
GaAs MMIC CGY 353

Data Sheet

3-stage power amplifier for 3.5 GHz applications

- Linear Output power 31.0 dBm
- Gain of 21.0 dB typ.
- Operating voltage 7.0 V typ.
- Unconditionally stable

Туре	Marking	Ordering Code (taped)	Package
CGY 353	CGY 353	Q62702-G82	MW-16

Maximum Ratings

Parameter	Symbol	Value	Unit
Positive supply voltage	V_{D}	8.0	V
Supply current	I_{D}	2.0	А
Maximum input power	P_{IN_max}	17.0	dBm
Channel temperature	T_{Ch}	150	°C
Storage temperature	$T_{ m stg}$	- 55 + 1 50	°C
Total power dissipation ($T_{\rm S} \le 81~{}^{\circ}{\rm C}$) $T_{\rm S}$: Temperature at soldering point	P_{tot}	7.0	W
Pulse peak power dissipation duty cycle 30%, $t_{ON} = 0.5 \text{ ms}$	P_{Pulse}	11.0	W

Thermal Resistance

Parameter	Symbol	Value	Unit
Channel-soldering point	R_{thChS}	t.b.d.	K/W

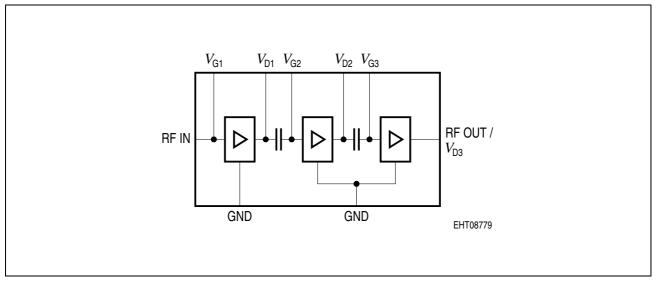


Figure 1 Functional Block Diagram

Pin Configuration

Pin No.	Name	Configuration	Bias Voltage	
1	RF IN	RF input ¹⁾	_	
2	GND	GND	0 V	
3	GND	GND	0 V	
4	GND	GND	0 V	
5	GND	GND	0 V	
6	GND	GND	0 V	
7	V_{D1}	1 st RF Amp Drain Bias	pos. voltage ²⁾	
8	V_{G2}	2 nd RF Amp Gate Bias	neg. voltage ³⁾	
9	V_{G1}	1 st RF Amp Gate Bias	neg. voltage ³⁾	
10	GND	GND	0 V	
11	GND	GND	0 V	
12	RF OUT/ $V_{\rm D3}$	RF output/3 rd RF Amp Drain Bias	pos. voltage ²⁾	
13	RF OUT/ $V_{\rm D3}$	RF output/3 rd RF Amp Drain Bias	pos. voltage ²⁾	
14	RF OUT/ $V_{\rm D3}$	RF output/3 rd RF Amp Drain Bias	pos. voltage ²⁾	
15	V_{G3}	3 rd RF Amp Gate Bias	neg. voltage ³⁾	

Pin Configuration (cont'd)

Pin No.	Name	Configuration	Bias Voltage
16	V_{D2}	2 nd RF Amp Drain Bias	pos. voltage ²⁾
MW-16 Heatsink Slug	GND	OWP Ground	0 V

The gate voltage of the 1st RF Amp is not blocked internally (see also **Figure 1**). Therefore $V_{\rm G1}$ must be blocked externally at RF IN.

The positive DC voltages of $V_{\rm D1}$, $V_{\rm D2}$ and $V_{\rm D3}$ are typically equal. The voltage range is typically between + 5.0 V and + 7.0 V.

The negative DC voltages of $V_{\rm G1}$, $V_{\rm G2}$ and $V_{\rm G3}$ are typically equal. The voltage range depends on the wanted drain current. A gate voltage of – 2.1 V will set $I_{\rm D}$ typically to 1.2 A at $V_{\rm D}$ = 7.0 V. In that case $I_{\rm D1}$ will have about 70 mA, $I_{\rm D2}$ about 270 mA and $I_{\rm D3}$ about 900 mA.

Electrical Characteristics

Conditions: $V_{\rm D}$ = 7.0 V, $T_{\rm A}$ = 25 °C, f = 3425 - 3450 MHz, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω , pulsed operation mode, duty cycle = 30%, unless otherwise specified.

Parameters	Symbol	L	Limit Values			Test
		min.	typ.	max.		Conditions
Supply current	I_{DD}	_	1.2	_	Α	_
Power down current	I_{Pdown}	_	10	_	mA	_
Supply current neg. voltage	I_{G}	_	1	_	mA	-
Gain at nominal linear output power	G	_	21	_	dB	-
Linear Output Power	P_{OUT}	_	31	_	dBm	$P_{\rm IN}$ = 12 dBm
Saturation Output Power	P_{SAT}	_	33	_	dBm	P_{IN} = 14 dBm
Overall Power added Efficiency	PAE	_	15	_	%	$P_{\rm IN}$ = 10 dBm
Adjacent channel power ¹⁾	ACP	_	_	- 30	dBc	± 156 kHz beside carrier
Input return loss ²⁾	S11	10	_	_	dB	$P_{\rm IN}$ = 10 dBm
Output return loss	S22	8	_	_	dB	$P_{\rm IN}$ = 10 dBm
Noise Figure	NF	_	5		dB	_

Modulation: $\pi/4$ DQPSK with an alpha = 0.4 root raised cosine filtered Symbol rate: 256 ksymbols/s.

Duty cycle: 30%, 3 bursts per 5 ms frame with a minimum interval of 1 ms between bursts.

The modulation signal has a peak to mean envelope ratio of 3.1 dB.

Transmission burst: Each burst has a 500 s nominal duration with 20 dB of raised cosine shaping of 8 s duration at the beginning and the end of the burst. A maximum of three bursts occur in each 5 ms period, but consecutive bursts are separated by a minimum interval of 1 ms.

²⁾ Values of S11 and S22 with match as realized on application board.

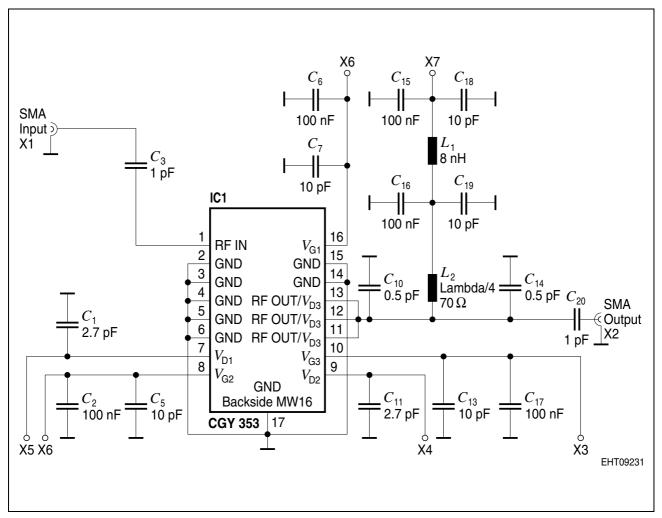


Figure 2 Application Circuit

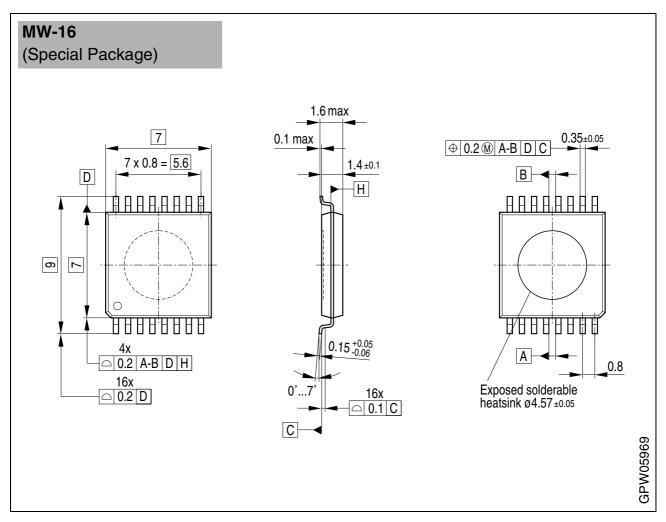
Notes:

Input and output line: 50Ω

 C_{10} and C_{14} : 0402 capacitors

All other capacitors: 0603

 C_{20} : AVX 06035J1R0BBT


 L_1 : Coilcraft Air Core Inductor A03T

Suggested Heat Sink: about 7 K/W

 $V_{\rm D3}$ additionally blocked with 4.7 $\mu F/16$ V at connection X7

Package Outlines

Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information".

SMD = Surface Mounted Device

Dimensions in mm