

Version: 1.1

TECHNICAL SPECIFICATION

MODEL NO.: PW036XS3

Customer's Confirmation	
Customer	-
Date	_
Ву	-
	☐PVI's Confirmation
	Confirmed By
	Prepared By

FOR MORE INFORMATION:

AZ DISPLAYS, INC. 75 COLUMBIA, ALISO VIEJO, CA, 92656 Http://www.AZDISPLAYS.com

Date: Jan. 10, 2005

This technical specification is subject to change without notice. Please return 1 copy with your signature on this page for approval.

TECHNICAL SPECIFICATION

CONTENTS

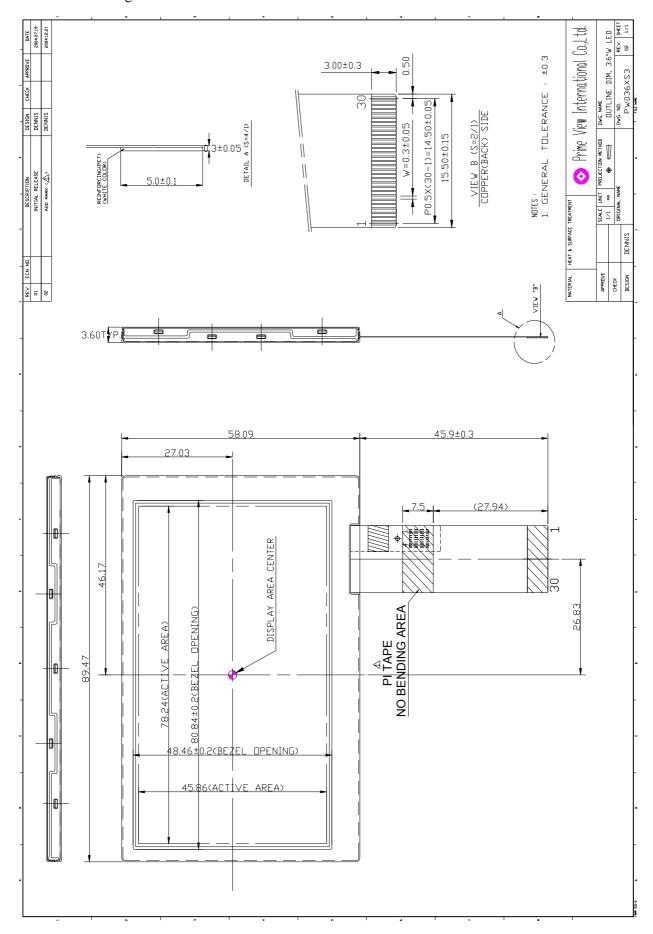
NO.	ITEM	PAGE
-	Cover	1
-	Contents	2
1	Application	3
2	Features	3
3	Mechanical Specifications	3
4	Mechanical Drawing of TFT-LCD module	4
5	Input / Output Terminals	5
6	Pixel Arrangement and Input Connector Pin No.	6
7	Absolute Maximum Ratings	7
8	Electrical Characteristics	7
9	Power On Sequence	17
10	Optical Characteristics	17
11	Handling Cautions	20
12	Reliability Test	21
13	Block Diagram	22
14	Packing	23
	Revision History	25
	Appendix	26

1. Application

This technical specification applies to 3.6" color TFT-LCD module, PW036XS3.

The applications of the panel are car TV, portable DVD, GPS, multimedia applications and other AV systems..

2. Features


- . Amorphous silicon TFT-LCD panel with LED Backlight unit.
- . Compatible with NTSC & PAL system
- . Pixel in stripe configuration
- . Slim and compact
- . Image Reversion : Up/Down and Left/Right
- . Support Multi Video Display Mode (With PVI timing controller : PVI-1004C)

3. Mechanical Specifications

Parameter	Specifications	Unit
Screen Size	3.6 (16:9 diagonal)	inch
Display Format	960×234	dot
Active Area	78.24(H)× 45.864(V)	mm
Dot Pitch	0.0815 (H)×0.196 (V)	mm
Pixel Configuration	Stripe	
Outline Dimension	$89.47(W) \times 58.09(H) \times 3.6(D)(typ.)$	mm
Surface Treatment	Anti – Glare	
Weight	40±5	g

4. Mechanical Drawing of TFT-LCD Module

5. Input / Output Terminals

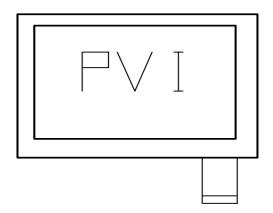
TFT-LCD Module Connector

FPC Down Connect, 30Pins, Pitch: 0.5 mm

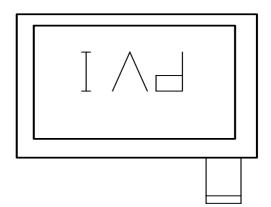
Pin No	Symbol	I/O	Description	Remark
1	GLED1	_	Ground for LED backlight	
2	VLED1	ı	Supply voltage of LED backlight	Note 5-8
3	GLED2	Ι	Ground for LED backlight	
4	VLED2	I	Supply voltage of LED backlight	Note 5-8
5	GND	-	Ground for logic circuit	
6	V_{CC}	ı	Supply voltage of logic control circuit for gate driver	Note 5-3
7	V _{EE}	ı	Negative power for gate driver	Note 5-4
8	V_{GH}	ı	Positive power for gate driver	Note 5-5
9	STVD	I/O	Vertical start pulse	N. 1. 5.4
10	STVU	I/O	Vertical start pulse	Note 5-1
11	CKV	ı	Shift clock for gate driver	
12	U/D	I	Up / Down control for gate driver	Note 5-1
13	OE3	ı	Output enable for gate driver	
14	OE2	I	Output enable for gate driver	
15	OE1	ı	Output enable for gate driver	
16	V_{COM}		Common electrode voltage	
17	STHL	I/O	Start pulse for source driver	Note 5-2
18	V_{SS2}	1	Ground for analog circuit	
19	V_R		Video Input R	
20	V_{G}		Video Input G	
21	V_B		Video Input B	
22	V_{SS1}	1	Ground for digital circuit	
23	V_{DD2}		Supply power of analog circuit	Note 5-6
24	CPH1		Sampling and shift clock for source driver	
25	CPH2	_	Sampling and shift clock for source driver	
26	CPH3		Sampling and shift clock for source driver	
27	V_{DD1}	_	Supply power for digital circuit	Note 5-7
28	R/L	_	Left / Right control for source driver	Note 5-2
29	OEH	_	Output enable for source driver	
30	STHR	I/O	Start pulse for source driver	Note 5-2

Note 5-1

U/D	STVD	STVU	scanning direction
Vcc	Input	output	down to up
GND	Output	input	up to down


Note 5-2

R/L	STHL	STHR	scanning direction
Vcc	output	input	left to right
GND	input	output	right to left



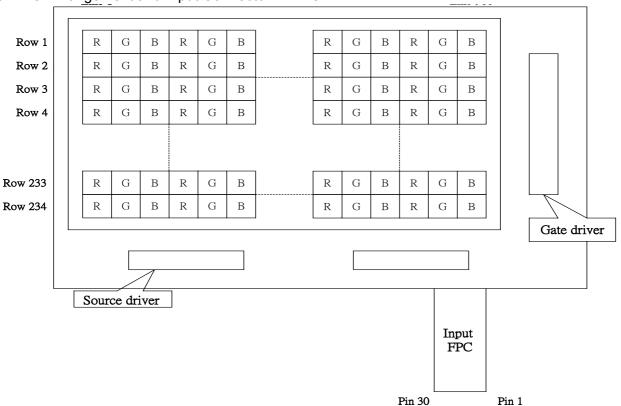
The definitions of Note 5-1,5-2

U/D(PIN 12)=Low R/L(PIN 28)=High

U/D(PIN 12)=High R/L(PIN 28)=Low

Note 5-3 : V_{CC} TYP. = +3.3V

Note 5-4 : V_{EE} TYP.=-12V


Note 5-5: V_{GH} TYP.=+17V

Note 5-6: V_{DD2} TYP.=+5V

Note 5-7: V_{DD1} TYP.=+3.3V

Note 5-8 : I_{LED1} , I_{LED2} TYP.=20mA

6. Pixel Arrangement and Input Connector Pin NO.

7. Absolute Maximum Ratings:

The followings are maximum values, which if exceeded, may cause faulty operation or damage to the unit.

GND = 0 V, Ta = 25 °C

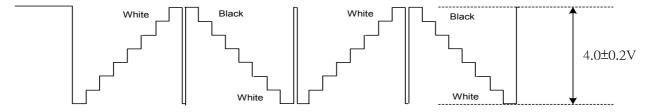
Parameter		Symbol	MIN.	MAX.	Unit	Remark
Supply Voltage For Source Driver		V_{DD2}	-0.3	+5.8	V	
		V_{DD1}	-0.3	+7.0	V	
		V _{CC}	-0.3	+6.0	V	
Supply Voltage For Gate Driver		V_{GH} - V_{EE}	-0.3	+40.0	V	
	H Level	V_{GH}	-0.3	+25.0	V	
	L Level	V _{EE}	-16	+0.3	V	
Analog Signal Input Level		V_R, V_G, V_B	-0.2	V _{DD1} +0.2	V	Note 7-1
Storage Temperature			-10	+70	$^{\circ}\!\mathbb{C}$	
Operation Temperature			0	+60	$^{\circ}\!\mathbb{C}$	Note 7-2

Notes 7-1: Analog Input Voltage means V_R,V_G,V_B.

Notes 7-2 : Operating Temperature define that contrast, response time, other display optical character are Ta=+25 $^{\circ}$ C.

8. Electrical Characteristics

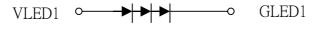
8-1) Operating Condition


Parameter			MIN.	Тур.	MAX.	Unit	Remark
Supply Voltage For Source Driver	Analog	V_{DD2}	+4.5	+5.0	+5.5	V	
Supply Voltage I of Source Driver	Logic	V_{DD1}	+3.0	+3.3	+3.6	V	
	H level	V_{GH}	+15	+17	+19	V	
Supply Voltago For Gato Driver	L level	V _{EE DC}	-13	-12	-10.5	٧	DC Component of V _{EE}
Supply Voltage For Gate Driver		V _{EE AC}		+6.0		V _{P-P}	AC Component of V_{EE}
	Logic	V _{CC}	+3.0	+3.3	+3.6	٧	Note8-1
Analog Signal input Level	V_{iAC}			+4.0	+4.2	٧	AC Compoment Note8-3
(V_R, V_G, V_B)	V_{iDC}			2.5		٧	DC Compoment Note8-3
Digital input valtage	H level	V _{IH}	0.7 V _{DD1}	-	V _{DD1}	V	
Digital input voltage	L level	V _{IL}	-0.3	-	0.3 VDD1	V	
Digital output voltage	H level	V _{OH}	0.7 V _{DD1}	-	V _{DD1}	V	
Digital output voltage	L level	V _{OL}	-0.3	-	0.3 V _{DD1}	V	
V	V _{COM AC}	-	+6.0	-	V _{P-P}	AC Component of V _{COM}	
V_{COM}	V _{COM DC}	-	1.2	-	٧	DC Component of V _{COM} Note 8-2	

Note 8-1 :The typical value of Logic circuit supply power V_{CC} & V_{DD1} is 3.3 \pm 0.3V , if customer choice 5.0 \pm 0.5V , the panel power consumption will increase about 10mW .

Note 8-2 :PVI strongly suggests that the $V_{\text{COM DC}}$ level shall be adjustable , and the adjustable level range is $1.2V\pm1V$, every module's $V_{\text{COM DC}}$ level shall be carefully adjusted to show a best image performance.

Note 8-3: Both NTSC and PAL system Video Signal input waveform is based on 8 steps gray scale.


8-2) Recommended driving condition for LED backlight

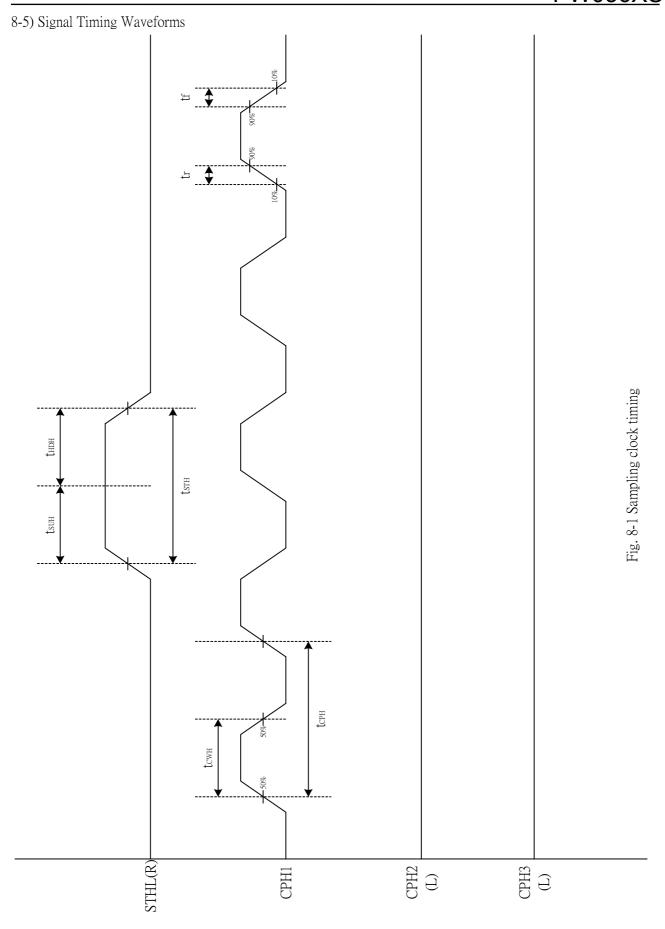
GND = 0 V, Ta = 25 °C

Parameter	Symbol	Min	TYP	MAX	Unit	Remark	
0 1 " (1501 1511	VLED1		0.6	11.4	V	$I_L = 20 \text{ mA}$	
Supply voltage of LED backlight	VLED2	9	9.6	11.4		IL – 20 MA	
	ILED1		20			N. 1. 0. 1	
Supply current of LED backlight	ILED2	20			mA	Note 8-4	
Backlight Power Consumption	PLED	360	384	456	mW	Note 8-5	

Note 8-4: LED B/L applied information, please refer to the appendix at the end.

Note 8-5 : PLED = VLED1* ILED1 + VLED2* ILED2 .

8-3) Power Consumption


Parameter	Symbol	Conditions	TYP.	MAX	Unit	Remark
Supply current for Gate Driver (Hi level)	I _{GH}	$V_{GH} = +17V$	0.08	0.12	mA	
Supply current for Gate Driver (Low level)	I _{EE}	$V_{EE} = -12V$	0.3	0.45	mA	V _{EE} center voltage
Supply current for Source Driver(Digital)	I _{DD1}	$V_{DD1} = +3.3V$	1.2	3.0	mA	
Supply current for Source Driver(Analog)	I _{DD2}	$V_{DD2} = +5V$	7.0	10.0	mA	
Supply current for Gate Driver (Digital)	I _{CC}	$V_{CC} = +3.3V$	0.005	0.008	mA	
LCD Panel Power Consumption			44.3	68.3	mW	
Backlight Power Consumption	PLED		384	456	mW	
Total Power Consumption			428.3	524.3	mW	

8-4) Timing Characteristics Of Input Signals

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Remark
Rising time	$t_{\rm r}$	-	-	10	ns	
Falling time	t_{f}	-	-	10	ns	
High and low level pulse width	t_{CPH}	147	156	166	ns	CPH1~CPH3
CPH pulse duty	t_{CWH}	30	50	70	%	CPH1~CPH3
STH setup time	$t_{ m SUH}$	20	-	-	ns	STHR,STHL
STH hold time	$t_{ m HDH}$	20	-	-	ns	STHR,STHL
STH pulse width	$t_{ m STH}$	-	1	-	t_{CPH}	STHR,STHL
STH period	t_{H}	61.5	63.5	65.5	μ s	STHR,STHL
OEH pulse width	t_{OEH}	-	1.6	-	μ s	OEH
Sample and hold disable time	$t_{ m DIS1}$	-	4.4	-	μ s	
OEV pulse width	t_{OEV}	-	12	-	μ s	OEV
CKV pulse width	t_{CKV}	-	32	-	μ s	CKV
Clean enable time	$t_{ m DIS2}$	-	6	-	μ s	
Horizontal display timing range	$t_{ m DH}$	-	320	-	$t_{CPH}/3$	
STV setup time	$t_{ m SUV}$	400	-	-	ns	
STV hold time	$t_{ m HDV}$	400	-	-	ns	STVU,STVD
STV pulse width	t_{STV}	-	-	1	t_{H}	STVU,STVD
Horizontal lines per field	$t_{ m V}$	256	262	268	t_{H}	
Vertical display start	$t_{ m SV}$		3	-	t_{H}	
Vertical display timing range	$t_{ m DV}$		234	-	t_{H}	
VCOM rising time	t_{rCOM}		-	5	μ s	
VCOM falling time	t_{fCOM}		-	5	μ s	
VCOM delay time	t_{DCOM}		-	3	μ s	
RGB delay time	$t_{ m DRGB}$		-	1	μ s	

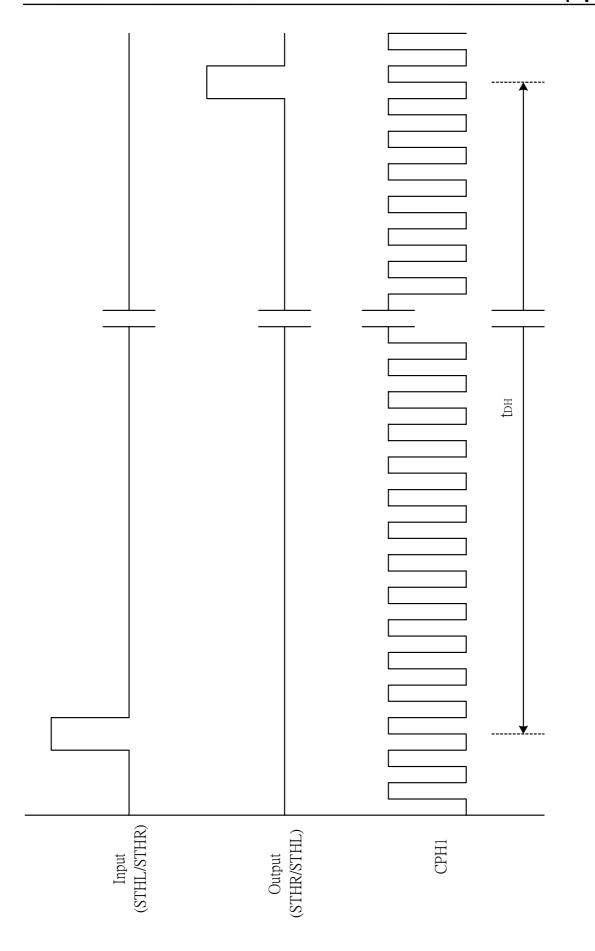
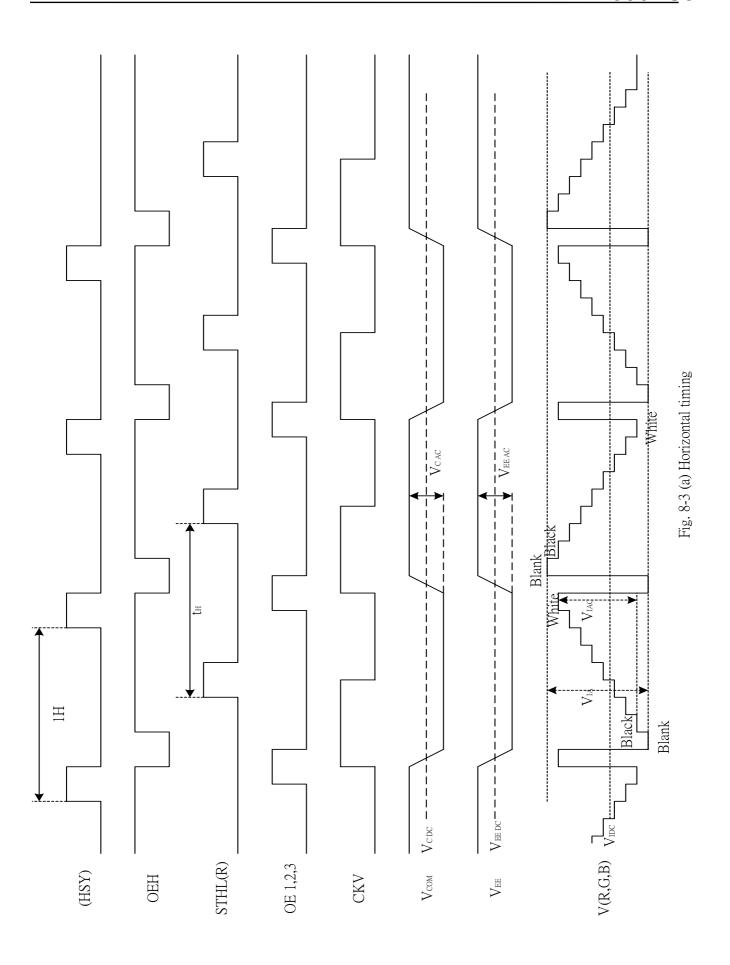
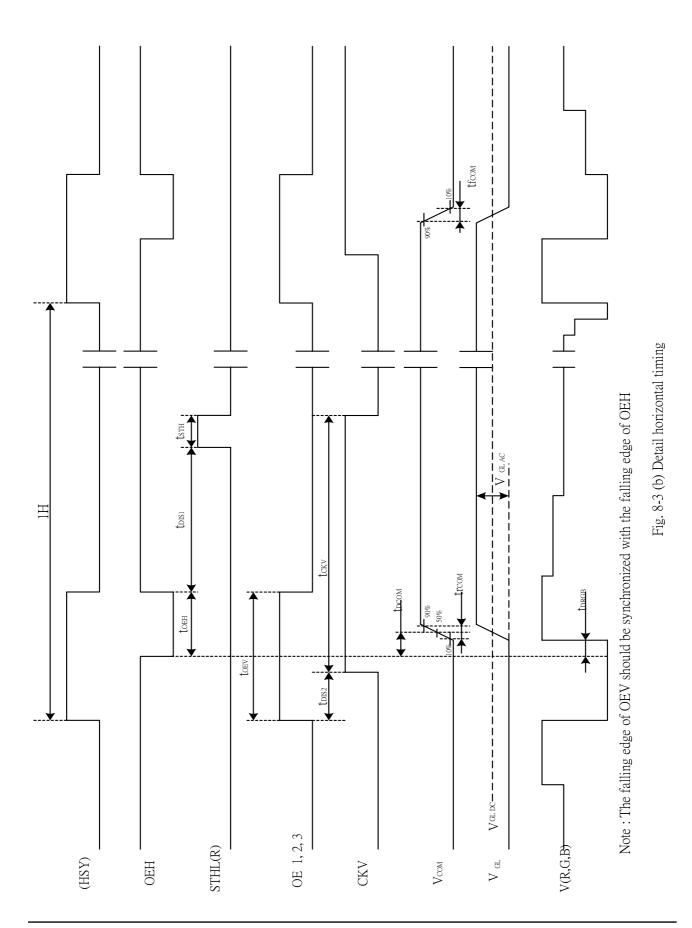
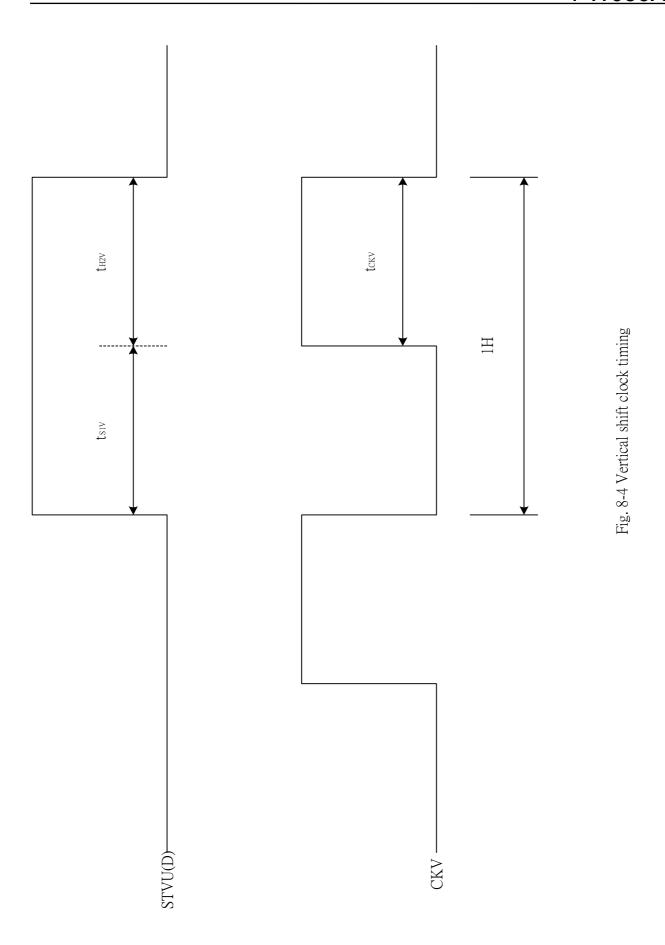
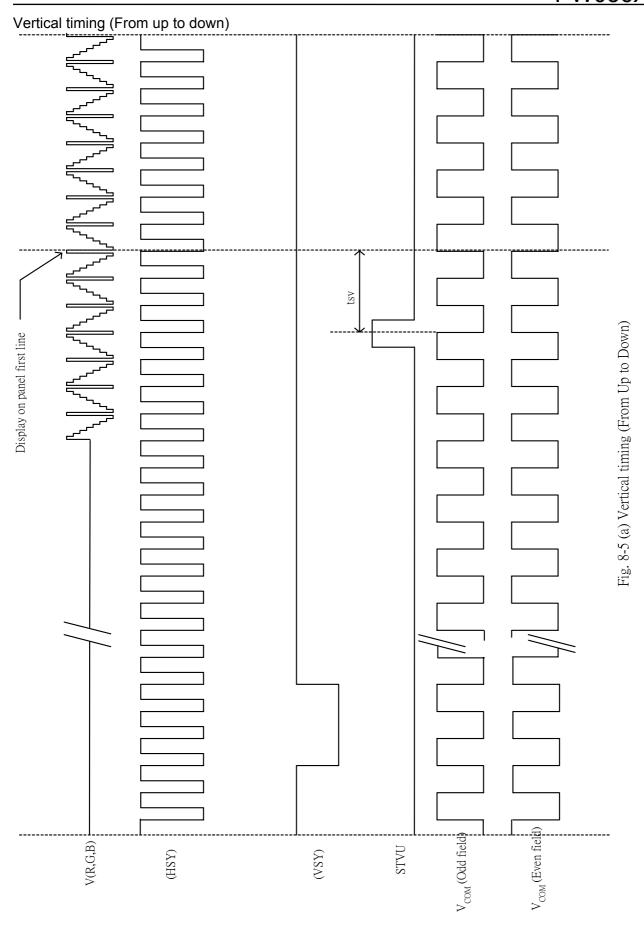
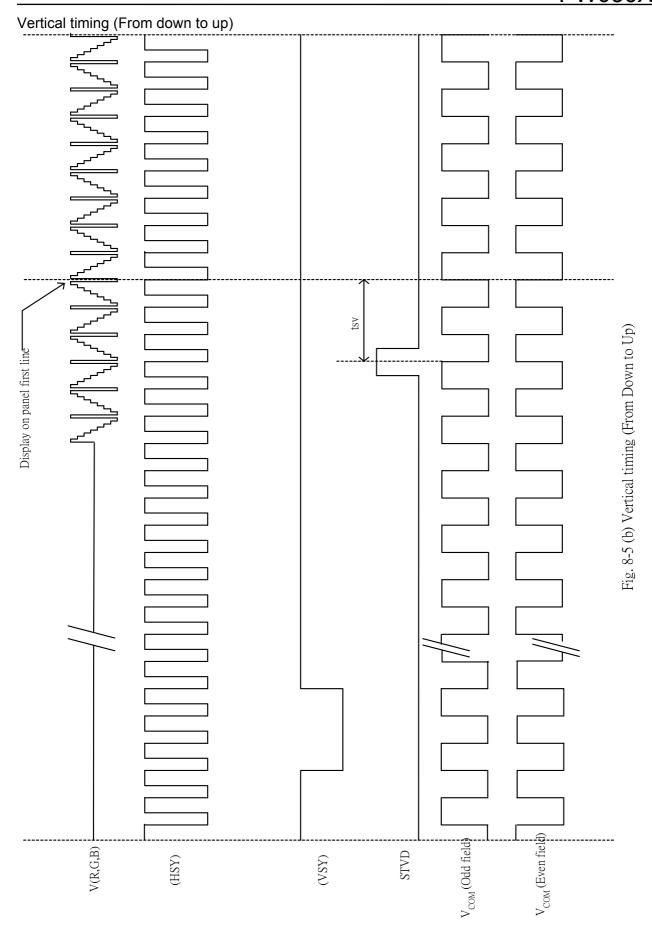
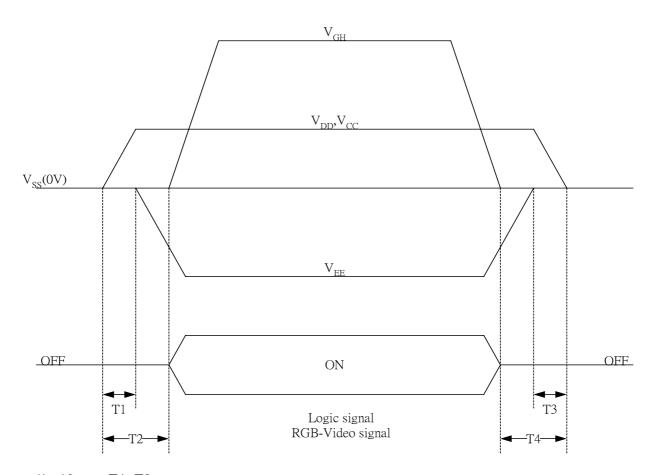





Fig. 8-2 Horizontal display timing range




The information contained herein is the exclusive property of Prime View International Co., Ltd. and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of Prime View International Co., Ltd.PAGE:13



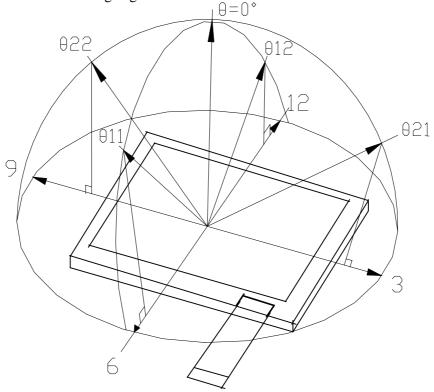
9. Power On Sequence

The Power on Sequence only effect by V_{CC} , V_{SS} , V_{DD} , V_{EE} and V_{GH} , the others do not care.

- 1) 10ms≦T1<T2
- 2) $0ms < T3 \le T4 \le 10ms$

10. Optical Characteristics

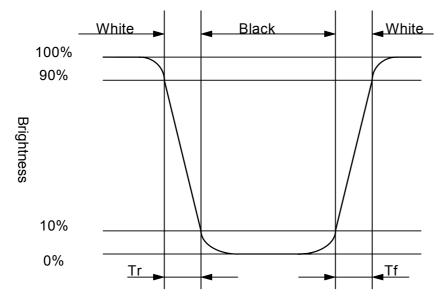
10-1) Specification:


 $Ta = 25^{\circ}C$

Parameter		Symbol	Condition	MIN.	TYP.	MAX.	Unit	Remarks
Viewing	Horizontal	θ 21, θ 22		45	55		deg	
	Vertical	<i>θ</i> 11	CR≧10	30	35		deg	Note 10-1
Angle		θ 12		10	15		deg	
Contrast Ratio		CR	At optimized Viewing angle	200	350			Note 10-2
Pagnanga tima	Rise	Tr	$\theta = 0^{\circ}$		10	20	ms	Note 10-4
Response time	Fall	Tf			25	50	ms	
Uniformity			U	70	80			
Brightness				200	250		cd/m²	Note 10-3
White		X	$\theta = 0^{\circ}$	0.27	0.30	0.33		1NOIC 10-3
Chromaticity		у	$\theta = 0^{\circ}$	0.30	0.33	0.36		
LED Backlight L	ife (+25°€)				10000		hrs	Note 10-5

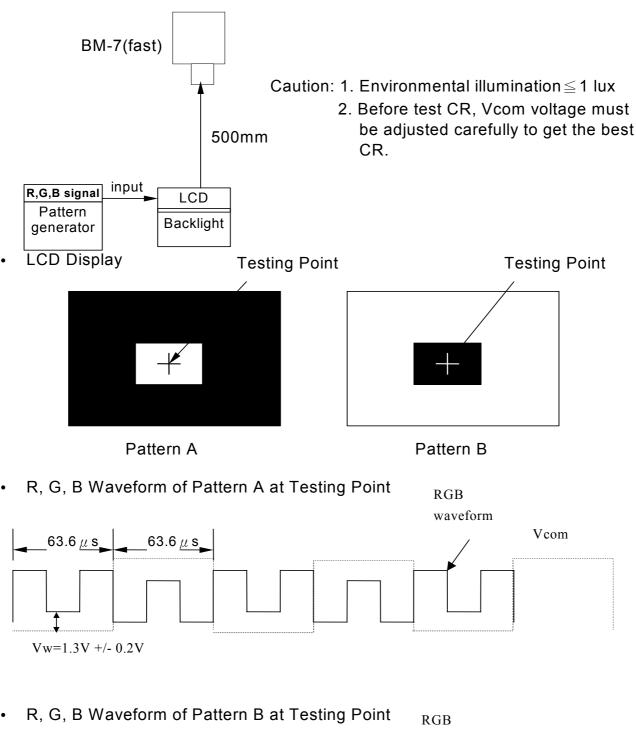
Note 10-5 : Constant current 20mA for each loop , and the center brightness must more than 50% of initial brightness value .

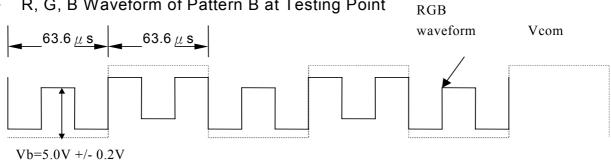
Note 10-1: The definitions of viewing angles


Note $10-2 : CR = \frac{\text{Luminance when Testing point is White}}{\text{Luminance when Testing point is Black}}$

(Testing configuration see 10-2)

Contrast Ratio is measured in optimum common electrode voltage.


Note 10-3 : :1. Topcon BM-7(fast) luminance meter 1.0° field of view is used in the testing (after 10 minutes operation).


Note 10-4: The definition of response time:

10-2) Testing configuration

11. Handling Cautions

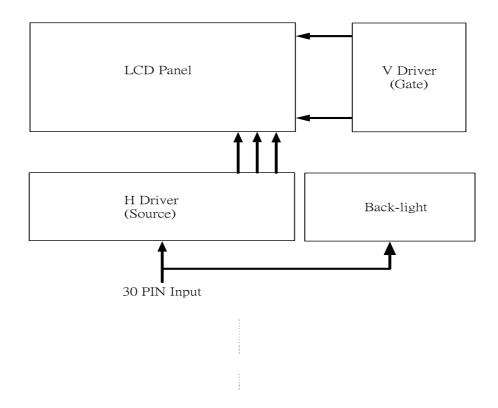
- 11-1) Mounting of module
 - a) Please power off the module when you connect the input/output connector.
 - b) Please connect the ground pattern of the inverter circuit surely. If the connection is not perfect, some following problems may happen possibly.
 - 1. The noise from the backlight unit will increase.
 - 2. The output from inverter circuit will be unstable.
 - 3.In some cases a part of module will heat.
 - c) Polarizer which is made of soft material and susceptible to flaw must be handled carefully.
 - d) Protective film (Laminator) is applied on surface to protect it against scratches and dirt. It is recommended to peel off the laminator before use and taking care of static electricity.
- 11-2) Precautions in mounting
 - a) Wipe off water drops or finger grease immediately. Long contact with water may cause discoloration or spots.
 - b) TFT-LCD module uses glass which breaks or cracks easily if dropped or bumped on hard surface. Please handle with care.
 - c) Since CMOS LSI is used in the module. So take care of static electricity and earth yourself when handling.
- 11-3) Others
 - a) Do not expose the module to direct sunlight or intensive ultraviolet rays for many hours.
 - b) Store the module at a room temperature place.
 - c) The voltage of beginning electric discharge may over the normal voltage because of leakage current from approach conductor by to draw lump read lead line around.
 - d) If LCD panel breaks, it is possibly that the liquid crystal escapes from the panel. Avoid putting it into eyes or mouth. When liquid crystal sticks on hands, clothes or feet. Wash it out immediately with soap.
 - e) Observe all other precautionary requirements in handling general electronic components.

12. Reliability Test

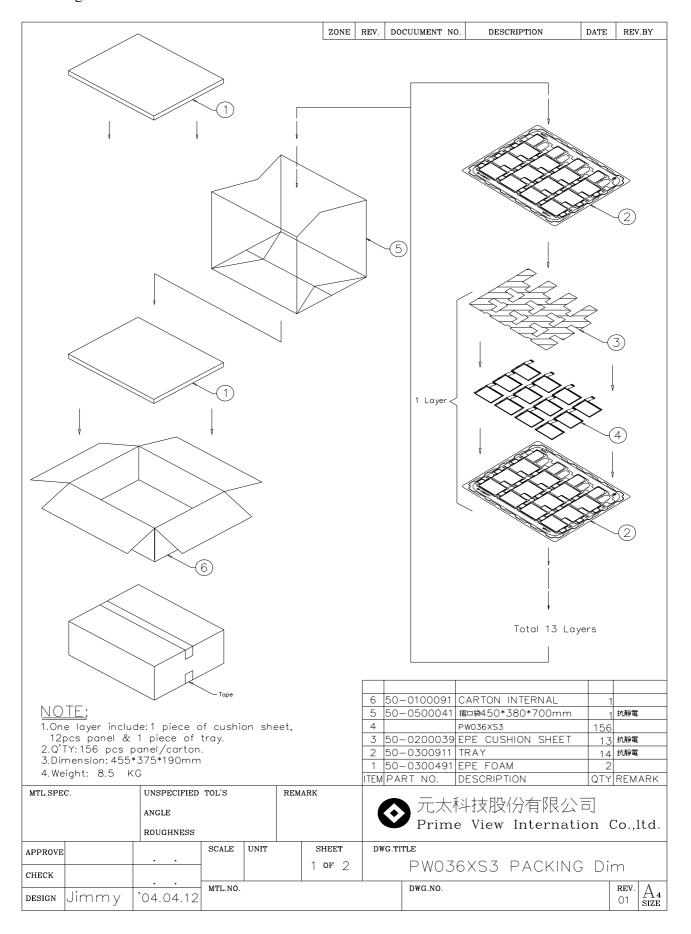
No	Test Item	Test Condition
1	High Temperature Storage Test	$Ta = +70^{\circ}C$, 240 hrs
2	Low Temperature Storage Test $Ta = -10^{\circ}C$, 240 hrs	
3	High Temperature Operation Test	$Ta = +60^{\circ}C$, 240 hrs
4	Low Temperature Operation Test	$Ta = 0^{\circ}C$, 240 hrs
5	High Temperature & High Humidity Operation Test	$Ta = +50^{\circ}C$, 80%RH, 240 hrs
6	Thermal Cycling Test (non-operating)	-10°C ← → +70°C , 200 Cycles 30 min 30 min
7	Vibration test (non-operating)	Frequency: 10 ~ 55Hz Amplitude: 1mm, sweep time: 11 mins Test period: 6 cycles for each direction of X,Y, Z
8	Shock Test(non-operating)	100G, 6ms, 3cycles for each direction of X,Y,Z
9	Electrostatic Discharge Test (non-operating)	200pF, 0Ω Machine mode = $\pm 200V$ 1 time / each terminal

Ta: ambient temperature

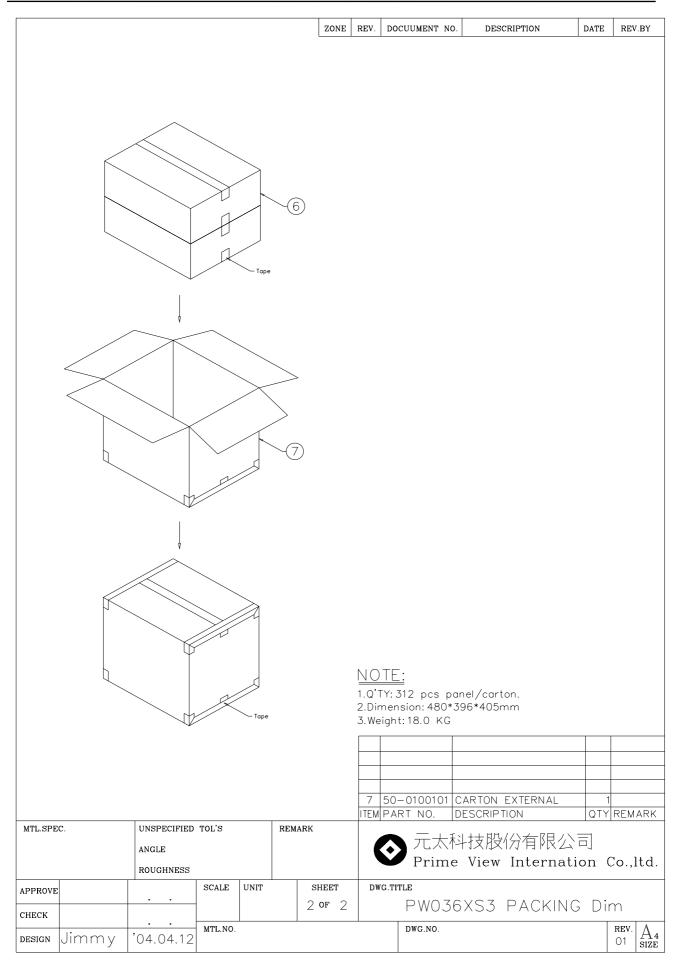
Note: The protective film must be removed before temperature test.


[Criteria]

Under the display quality test conditions with normal operation state, there should be no change which may affect practical display function.

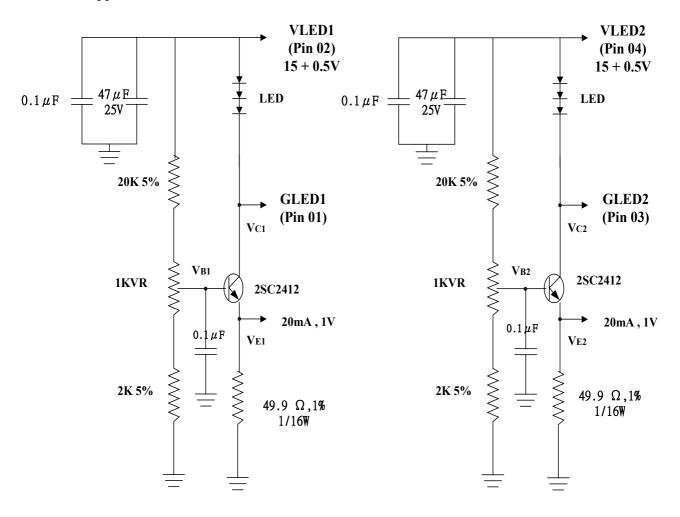

13. Block Diagram

14.1 LCD Module Diagram



14. Packing

PW036XS3


Revision History

Rev.	Issued Date	Revised Contents
1.0	Jul. 06, 2004	NEW
1.1	Jan.10, 2005	Modify:
		Page04: Mechanical Drawing of TFT-LCD Module(No Bending Area)
		Add:
		Page21: Note: The protective film must be removed before temperature test.
		Delete:
		Page21 : Indication of Lot Number Label(Oracle system induction)

Appendix

LED B/L Application Circuit

