

Current Transducer NNC-920..960A

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 2000..6000 A$

Electrical data Primary D.C. Primary current Type current measuring range $I_{PN}(A)$ $I_{P}(A)$ 2000 ± 2300 NNC-920A 2000A-10V 3000 ± 3400 NNC-930A 3000A-10V 4000 ± 4500 NNC-940A 4000A-10V 5000 ± 5600 NNC-950A 5000A-10V 6000 ± 6600 NNC-960A 6000A-10V \mathbf{V}_{c} V Supply voltage (±5 %) ±15 I_C Current consumption <±30 mΑ \mathbf{V}_{d} R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn 2.5 kV $R_{\rm IS}$ Isolation resistance @ 500 VDC >500 $M\Omega$ \mathbf{V}_{out} Output voltage @ $\pm I_{PN}$, $R_L = 10 \text{ k}\Omega$, $T_A = 25^{\circ}\text{C}$ ±10 ٧ kΩ Load resistance 10

Accuracy - Dynamic performance data				
X	Accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}$ C (without offset)	<±1	% of I _{PN}	
$\mathbf{e}_{\scriptscriptstyle\! L}$	Linearity (0 ± I _{PN})	<±1	% of \mathbf{I}_{PN}	
\mathbf{V}_{OE}	Electrical offset voltage, $T_A = 25$ °C	<±50	mV	
\mathbf{V}_{OH}	Hysteresis offset voltage @ $I_p = 0$;			
	after an excursion of 1 x I_{PN}	<±70	mV	
\mathbf{V}_{OT}	Thermal drift of $\mathbf{V}_{\scriptscriptstyleOE}$	<±2	mV/K	
TC e _G	Thermal drift (% of reading)	<±0.1	%/K	
t _r	Response time @ 90% of $I_{\rm P}$	<25	μs	

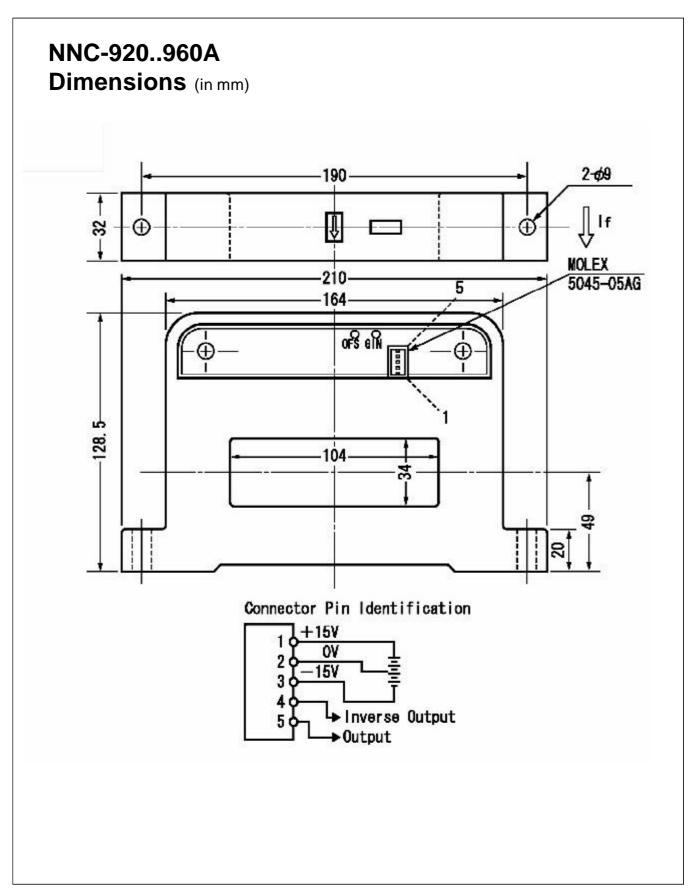
	General data				
\mathbf{T}_{A}	Ambient operating temperature	-10 +50	°C		
\mathbf{T}_{s}	Ambient storage temperature	-15 +60	°C		
m	Mass	1.7	Kg		

Features

- Hall effect measuring principle
- Galvanic isolation between primary and secondary circuit
- Isolation voltage 2500V
- Low power consumption

Advantages

- Easy to mount
- Small size and space saving
- Large-current application
- High immunity to external interference.


Applications

- AC variable speed drives
- Uninterruptible Power Supplies (UPS)
- Battery supplied applications
- Power supplies for welding applications, cable TV, communication devices
- Commutator power supplies
- Electric transmission

Notes :

040824/3

