DUAL VIDEO 6dB AMPLIFIER WITH 75 Ω driver

GENERAL DESCRIPTION =

NJM2268 is a dual video 6dB amplifier with 75 Ω drivers for S-VHS VCRs, HI-BAND VCRs, etc.. One channel has clamp function that fixes DC level of video sighal and another one is bias type. Furthermore it has 75Ω drivers to be connected to TV monitors directly and sag corrective circuits that prevent the generation of sag with smaller capacitance than ever.

Its operating supply voltage is 4.85 to 9V and bandwidth is 7MHz.

FEATURES

- ٠ Wide Operating Voltage (4.85~9.0V)
- Dual Channel (Clamp Type, Bias Type) .
- Internal Driver Circuit For 75 Ω Load .
- SAG Corrective Function .
- Wide Frequency Range 7MHz .
- Low Operating Current 14.0mA (Dual)
- Package Outline DIP8, DMP8, SSOP8
- **Bipolar Technology**

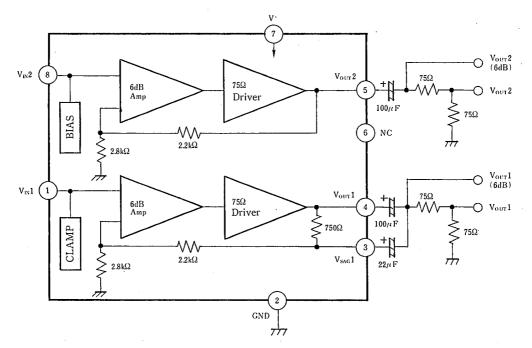
RECOMMENDED OPERATING CONDITION 1 4.85~9.0V

Operating Voltage ٠**V**+

APPLICATIONS

VCR, Video Camera, TV, Video Disc Player

BLOCK DIAGRAM .



PACKAGE OUTLINE

NJM2268D

NJM2268¥

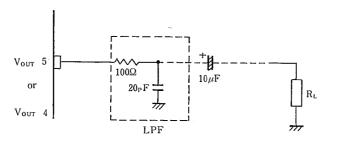
ABSOLUTE MAXIMUM RATINGS						
PARAMETER	SYMBOL	RATINGS	UNIT			
Supply Voltage	V*	10	V			
Power Dissipation	PD	(DIP8) 500	mW			
		(DMP8) 300	mW			
		(SSOP8) 250	mW			
Operating Temperature Range	Topr	-40~+85	C			
Storage Temperature Range	Tsig	-40~+125	°C			

ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

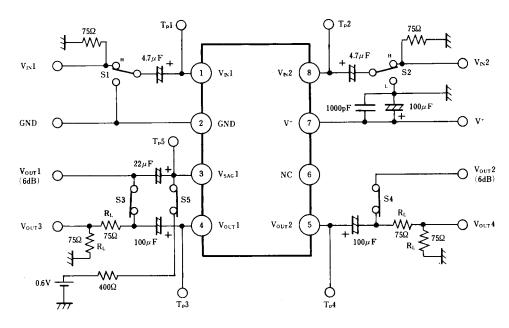
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	No Signal		14.0	18.2	mA
Voltage Gain	Gv	V _{IN} =1MHz, 1V _{P-P} Sinewave	5.7	6.2	6.7	dB
Frequency Characteristic	Gf	V _{IN} =1V _{P-P} , Sinewave, 7MHz/1MHz	_		±1.0	dB
Differentail Gain *	DG	$V_{IN} = I V_{P-P}$, Staircase	—	1.0	3.0	%
Differentail Phase *	DP	$V_{IN} = 1 V_{P-P}$, Staircase	—	1.0	3.0	deg
Crosstalk	СТ	V _{IN} =4.43MHz, 1V _{P-P} , Sinewave	<u> </u>	-70		dB
Gain Offset	GCH	$V_{IN} = IMHz$, IV_{P-P} , $G_{CH} = V_{OUTI} - V_{OUT2}$		_	±0.5	dB
Input Clamp Voltage	V _{CL}		1.79	1.91	2.03	v
Input Bias Voltage	VBt		2.56	2.84	3.12	v
SAG Terminal Gain	GSAG		35	45	_	dB
				1		1

NOTE: "*" is applied to clamp type input side only/


APPLICATION

Oscillation Prevention

It is much effective to insert LPE (Cutoff Frequency 70MHz) under light loading conditions ($R_L \gg 1k\Omega$).


This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since

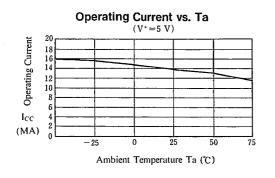
the minute current causes an unstable pin voltage.

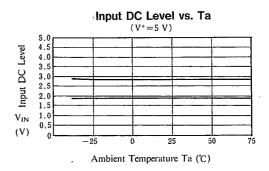
-New Japan Radio Co., Ltd.

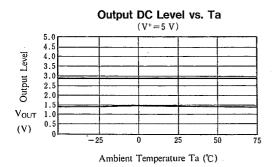
TEST CIRCUIT

TEST METHODES

	00000	SWITCH CONDITIONS							
PARAMETER	SYMBOL	SI	S2	S 3	S4	S 5	S 6	CONDITIONS	
Supply Current	Icc	н	н					7PIN Sink Current	
Voltage Gain	Gv	н	н	ON	ON			V_{OUT1}/V_{IN1} , V_{OUT2}/V_{IN2} at $V_{IN1}(V_{IN2})=1MHz$, $1V_{P-P}$, Sinewave	
Frequency Characteristic	Gf	н	н	ON	ON			$ G_{V1M}; Voltage Gain at V_{1N1}(V_{1N2})=1MHz, 1V_{P\cdot P} \\ G_{V10M}; Voltage Gain at V_{1N1}(V_{1N2})=10MHz, 1V_{P\cdot P} \\ G_f = G_{V10M} - G_{V1M} $	
Differential Gain	DG	н	н	ON	ON			Measuring V_{OUT3} at V_{IN1} =Staircase Signal	
Differential Phase	DP	н	н	ON	ON			Measuring V _{OUT3} at V _{IN1} =Staircase Signal	
Crosstalk	СТ	Н	L	ON	ON			V_{OUT2}/V_{OUT1} at V_{1N1} =4.43MHz, 1V _{P.P.} Sinewave $V_{OUT1}/VIN2$ at V_{IN2} =4.43MHz, 1V _{P.P.} Sinewave	
Gain Offset	G _{CH}	Н	н	ON	ON			$\begin{array}{l} G_{V1} = V_{OUT1} / V_{IN1}, \ G_{V2} = V_{OUT2} / V_{IN2} \\ G_{CH} = G_{V1} - G_{V2} \end{array}$	
Input Clamp Voltage	V _{CL}	Н	н					Measuring at TP1	
Input Bias Voltage	V _{Bt}	Н	н					Measuring at TP2	
SAG Terminal Gain	G _{SAG}	н н	H H			ON	ON	TP3 Voltage; V_{O1A} , TP5 Voltage; V_{SO1A} TP3 Voltage; V_{O1B} , TP5 Voltage; V_{SO1B} $G_{SAG}=20log \{(V_{O1B}-V_{O1A})/(V_{SO1A}-V_{SO1B})\}$	


5


IERIV	INAL FUN			(V⁺=5.0V, Ta=25℃)
'IN No.	PIN NAME	SYMBOL	EQUIVALENT CIRCUIT	FUNCTIONS
ī	Input Clamp Terminal	V _{INI}		Input terminal of $1V_{P-P}$ composite Signal or Y signal Clamp level is 1.9V
2	GND	GND		Ground
3	SAG correction	Vsagi	V* 3mA	SAG caused by a coupling capacitor of the output can b prevented by connecting this tarminal with the output termina through an external capacitor. (see block diagram) When SAG correcting function is not necessary, this termina must be connected with pin "4" directly.
4	Video Output I	Vouti	V* 3mA	Output terminal (clamp side) that can drive 75Ω line.
5	Video Output2	V _{OUT2}	V*	Output terminal (bias side) that can drive 75Ω line.
			2.2k 5 	
6	No Connectior	NC		
7	V+	V+		Supply Voltage
8	Input Clamp Terminal	V _{IN2}	V ⁺ 20k ⁹ 300 20k 250/r A 777	Input terminal of 1V _{P-P} coler signal. Bias level is 2.8V.



(V⁺−5 0V Ta=25°C)

–New Japan Radio Co.,Ltd.–

SAG Terminal Gain vs. Ta

 $(V^+ = 5 V)$

0

25

Ambient Temperature Ta (℃)

50

75

SAG Terminal Gain

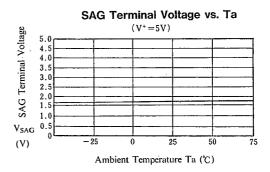
Gsag 30

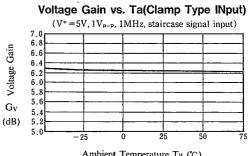
(dB)

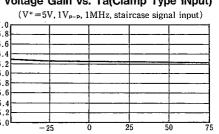
50 48 46

44

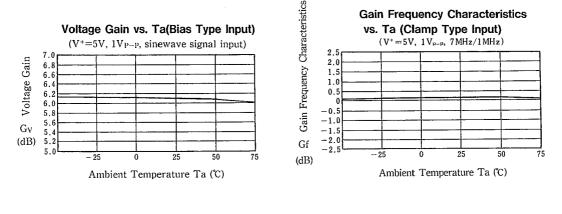
42

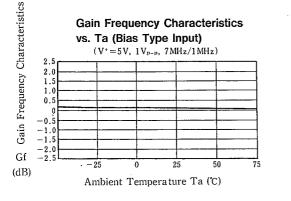

40 38

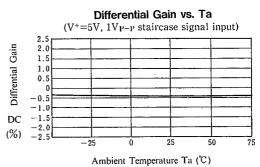

36

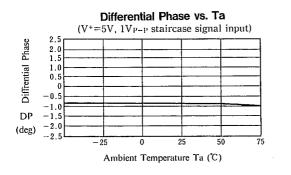

34

32

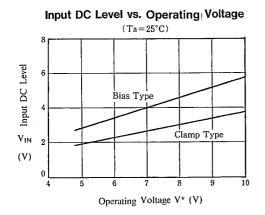

-25

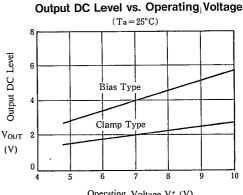


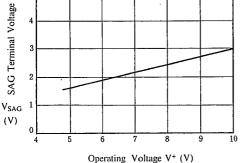


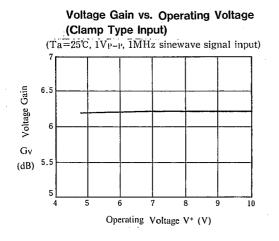


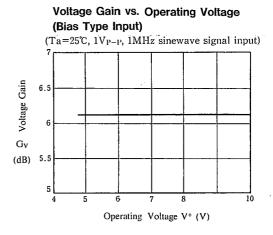
Ambient Temperature Ta (°C)



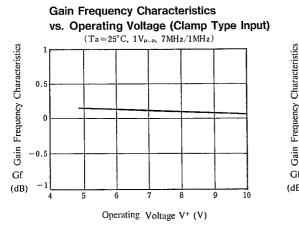


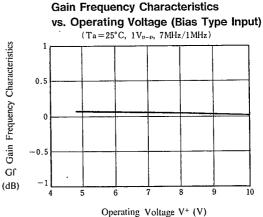

Operating Current vs. Operating Voltage $(Ta = 25^{\circ}C)$ 25 Operating Current 20 15 10 lcc 5 (mA)0 10 9 4 5 6 7 8 Operating Voltage V+ (V)



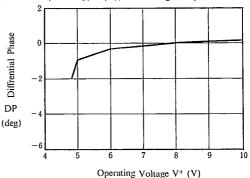

Operating Voltage V+ (V)

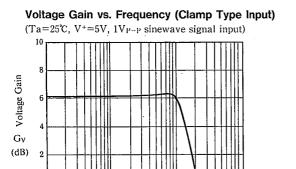
SAG Terminal Voltage vs. Operating Voltage $(T_a = 25^{\circ}C)$



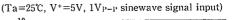

 $(Ta=25^{\circ}C)$ 60 SAG Terminal Gain 50 40 30 Gsag . (dB) 20 5 6 8 9 10 Operating Voltage V+ (V)

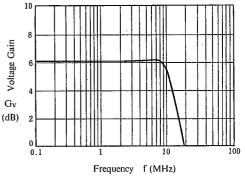
SAG Terminal Gain vs. Operating Voltage


New Japan Radio Co., Ltd.



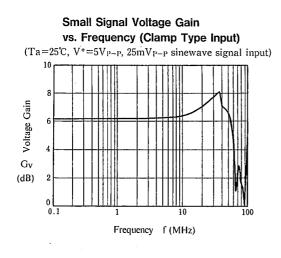
Differential Gain vs. Operating Voltage (Ta=25°C, 1VP-P, staircase signal input) 2 Diffrential Gain 0 -2DC (%) -6 5 7 8 9 10 4 6 Operating Voltage V+ (V)


Diffrential Phase vs. Operating Voltage (Ta=25°C, 1V_{P-P}, staircase signal input)



Frequency f (MHz)

Voltage Gain vs. Frequency (Bias Type Input)


5-234

0

0.1

-New Japan Radio Co.,Ltd.-

100

Cross Talk vs. Frequency

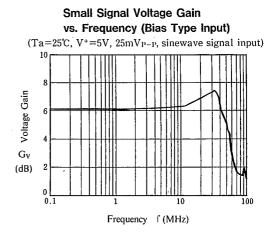
(Ta=25°C, V+=5V, 1VP-P sinewave signal input)

- 20

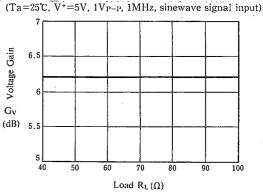
-40

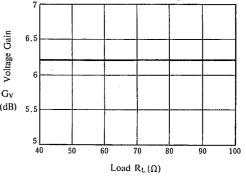
-60

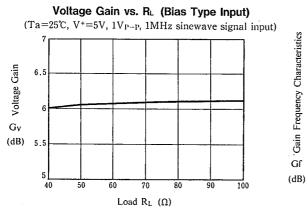
-80


-100

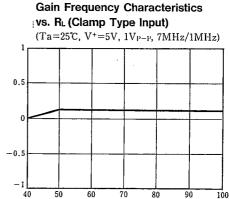
0.1


Cross Talk


СТ

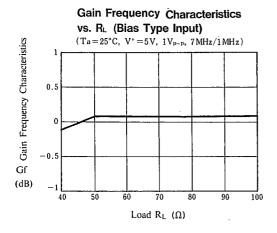

(dB)

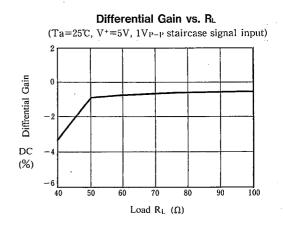
Voltage Gain vs. R_L (Clamp Type Input)



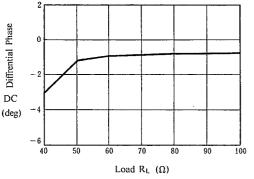
10

Frequency f (MHz)

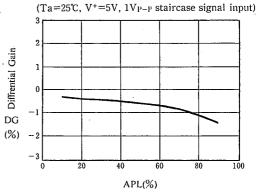

100

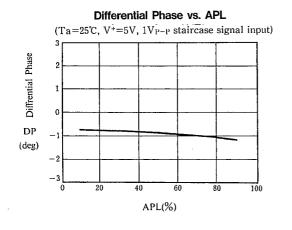


Load R_L (Ω)


-New Japan Radio Co.,Ltd.

-5-235





Differential Phase vs. RL (Ta=25°C, V⁺=5V, 1V_{P-P}staircase signal input)

Differential Gain vs. APL

5-236

5

-New Japan Radio Co.,Ltd.-

MEMO

[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.