

PHOTOCOUPLER PS2703-1

HIGH ISOLATION VOLTAGE HIGH COLLECTOR TO EMITTER VOLTAGE TYPE SOP MULTI PHOTOCOUPLER -NEPOC Series-

DESCRIPTION

The PS2703-1 is an optically coupled isolator containing a GaAs light emitting diode and an NPN silicon phototransistor.

This is mounted in a plastic SOP (Small Outline Package) for high density applications.

This package has shield effect to cut off ambient light.

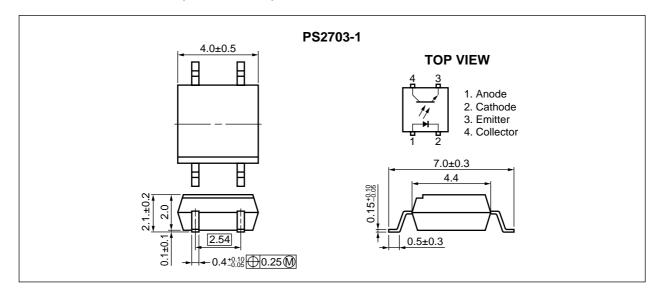
FEATURES

- High isolation voltage (BV = 3 750 Vr.m.s.)
- High collector to emitter voltage (VcEo = 120 V)
- SOP (Small Outline Package) type
- Each isolated channel per package
- High-speed switching (tr, tf = 10 μ s TYP.)
- Taping product number: PS2703-1-F3, F4
- UL approved: File No. E72422 (S)
- VDE0884 approved (Option)

APPLICATIONS

- Hibrid IC
- Telephone/FAX
- FA/OA equipment
- Programmable logic controllers
- Power supply

ORDERING INFORMATION (Solder Contains Lead)


Part Number	Package	Safety Standard Approval	
PS2703-1	4-pin SOP	Standard specification products • UL approved	
PS2703-1-V	4-pin SOP	VDE0884 specification products (Option)	

ORDERING INFORMATION (Pb-Free)

Part Number	Package	Safety Standard Approval	
PS2703-1-A	4-pin SOP	Standard specification products	
		UL approved	
PS2703-1-V-A	4-pin SOP	VDE0884 specification products (Option)	

The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.

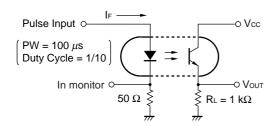
★ PACKAGE DIMENSIONS (in millimeters)

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C, unless otherwise specified)

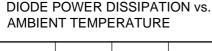
Parameter		Symbol	Ratings	Unit
Diode	Forward Current (DC)	lF	50	mA
	Reverse Voltage	VR	6	V
	Power Dissipation Derating	⊿P₀/°C	0.8	mW/°C
	Power Dissipation	Po	80	mW
	Peak Forward Current ^{*1}		1	Α
Transistor	Collector to Emitter Voltage	VCEO	120	V
	Emitter to Collector Voltage	VECO	6	V
	Collector Current	lc	30	mA
	Power Dissipation Derating	⊿Pc/°C	1.5	mW/°C
	Power Dissipation	Pc	150	mW
Isolation Voltage*2		BV	3 750	Vr.m.s.
Operating Ambient Temperature		TA	-55 to +100	°C
Storage Temperature		Tstg	-55 to +150	°C

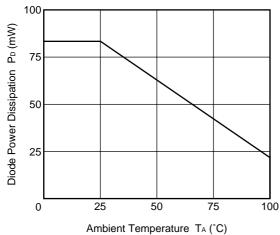
^{*1} PW = 100 μ s, Duty Cycle = 1 %

^{*2} AC voltage for 1 minute at T_A = 25 °C, RH = 60 % between input and output

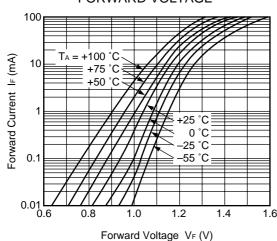

ELECTRICAL CHARACTERISTICS (TA = 25 °C)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Diode	Forward Voltage	VF	I _F = 5 mA		1.1	1.4	V
	Reverse Current	lr	V _R = 5 V			5	μА
	Terminal Capacitance	Ct	V = 0 V, f = 1 MHz		30		pF
Transistor	Collector to Emitter Dark Current	ICEO	I _F = 0 mA, V _{CE} = 120 V			100	nA
Coupled	Current Transfer Ratio	CTR	IF = 5 mA, VCE = 5 V	50	150	400	%
	(Ic/I _F)*1		IF = 1 mA, VcE = 5 V	10	80		
	Collector Saturation Voltage	VCE (sat)	I _F = 10 mA, I _C = 2 mA			0.3	V
	Isolation Resistance	R _{I-O}	Vi-o = 1 kVpc	10 ¹¹			Ω
	Isolation Capacitance	C _{I-O}	V = 0 V, f = 1 MHz		0.4		pF
	Rise Time *2	tr	$Vcc = 5 \text{ V}, \text{ Ic} = 2 \text{ mA}, \text{ RL} = 1 \text{ k}\Omega$		10		μS
	Fall Time *2	tr			10		

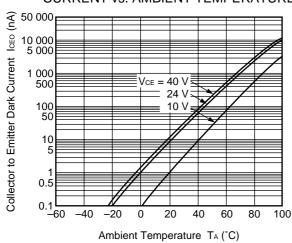

*1 CTR rank

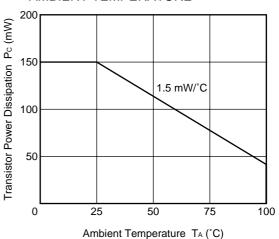

CTR rank	CTR (%)	Conditions		
K	200 to 400	IF = 5 mA, VCE = 5 V		
	80 to	IF = 1 mA, VCE = 5 V		
L	100 to 300	IF = 5 mA, VCE = 5 V		
	25 to	IF = 1 mA, VCE = 5 V		
М	50 to 150	IF = 5 mA, VCE = 5 V		
	10 to	IF = 1 mA, VCE = 5 V		

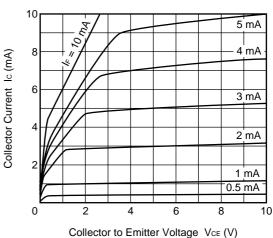
*2 Test circuit for switching time

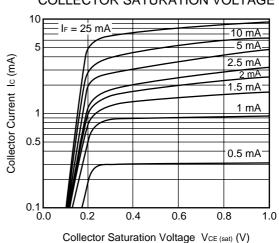


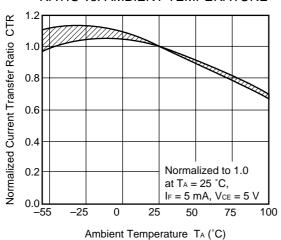
★ TYPICAL CHARACTERISTICS (TA = 25 °C, unless otherwise specified)

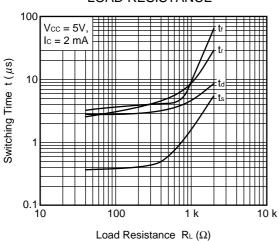


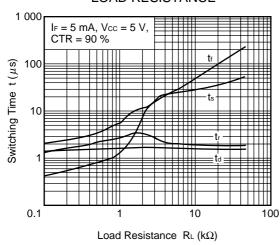

FORWARD CURRENT vs. FORWARD VOLTAGE


COLLECTOR TO EMITTER DARK CURRENT vs. AMBIENT TEMPERATURE

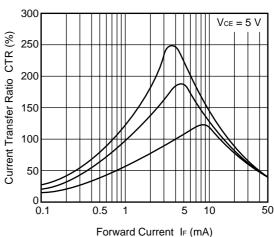

TRANSISTOR POWER DISSIPATION vs. AMBIENT TEMPERATURE


COLLECTOR CURRENT vs. COLLECTOR TO EMITTER VOLTAGE

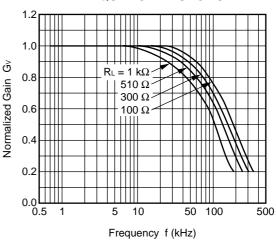

COLLECTOR CURRENT vs. COLLECTOR SATURATION VOLTAGE


NORMALIZED CURRENT TRANSFER RATIO vs. AMBIENT TEMPERATURE

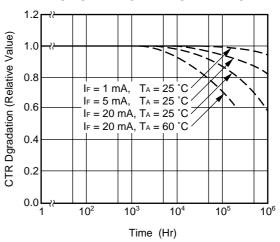
SWITCHING TIME vs. LOAD RESISTANCE

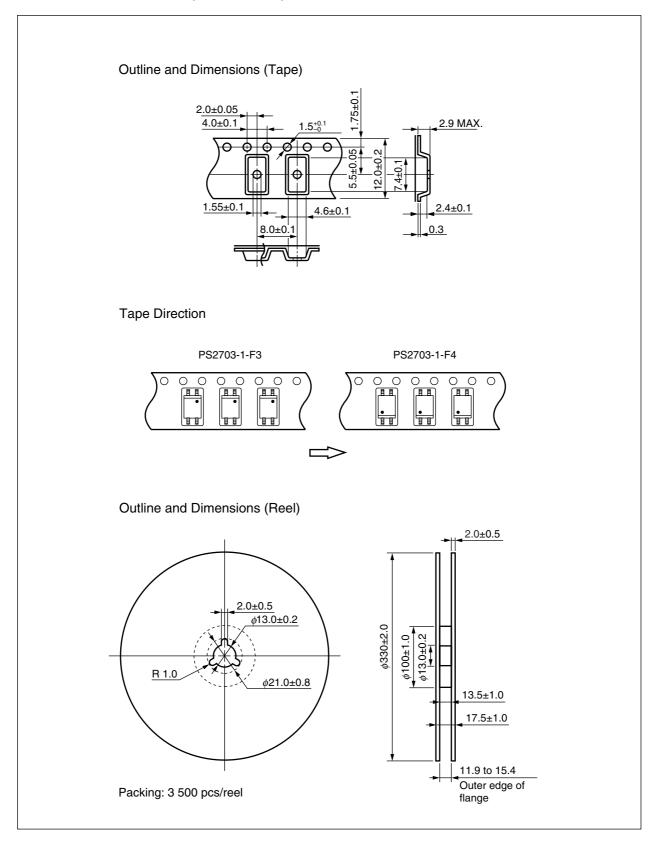


SWITCHING TIME vs. LOAD RESISTANCE



Remark The graphs indicate nominal characteristics.


CURRENT TRANSFER RATIO vs. FORWARD CURRENT


FREQUENCY RESPONSE

LONG TIME CTR DEGRADATION

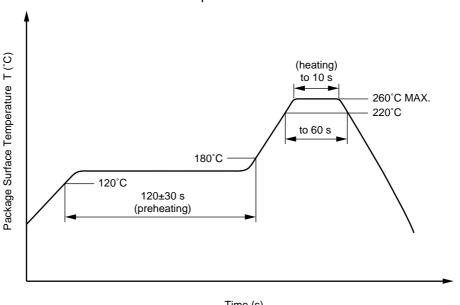
★ TAPING SPECIFICATIONS (in millimeters)

NOTES ON HANDLING

1. Recommended soldering conditions

(1) Infrared reflow soldering

• Peak reflow temperature 260°C or below (package surface temperature)


• Time of peak reflow temperature 10 seconds or less • Time of temperature higher than 220°C 60 seconds or less

• Time to preheat temperature from 120 to 180°C 120±30 s

· Number of reflows Three

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine content of 0.2 Wt% is recommended.)

Recommended Temperature Profile of Infrared Reflow

Time (s)

(2) Wave soldering

• Temperature 260°C or below (molten solder temperature)

• Time 10 seconds or less

· Preheating conditions 120°C or below (package surface temperature)

· Number of times One (Allowed to be dipped in solder including plastic mold portion.)

• Flux Rosin flux containing small amount of chlorine (The flux with a maximum chlorine

content of 0.2 Wt% is recommended.)

(3) Cautions

Fluxes

Avoid removing the residual flux with freon-based and chlorine-based cleaning solvent.

2. Cautions regarding noise

Be aware that when voltage is applied suddenly between the photocoupler's input and output or between collector-emitters at startup, the output side may enter the on state, even if the voltage is within the absolute maximum ratings.

★ USAGE CAUTIONS

- 1. Protect against static electricity when handling.
- 2. Avoid storage at a high temperature and high humidity.

SPECIFICATION OF VDE MARKS LICENSE DOCUMENT (VDE0884)

Parameter	Symbol	Speck	Unit
Application classification (DIN VDE 0109)			
for rated line voltages ≤ 300 Vr.m.s.		IV	
for rated line voltages ≤ 600 Vr.m.s.		III	
Climatic test class (DIN IEC 68 Teil 1/09.80)		55/100/21	
Dielectric strength maximum operating isolation voltage.			
Test voltage (partial discharge test procedure a for type test and random test)	Uiorm	710	V_{peak}
U _{pr} = 1.2 x U _{IORM} , P _d < 5 pC	Upr	850	V_{peak}
Test voltage (partial discharge test procedure b for all devices test) $U_{pr} = 1.6 \times U_{IORM}, P_d < 5 pC$	Upr	1 140	V _{peak}
Highest permissible overvoltage	Utr	6 000	V _{peak}
Degree of pollution (DIN VDE 0109)		2	
Clearance distance		> 5	mm
Creepage distance		> 5	mm
Comparative tracking index (DIN IEC 112/VDE 0303 part 1)	СТІ	175	
Material group (DIN VDE 0109)		III a	
Storage temperature range	Tstg	-55 to +150	°C
Operating temperature range	TA	-55 to +100	°C
Isolation resistance, minimum value			
V _{IO} = 500 V dc at T _A = 25 °C	Ris MIN.	10 ¹²	Ω
V _{IO} = 500 V dc at T _A MAX. at least 100 °C	Ris MIN.	10 ¹¹	Ω
Safety maximum ratings (maximum permissible in case of fault, see thermal derating curve)			
Package temperature	Tsi	150	°C
Current (input current I _F , Psi = 0)	Isi	200	mA
Power (output or total power dissipation)	Psi	300	mW
Isolation resistance			
$V_{10} = 500 \text{ V dc at T}_A = 175 ^{\circ}\text{C (Tsi)}$	Ris MIN.	10 ⁹	Ω

4590 Patrick Henry Drive Santa Clara, CA 95054-1817 Telephone: (408) 919-2500

Facsimile: (408) 988-0279

Subject: Compliance with EU Directives

CEL certifies, to its knowledge, that semiconductor and laser products detailed below are compliant with the requirements of European Union (EU) Directive 2002/95/EC Restriction on Use of Hazardous Substances in electrical and electronic equipment (RoHS) and the requirements of EU Directive 2003/11/EC Restriction on Penta and Octa BDE.

CEL Pb-free products have the same base part number with a suffix added. The suffix –A indicates that the device is Pb-free. The -AZ suffix is used to designate devices containing Pb which are exempted from the requirement of RoHS directive (*). In all cases the devices have Pb-free terminals. All devices with these suffixes meet the requirements of the RoHS directive.

This status is based on CEL's understanding of the EU Directives and knowledge of the materials that go into its products as of the date of disclosure of this information.

Restricted Substance per RoHS	Concentration Limit per RoHS (values are not yet fixed)		on contained devices	
Lead (Pb)	< 1000 PPM	-A Not Detected	-AZ (*)	
Mercury	< 1000 PPM	Not Detected		
Cadmium	< 100 PPM	Not Detected		
Hexavalent Chromium	< 1000 PPM	Not Detected		
PBB	< 1000 PPM	Not Detected		
PBDE	< 1000 PPM	Not Detected		

If you should have any additional questions regarding our devices and compliance to environmental standards, please do not hesitate to contact your local representative.

Important Information and Disclaimer: Information provided by CEL on its website or in other communications concerting the substance content of its products represents knowledge and belief as of the date that it is provided. CEL bases its knowledge and belief on information provided by third parties and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. CEL has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. CEL and CEL suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall CEL's liability arising out of such information exceed the total purchase price of the CEL part(s) at issue sold by CEL to customer on an annual basis.

See CEL Terms and Conditions for additional clarification of warranties and liability.