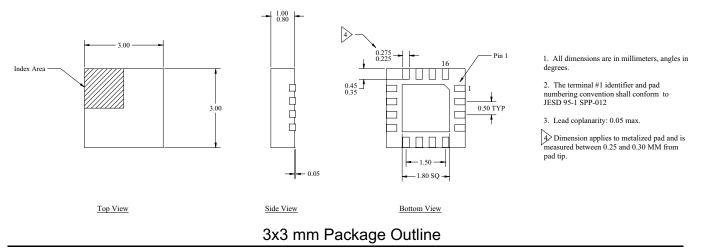


Preliminary RFSP2020

2.4–2.5 GHz Power Amplifier

Applications

- 802.11b/g WLAN
- 2.4 GHz ISM band wireless equipment


Functional Block Diagram

Product Description

The RFSP2020 power amplifier is a highperformance GaAs HBT IC designed for use in transmit applications in the 2.4-2.5 GHz frequency band. With a P1dB of 25 dBm, the device is ideal as a final stage for wireless LAN applications requiring high transmit linearity. Designed with advanced linearizing techniques, the device achieves a specific error vector magnitude (EVM) with lesser backoff than conventional PA designs. The PA exhibits unparalleled linearity and efficiency for both 802.11b- and 802.11g-based WLAN systems. The on-chip detector is perfect for systems where power sensing is necessary. The part operates off a single +3.3V supply.

Product Features

- 25 dBm P1dB@3.3V
- 30 dB gain
- 1.5 % EVM @ P_{OUT} = +18 dBm with 54 Mbps OFDM signal
- 110 mA @ P_{OUT} = +18 dBm with 54 Mbps OFDM signal
- Single +3.3V supply voltage
- PA power on/off logic
- Input and output matched to 50 ohms

RFSP2020

2.4–2.5 GHz Power Amplifier

ATTENTION Static Sensitive Devices Handle Only at Static Safe Work Stations

Parameter ¹	Specification			Unit	Condition	
	Min.	Тур.	Max.	Unit	Condition	
Overall						
Frequency Range	2400		2500	MHz		
Output P1dB		25		dBm		
Gain	l l	30		dB	$P_{OUT} = +18 \text{ dBm}$	
Error Vector Magnitude ²		1.5		%	$P_{OUT} = +18 \text{ dBm}; 54 \text{ Mbps OFDM signal}$	
Gain Flatness	l l	±0.75		dB	Across 100 MHz Band	
Harmonics						
2 nd Harmonic		-27		dBc	@ P1dB	
3 rd Harmonic		-50		dBc	ä P1dB	
Spurious (Stability) ³	İ	-60		dBc/30 kHz	$P_{OUT} = -20 \text{ dBm to } P1 \text{ dB}$	
Reverse Isolation	40			dB		
Input Return Loss	10			dB		
Output Return Loss	10			dB		
Power Supply						
Operating Voltage		3.3		V		
Current Consumption		110		mA	$P_{OUT} = +18 \text{ dBm}$; 54 Mbps OFDM signal	
-		215		mA	$P_{OUT} = +23 \text{ dBm}; 802.11b \text{ ACPR compliant}$	
Detector Characteristics						
Output Voltage	i I	0.5		V	$P_{OUT} = +25 \text{ dBm}; \text{RL} = 5 \text{ k}$	
Output Voltage		0.1		V	$P_{OUT} = +19 \text{ dBm}; \text{ RL} = 5 \text{ k}$	
Reference Diode					Available as part of matched pair	
Shutdown Control						
Device On Logic High		3.3		V		
Device Off Logic Low			0.7	V		
Device Off Current			1	μA		
Turn-On Time	ĺ		0.8	μs	With 50Ω source	
Turn-Off Time			1.0	μs	With 50Ω source	

Note 1: Test Conditions: $V_{CC} = 3.3V$, Freq. = 2450 MHz, T =25°C, Small Signal Conditions unless otherwise stated. Note 2: Increase in EVM over system EVM floor.

Note 3: Load VSWR is set to 7:1 and the angle is varied 360 degrees.

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Power Supply	6.0	V
DC Supply Current	400	mA
Maximum RF input level	-1	dBm
Operating Ambient Temperature	-40 to +85	°C
Storage Temperature	-55 to +150	°C

Ordering Information							
Part Number	Temp. Range (°C)	Package Description	Quantity				
PRFS-P2020-EVL	-40 to +85	Evaluation Board	1				
PRFS-P2020-005	-40 to +85	13" Reverse Tape/Reel	2500 pcs.				
PRFS-P2020-006	-40 to +85	13" Tape/Reel	2500 pcs.				
PRFS-P2020-007	-40 to +85	7" Reverse Tape/Reel	1000 pcs.				
PRFS-P2020-008	-40 to +85	7" Tape/Reel	1000 pcs.				
PRFS-P2020-009	-40 to +85	Bulk – 4x4 mm 24-pin LPCC	1-999 pcs.				

NOTES

ANADIGICS, Inc. 141 Mount Bethel Road Warren, New Jersey 07059,U.S.A. Tel: +1(908)668-5000 Fax: +1(908)668-5132

URL: http://www.anadigics.com E-mail: Mktg@anadigics.com

IMPORTANT NOTICE

ANADIGICS, Inc. reserves the right to make changes to its products or to discontinue any product at any time without notice. The product specifications contained in Advanced Product Information sheets and Preliminary Data Sheets are subject to change prior to a product's formal introduction. Information in Data Sheets have been carefully checked and are assumed to be reliable; however, ANADIGICS assumes no responsibilities for inaccuracies. ANADIGICS strongly urges customers to verify that the information they are using is current before placing orders. WARNING

ANADIGICS products are not intended for use in life support appliances, devices or systems. Use of an ANADIGICS product in any such application without written consent is prohibited.

4