Voltage		0.4	V	IOL $=2.1 \mathrm{~mA}$
VIH	Input High Voltage	2.0	$\mathrm{VCC}+0.5$	V	
VIL	Input Low Voltage	-0.3	0.8	V	
ILI	Input Leakage Current	-10	10	uA	$\mathrm{VIN}=0$ to 3.6 V
VH	A9 Auto Select Voltage	11.5	12.5	V	
ICC3	VCC Supply Current (Program \& Verify)		50	mA	
IPP2	VPP Supply Current(Program)		30	mA	$\overline{\mathrm{CE}}=\mathrm{VIL}, \overline{\mathrm{OE}}=\mathrm{VIH}$
VCC1	Fast Programming Supply Voltage	6.00	6.50	V	
VPP1	Fast Programming Voltage	12.5	13.0	V	

AC PROGRAMMING CHARACTERISTICS TA $=25^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	MIN.	MAX.	UNIT
tAS	Address Setup Time	2.0		us
tOES	OE Setup Time	2.0		us
tDS	Data Setup Time	2.0	us	
tAH	Address Hold Time	0	us	
tDH	Data Hold Time	2.0		us
tDFP	Out put Enable to Output Float Delay	0	130	ns
tVPS	VPP Setup Time	2.0		us
tPW	PGM Program Pulse Width	95	105	us
tVCS	VCC Setup Time	2.0		us
tCES	CE Setup Time	2.0		us
tOE	Data valid from OE		150	ns

WAVEFORMS

READ CYCLE

FAST PROGRAMMING ALGORIHTM WAVEFORMS

ORDERINFORMATION

PART NO.	ACCESS TIME(ns)	OPERATING	STANDBY		
CURRENT MAX.(mA)	CURRENT MAX.(uA)			\quad	OPERATINGTEMPERATURE
:---					

MX27L1000PC-25	250	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000QC-25	250	20	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MC-25	250	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TC-25	250	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PC-20	200	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000QC-20	200	20	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MC-20	200	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TC-20	200	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PC-15	150	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000QC-15	150	20	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MC-15	150	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TC-15	150	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PC-12	120	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000QC-12	120	20	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MC-12	120	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TC-12	120	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PC-90	90	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000QC-90	90	20	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MC-90	90	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TC-90	90	30	10	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PI-25	250	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000Ql-25	250	20	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MI-25	250	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TI-25	250	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PI-20	200	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000Ql-20	200	20	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MI-20	200	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TI-20	200	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PI-15	150	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000Ql-15	150	20	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MI-15	150	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TI-15	150	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PI-12	120	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000Ql-12	120	20	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MI-12	120	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TI-12	120	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin TSOP
MX27L1000PI-90	90	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin DIP
MX27L1000Ql-90	90	20	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin PLCC
MX27L1000MI-90	90	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin SOP
MX27L1000TI-90	90	30	10	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	32 Pin TSOP

PACKAGE INFORMATION

Title: Package Outline for PDIP 32L(600MIL)

Dimensions (inch dimensions are derived from the original mm dimensions)

\qquad UNIT		A	A1	A2	b	b1	C	D	E	E1	e	eB	L	S
mm	Min.	---	0.38	3.73	0.38	1.14	0.20	41.78	15.11	13.84		15.75	2.92	1.65
	Nom.	---	---	3.94	0.46	1.27	0.25	41.91	15.24	13.97	2.54	16.51	3.30	1.90
	Max.	4.90	0.76	4.14	0.53	1.40	0.30	42.04	15.37	14.10		17.27	3.68	2.16
Inch	Min.	---	0.015	0.147	0.015	0.045	0.008	1.645	0.595	0.545		0.620	0.115	0.065
	Nom.	---	----	0.155	0.018	0.050	0.010	1.650	0.600	0.550	0.100	0.650	0.130	0.075
	Max.	0.193	0.030	0.163	0.021	0.055	0.012	1.655	0.605	0.555		0.680	0.145	0.085

DWG.NO.	REVISION	REFERENCE			ISSUE DATE
		JEDEC	EIAJ		
6	6				

Title: Package Outline for SOP 32L (450MIL)

Dimensions (inch dimensions are derived from the original mm dimensions)

SYMBBL		A	A1	A2	b	C	D	E	E1	e	L	L1	S	Θ
mm	Min.	---	0.10	2.59	0.36	0.15	20.32	13.92	11.18		0.56	1.20	0.58	0
	Nom.	---	0.15	2.69	0.41	0.20	20.45	14.12	11.30	1.27	0.76	1.40	0.70	5
	Max.	3.00	0.20	2.80	0.51	0.25	20.57	14.32	11.43		0.96	1.60	0.83	8
Inch	Min.	---	0.004	0.102	0.014	0.006	0.800	0.548	0.440		0.022	0.047	0.023	0
	Nom.	---	0.006	0.106	0.016	0.008	0.805	0.556	0.445	0.050	0.030	0.055	0.028	5
	Max.	0.118	0.008	0.110	0.020	0.010	0.810	0.564	0.450		0.038	0.063	0.033	8

DWG.NO.	REVISION	REFERENCE			ISSUE DATE
		EIAJ		$09-24-02$	

Title: Package Outline for 32L PLCC

Dimensions (inch dimensions are derived from the original mm dimensions)

\qquad UNIT		A	A1	A2	b	b1	C	D	D1	D2	D3	E	E1	E2	E3	e
mm	Min.	---	0.38	2.69	0.38	0.61	0.20	12.32	11.36	10.11		14.86	13.98	12.65		
	Nom.	---	0.58	2.79	0.46	0.71	0.25	12.45	11.43	10.41	7.62	14.99	14.05	12.95	10.16	1.27
	Max.	3.55	0.81	2.89	0.54	0.81	0.30	12.58	11.50	10.71		15.12	14.12	13.25		
Inch	Min.	---	0.015	0.106	0.015	0.024	0.008	0.485	0.447	0.398		0.585	0.550	0.498		
	Nom.	---	0.023	0.110	0.018	0.028	0.010	0.490	0.450	0.410	0.300	0.590	0.553	0.510	0.400	0.050
	Max.	0.140	0.032	0.114	0.021	0.032	0.012	0.495	0.453	0.422		0.595	0.556	0.522		

DWG.NO.	REVISION	REFERENCE			ISSUE DATE
		JEDEC	EIAJ		
$6110-2002$	6	MS-016			0

Title: Package Outline for TSOP(I) 32L ($8 \times 20 \mathrm{~mm}$)

Dimensions (inch dimensions are derived from the original mm dimensions)

\qquad		A	A1	A2	b	C	D	D1	E	e	L	L1	\bigcirc
mm	Min.	---	0.05	0.95	0.17	0.10	19.80	18.30	7.90		0.50	0.70	0
	Nom.	---	0.10	1.00	0.20	0.15	20.00	18.40	8.00	0.50	0.60	0.80	5
	Max.	1.20	0.15	1.05	0.27	0.21	20.20	18.50	8.10		0.70	0.90	8
Inch	Min.	---	0.002	0.037	0.007	0.004	0.780	0.720	0.311		0.020	0.028	0
	Nom.	---	0.004	0.039	0.008	0.006	0.787	0.724	0.315	0.020	0.024	0.031	5
	Max.	0.047	0.006	0.041	0.011	0.008	0.795	0.728	0.319		0.028	0.035	8

DWG.NO.	REVISION	REFERENCE			ISSUE DATE
		EIAJ		$09-24-02$	
$6110-1604$	8	MO-142			

REVISION HISTORY

Revision No.	Description		
Page 3:Mode Select Table : VPP pin-"VCC" instead of " X".		\quad Page	Date
:---			
2.4			
Revise SWITCHING TEST WAVEFORM, VOL $=0.6 \mathrm{~V}$ to VOL=0.8V.			

[^0]
[^0]: Macronix International Co.,Ltd.
 HEADQUARTERS:
 TEL:+886-3-578-6688
 FAX:+886-3-563-2888

 EUROPE OFFICE:
 TEL:+32-2-456-8020
 FAX:+32-2-456-8021

 JAPAN OFFICE:
 TEL:+81-44-246-9100
 FAX:+81-44-246-9105

 SINGAPORE OFFICE:
 TEL:+65-348-8385
 FAX:+65-348-8096
 TAIPEI OFFICE:
 TEL:+886-2-2509-3300
 FAX:+886-2-2509-2200
 Macronix America, Inc.
 TEL:+1-408-453-8088
 FAX:+1-408-453-8488

 CHICAGO OFFICE:
 TEL:+1-847-963-1900
 FAX:+1-847-963-1909
 http : //www.macronix.com

